
Strojarstvo 54 (2) 161-168 (2012) M. MADIĆ et. al., Software Prototype for Optimization... 161

CODEN STJSAO ISSN 0562-1887
ZX470/1563 UDK 658.51:519.6

Software Prototype for Optimization and Control of

Manufacturing Processes

Miloš MADIĆ
1)

Marko KOVAČEVIĆ
2)

,
Velibor MARINKOVIĆ

1)
 and

Miroslav RADOVANOVIĆ
1)

1) Mašinski fakultet, Univerzitet u Nišu

 (Faculty of Mechanical Engineering,

 University of Niš),

 Aleksandra Medvedeva 14, 18000 Niš,

 Republic of Serbia

2) Elektronski fakultet, Univerzitet u Nišu

 (Faculty of Electronic Engineering,

 University of Niš),

 Aleksandra Medvedeva 14, 18000 Niš,

 Republic of Serbia

madic@masfak.ni.ac.rs

Keywords

Manufacturing processes
Regression analysis
Artificial neural networks
Software prototype
Optimization
Control

Ključne riječi

Proizvodni procesi
Regresijska analiza
Umjetne neuronske mreže
Prototip softvera
Optimizacija
Upravljanje

Primljeno (Received): 2011-10-10

Prihvaćeno (Accepted): 2012-01-30

Original scientific paper

Modeling of manufacturing processes aimed at better understanding,

optimization and process control is very important in manufacturing

practice. This is usually achieved by integrating empirical models with

classical mathematical and meta-heuristic algorithms. In this paper,

software prototype “Function Analyzer” for optimization and control of

manufacturing processes is presented. It is based on the mathematical

iterative search of entire space of possible input values. This way, the

developed software is able to determine global extreme points of the

process model and corresponding input values (process optimization).

Furthermore, it is able to determine the optimal input values that satisfy

the specified requirements for output value and accuracy (process

control). The developed software is characterized by extendible

architecture, flexible user interface and efficient operation. The abilities of

software prototype “Function Analyzer” were demonstrated on two case

studies. The first one considers the regression based modelling of dry

turning of cold rolled alloy steel. The second case study considers the

artificial neural network based modelling of dry turning of unreinforced

polyamide.

Softverski prototip za optimizaciju i upravljanje proizvodnim

procesima

Izvornoznanstveni članak

Modeliranje proizvodnih procesa s ciljem boljeg razumijevanja,

optimizacije i upravljanja procesa je vrlo važno u proizvodnoj praksi. U tu

svrhu obično se vrši integracija empirijskih modela procesa s klasičnim

matematičkim i meta-heurističkim algoritmima. U ovom radu je

predstavljen softverski prototip “Function Analyzer” za optimizaciju i

upravljanje proizvodnih procesa koji se temelji na matematičkom

iterativnom pretraživanju cijelog prostora mogućih ulaznih vrijednosti. Na

taj način razvijeni softver je u mogućnosti odrediti globalne ekstremne

točke modela procesa i odgovarajuće ulazne vrijednosti (optimizacija

procesa). Nadalje, u stanju je odrediti optimalne ulazne vrijednosti koje

zadovoljavaju određene uvjete za izlazne vrijednosti i točnosti

(upravljanje procesa). Razvijeni softver karakterizira nadogradiva

arhitektura, fleksibilno korisničko sučelje i učinkovit rad. Sposobnosti

softverskog prototipa “Function Analyzer” su demonstrirane na dvije

studije slučaja. Prva razmatra regresijsko modeliranje procesa tokarenja

hladno valjanog legiranog čelika. Druga studija slučaja razmatra

modeliranje procesa tokarenja neojačanog poliamida pomoću umjetne

neuronske mreže.

1. Introduction

Process modeling and optimization are two important

issues in manufacturing [1]. Manufacturing processes

are characterized by a multiplicity of dynamically

interacting process variables, and are usually too

complicated to warrant appropriate analytical models

[2]. Therefore, manufacturing process models are often

developed empirically using the regression analysis

(RA) and in recent years by means of artificial neural

networks (ANNs). To ensure high quality products,

reduce manufacturing costs and increase the

manufacturing effectiveness, it is very important to

select the optimal process parameters. It is a crucial step

towards gaining a competitive advantage in the today’s

time-based competition in the market [3]. There are

numerous methods and algorithms applied for the

process optimization, such as ANNs [1], regression

analysis [4], response surface method (RSM) [5],

Taguchi method [6], [7], mathematical iterative search

162 M. MADIĆ et. al., Software Prototype for Optimization... Strojarstvo 54 (2) 161-168 (2012)

Symbols/Oznake

ap
- depth of cut, mm

- dubina rezanja
Vc

- cutting speed, m/min

- brzina rezanja

B

- number of all combinations of possible

input values

- broj svih kombinacija mogućih ulaznih

vrijednosti

Xi
- natural factors

- prirodni faktori

C
- a combination of possible input values

- kombinacija mogućih ulaznih vrijednosti
xi

- coded factors,

- kodirani faktori

f
- feed rate, mm/rev

- posmak

M
- mathematical model function

- funkcija matematičkog modela
 Greek letters/Grčka slova

m

- mathematical model function output

m=M(C)
- izlaz funkcije matematičkog modela

m=M(C)

α
- learning coefficient

- koeficijent učenja

N
- set of natural numbers

- skup prirodnih brojeva
Δ

- accuracy

- točnost

P
- ordered pair P=(m, C)
- uređeni par P=(m, C)

R
- set of real numbers

- skup realnih brojeva
 Subscripts/Indeksi

r
- tool nose radius, mm

- radijus zaobljenja vrha noža opt

- optimal value for given condition

- optimalna vrijednost za dane uvjete

Ra
- average surface roughness, µm

- hrapavost površine min

- minimal value for given condition

- minimalna vrijednost za dane uvjete

V
- list of possible input values

- lista mogućih ulaznih vrijednosti user

- user defined

- definiran od strane korisnika

methods [6], meta-heuristic algorithms such as genetic

algorithms (GA) [7], simulated annealing (SA) [8],

particle swarm optimization (PSO) [9]. Furthermore,

there are hybrid approaches that integrate two or more

methods or algorithms. Most of the aforementioned

methods and algorithms can handle single and multi-

objective optimization problems. Despite numerous

optimization methods, every method has certain

advantages and disadvantages for implementation in

real-life. There exists no universal method which is the

“best” choice for optimization of all kinds of

manufacturing processes. Above all, optimization

methods can be difficult to use for engineers who are

not experts on optimization theory [10].

The motivation of this paper is to develop the software

prototype “Function Analyzer”, which can be used for

manufacturing process optimization and control. Based

on the loaded mathematical model, the prototype is able

to determine optimal input values of the process model

that satisfy the specified requirements. Figure 1

describes the potential usage of the software for

optimization and control of manufacturing processes.

“Function Analyzer” is based on iterative search of all

input values combinations, and is able to solve two

types of optimization problems: to determine the input

values that correspond to output extremes (minimum or

maximum) and to determine the input values that

correspond to user defined output with desired accuracy.

It enables a simple and flexible way of defining lists of

possible input values and mathematical model

functions. Due to user-friendly application interface,

“Function Analyzer” simplifies solving engineering

optimization problems and requires no expert

knowledge of optimization theory. Software architecture

is flexible and extendible, thus it can be improved for

solving multi-objective optimization problems.

2. Software prototype “Function Analyzer”

2.1. Software functionalities

The software prototype “Function Analyzer” enables

users to define the following parameters:

 lists of possible input values V1,V2,...,Vn,

(equation (1)), and

 mathematical model function M:Rn
→R where

n N.

Strojarstvo 54 (2) 161-168 (2012) M. MADIĆ et. al., Software Prototype for Optimization... 163

Figure 1. Possible application of software prototype “Function Analyzer”

Slika 1. Moguća primjena prototipa softvera “Function Analyzer”

Np,...,p,p,n,v,...,v,v

,....v,...,v,v,v,...,v,v

nnpnn

pp

n 2121

2222111211 21

 V

V V

n

21
, (1)

Let B denote the number of all combinations of possible

input values:

n

k

kpB
1

, (2)

Based on the defined lists of possible input values

V1,V2,...,Vn, “Function Analyzer” calculates all

combinations of possible input values Cb by :

 C b

B,...,b,p,...,k

,p,...,j,p,...,i,v,...,v,v

n

nkji

11

11 2121
, (3)

For each combination Cb, “Function Analyzer”

calculates a mathematical model function output

M(Cb)=mb R. As a result, one gets a list of ordered

pairs Pb=(mb,Cb).
By iteratively searching a list of ordered pairs Pb,

valuable information about the mathematical model can

be extracted. “Function Analyzer” is able to extract the

following information:

 for user defined number of minimums

(maximums) luser N, determine luser ordered pairs

Pu=(mu,Cu), that correspond to luser minimal

(maximal) values mu, where u N, u [1,B], and

 for user defined output value muser R and output

value accuracy user R, determine all ordered pairs

Pu=(mu,Cu), where, |mu−muser| user, u N,

u [1,B].

2.2. Software architecture

The architecture of the software prototype “Function

Analyzer” is designed to satisfy the following crucial

requirements:

 implementation of basic functionalities described

in section 2.1,

 simple and flexible way to define lists of possible

input values V1, V2,...,Vn,

 simple and flexible way to define matrices that

figure in mathematical model function,

 implementation of matrix calculus,

 simple way of implementing a new mathematical

model function, which requires no changes in

software architecture and minor changes in

software code, and

 user-friendly application interface, which

eliminates the need for domain expert.

In order to provide a simple and flexible way of

defining lists of possible input values and matrices that

figure in the mathematical model function, we

developed an appropriate XML (Extensible Markup

Language) language. The developed XML language is

specified using XML Schema Definition Language. Use

of XML technology is justified by numerous reasons:

XML can be created and edited by any text editor, it can

be processed easily by computers, there is no fixed set

of tags, new tags can be created as they are needed etc.

Top level XML element that is used for defining lists of

possible input values is named InputVariables (see

Figure 2).

164 M. MADIĆ et. al., Software Prototype for Optimization... Strojarstvo 54 (2) 161-168 (2012)

Figure 2. Structure of XML definition for defining lists of possible input values

Slika 2. Struktura XML definicije za utvrđivanje liste mogućih ulaznih vrijednosti

Element InputVariables contains an array of elements

named InputVariableItem. Each of these elements

defines one input variable. Element InputVariableItem

contains two elements: Name (used to define the name

of an input variable) and Values (used to define possible

input values of an input variable). Element Values

enables a very flexible manner of defining possible

input values – by directly specifying values (containing

element Value) and/or by specifying value range

(containing element ValueRange). A top level XML

element that is used for defining matrices that figure in

the mathematical model function is named Matrices

(see Figure 3). It contains an array of elements named

Matrix. Each of these elements defines one matrix.

Element Matrix contains two elements: Name (used to

define the name of a matrix) and Values (used to define

matrix data, in the form provided by MATLAB

software package).

Figure 3. Structure of XML definition for defining matrices

that figure in mathematical model function

Slika 3. Struktura XML definicije za definiranje matrica

koje su predstavljene u matematičkom modelu

funkcije

Figure 4 shows a UML (Unified Modeling Language)

logical model of the developed software prototype

“Function Analyzer”. The programming language used

for implementation is C#. Class MainForm implements

user interface of the software prototype. Software logic

is implemented in class MathModelOutputManager.

Method SetPossibleInputValues() is used to load lists

of possible input values V1, V2,...,Vn from XML file

with a defined structure (Figure 2). As a result, an

instance of the class PossibleInputValues is created

(attribute member mInputValues). One instance of the

class PossibleInputValuesItem corresponds to the XML

element InputVariableItem in Figure 2. Method

SetMatrices() is used to load matrices from the XML

file with a defined structure (Figure 3) if the

mathematical model function contains matrices in its

formula. As a result an array of instances of the class

Matrix is created (attribute member mMatrices). One

instance of the class Matrix corresponds to the XML

element Matrix in Figure 3. Method

SetNetworkOutputFunction() is used to select one of

the implemented mathematical model functions.

Method Preprocessing() is used to fill lists

mInputCombinations (list of all input combinations Cb)

and mOutputs (corresponding list of output values mb),

based on loaded parameters. List mInputCombinations

is obtained by using method GetAllCombinations() of

attribute member mInputVariables. List mOutputs is

obtained by using method CalculateOutput() of attribute

member mMathModelOutput, for each input

combination from the list mInputCombinations. Method

GetExtremesList is used to determine luser ordered pairs

Pu=(mu,Cu) for minimums and luser ordered pairs

Pu=(mu,Cu) for maximums. A parameter of this method

is an instance of the class ExtremesInputParams, that

contains the user defined number of extremes luser

(attribute member mExtremesNo). Methods

GetAnalysisItem and GetNextAnalysisItem are used to

determine ordered pairs Pu=(mu,Cu) for which inequality

│mu-muser│≤ Δuser is satisfied. A parameter of this

method is an instance of the class AnalysisInputParams,

that contains user defined output value muser (attribute

member mOutputValue), output value accuracy

(mAccuracy) and search order of list of all input

combinations (mAscending).

Every mathematical model function is modelled by a

class that implements an interface IMathModelOutput
(Figure 5). Three methods must be implemented:

 SetMatrices() – defines matrices if necessary,

 GetBitmap() – provides bitmap of the formula for

display in user interface, and

 CalculateOutput() – calculates output mb for input

combination Cb, which is passed as a parameter of

this method.

Strojarstvo 54 (2) 161-168 (2012) M. MADIĆ et. al., Software Prototype for Optimization... 165

Figure 4. Logical model of software prototype “Function Analyzer”

Slika 4. Logički model softverskog prototipa “Function Analyzer”

At the moment, two mathematical model functions are

implemented, modeled by classes RegressionOutput3

and NetworkOutputTansig1.

Class MathModelOutputFactory realizes the factory

pattern, and is used by the class

MathModelOutputManager to obtain one of the

implementations of interface IMathModelOutput (class

MathModelOutputManager is not aware of which

implementation of interface IMathModelOutput is

obtained). As a consequence, implementing new

mathematical model function is very simple and

requires no changes in software architecture. It only

requires adding a new class that implements interface

IMathModelOutput, and minor changes in classes

MathModelOutputFactory and MainForm.

Figure 5. Mathematical model functions implementation

Slika 5. Implementacija funkcije matematičkog modela

3. Case studies

To demonstrate the possible application of “Function

Analyzer” for manufacturing process optimization and

control, two case studies are discussed.

The first case study considers the regression based

modeling of dry turning of cold rolled alloy steel using

coated tungsten carbide inserts [4]. Three major cutting

parameters (factors, independent variables, inputs),

cutting speed – Vc (80, 110, 140 m/min), feed rate – f
(0.071, 0.196, 0.321 mm/rev), and depth of cut – ap (0.5,

1.25, 2 mm) were varied in the experiment, while tool

nose radius – r (0.8 mm) was kept constant. The average

surface roughness (Ra) was chosen as a measure of

surface quality and as target function (dependent

variable, response, output). For the purposes of

regression analysis, the coding of independent variables

by means of transforming equation was carried out:

32112 ,,i;
XX

XX
x

minimaxi

minii

i (4)

where xi are coded factors, Xi are natural factors, from

Ximax to Ximin (in the design space of interest to the

experimenter), Ximax and Ximin are the highest and the

lowest values of the natural factors Xi, respectively, and

i is the index of the input factor. In this case, the

following relationships are valid: X1 = Vc; X2 = f; X3 =
ap. Based on experimental data and adopted non-linear

(quadratic) mathematical model, by means of the

regression analysis, the following multiple regression

equation (in coded factors) was obtained [4]:

166 M. MADIĆ et. al., Software Prototype for Optimization... Strojarstvo 54 (2) 161-168 (2012)

Figure 6. “Function Analyzer” applied to turning process optimization and control

Slika 6. Primjena prototipa softvera “Function Analyzer”za optimizaciju i upravljanje procesa tokarenja

;162.0057.012.0

081.0055.0498.002.1

036.1811.2844.3

323121

2

3

2

2

2

13

21

i

a

x

xxxxxx

xxxx

xxR

, (5)

The fitted multiple regression equation in terms of the

natural factors (Vc, f, and ap) may be obtained by

substituting transforming equation (4) into equation (5).

The second case study considers the modeling of dry

turning of unreinforced polyamide [11]. Four cutting

parameters, cutting speed – Vc (65, 116, 214 m/min),

feed rate – f (0.049, 0.098, 0.196 mm/rev), depth of cut

– ap (1.0, 2.0, 4.0 mm) and tool nose radius – r (0.4, 0.8

mm), were used in the experiment. For modeling

purpose, a back-propagation ANN with one hidden

layer with four neurons was developed using the

MATLAB software package. Linear transfer function

and tangent sigmoid transfer function were used in the

output and hidden layer, respectively. Prior to ANN

training, all input and output data were scaled to [-1, 1]

range. The ANN was trained using the gradient descent

with momentum algorithm. The speed and convergence

of the algorithm are controlled by learning coefficient

(α) and momentum term. To ensure stable training small

value of learning coefficient (α=0.1) was used [12].

3.1. Defining input parameters of Function Analyzer

Before using “Function Analyzer” for manufacturing

process optimization and control, a user is obligated to

define input parameters, i.e. perform the following

tasks: load XML file with the definition of the list of

input variables and their possible values (structure given

in Figure 2), load XML file with the definition of

matrices that figure in the mathematical model function

(structure given in Figure 3) and select the appropriate

mathematical model function in user interface of the

software (Figure 6).

For the first case study, input variables are factors Vc, f
and ap, coded according to equation (4). Possible values

of these variables range from 1 to 3, with the step set to

=0.02. Mathematical model is a regression based

function given in equation (5).

For the second case study, input variables are factors Vc,

f, ap and r, scaled to [-1, 1] range. Possible values of

these variables range from -1 to 1, with the step set to

=0.02 (for variables Vc, f, ap) and =2 (for variable r).

The mathematical model is the function of the ANN

given in Figure 6. Weights and biases matrices of the

trained ANN were exported from MATLAB software

package.

[1, 3].

Strojarstvo 54 (2) 161-168 (2012) M. MADIĆ et. al., Software Prototype for Optimization... 167

3.2. Optimization

The main objective of these case studies was to

determine such a set of cutting conditions (Vc, f, ap, and

r) that satisfied the cutting parameters ranges to

minimize the Ra. The optimization results obtained

using “Function Analyzer” are given in Table 1.

Table 1. Optimization results

Tablica 1. Rezultati optimizacije

Vcopt

[m/min]

fopt

[mm/rev]

apopt

[mm]

ropt

[mm]

Ra(min)
[μm]

Case

study 1 /

Studija

slučaja 1

136.4 0.071 0.5 0.8 1.568

Case

study 2 /

Studija

slučaja 2

65 0.049 1 0.8 0.6507

To confirm the optimization results, 3D graphs for each

case study were generated (Figure 7).

a)

b)

Figure 7. Effects of the cutting parameters on the surface

roughness: a) case study 1, b) case study 2

Slika 7. Utjecaj parametara rezanja na hrapavost površine:

a) studija slučaja 1, b) studija slučaja 2

3.3. Process control

In the turning process, there can be various

requirements for the surface finish of the machined part.

For example, high quality surface finishes are often

required, while rough surface finishes are sometimes

sufficient for the machined part. Therefore, it is very

important to control the turning process. For instance,

one can determine proper cutting parameter settings for

the required surface roughness and also consider metal

removal rate (MRR) as an additional criterion (equation

(6)).

pafVMRR , (6)

The selection of cutting parameter settings (input

values) is based on the control algorithm implemented

in “Function Analyzer”. Based on the predefined input

values ranges, desired output and desired accuracy Δ

(maximal difference between the desired and computed

output values), the control algorithm iterates through all

combinations of input values until optimal input values

are determined. In searching for optimal values, the

software prototype allows the iterative search to start

from upper or lower limits of cutting parameter values.

Consider a situation where one needs to determine

cutting parameter settings (case study 1) so as to

achieve required surface roughness of Ra = 4.77 µm.

Using Δ = 0.01 and starting the iteration process from

the upper limits of cutting parameter values ranges,

because this ensures high MRR, the following cutting

parameters were obtained: (Vcopt = 98.64 m/min); (fopt =

0.321 mm/rev); (apopt = 2 mm). In this case MRR =

63326.88 mm
3
/min.

3.4. Software performance

To test the performance of “Function Analyzer” for

described case studies, the developed software was run

on Intel Core2Duo T5800 with 4 GB RAM. The

computational time is given in Table 2. Note that there

were 101
3
 ≈ 10

6
 and 2·101

3
 ≈ 2·10

6
 of possible input

values combinations for case study 1 and case study 2,

respectively. Preprocessing (determination of all

combinations of input values and corresponding

outputs) enables an efficient execution of algorithms.

Table 2. Computational time

Tablica 2. Računalno vrijeme

Preprocessing/

Predobradba

Optimization

algorithm/

Algoritam

optimizacije

Process

control

algorithm/

Algoritam

upravljanja

Case study 1 /

Studija slučaja 1
1.295 s 0.047 s 0.016 s

Case study 2 /

Studija slučaja 2
4.509 s 0. 078 s -

168 M. MADIĆ et. al., Software Prototype for Optimization... Strojarstvo 54 (2) 161-168 (2012)

4. Conclusion

In this paper, the software prototype “Function

Analyzer” is proposed for single objective optimization

of manufacturing processes parameters. “Function

Analyzer” is based on the mathematical iterative search

of all input values combinations, and is able to solve

two types of optimization problems: to determine the

input values that correspond to output extremes

(minimum or maximum) and to determine the input

values that correspond to user defined output with

desired accuracy. “Function Analyzer” provides a

simple and flexible way of defining lists of possible

input values. It enables working with mathematical

models based on RA and ANN, but additional models

can easily be implemented. Due to user-friendly

application interface, “Function Analyzer” simplifies

solving engineering optimization problems and requires

no expert knowledge of optimization theory. Although

based on iterative search, the developed software

prototype is efficient even for large sets of possible

input. Additionally, setting numerous optimization

parameters and initial search points is avoided.

The abilities of software prototype “Function Analyzer”

for optimization and control of the turning process were

illustrated on two case studies using regression and

artificial neural network based models.

Future work could be directed toward solving multi-

objective optimization problems in manufacturing

processes and implementation of the software to real-

time problems.

Acknowledgements

This paper is part of project TR35034 funded by the

Ministry of Education and Science of the Republic of

Serbia.

REFERENCES

[1] ČUŠ, F.; MILFELNER, M.; BALIČ, J.: An
intelligent system for monitoring and optimization
of ball-end milling process, Journal of Materials

Processing Technology, 175 (2006) 1-3, 90-97.

[2] LIAO, T.W.; CHEN, L.J.: Manufacturing process
modeling and optimization based on multi-layer
perceptron network, Journal of Manufacturing

Science and Engineering, 120 (1998) 1, 109-119.

[3] GEČEVSKA, V.; ČUŠ, F.: Intelligent process
planning for competitive engineering, Strojarstvo,

52 (2010) 1, 33-41.

[4] TANIKIĆ, D.; MARINKOVIĆ, V.: Modelling and
optimization of the surface roughness in the dry
turning of the cold rolled alloyed steel using
regression analysis, Journal of the Brazilian

Society of Mechanical Sciences and Engineering,

34 (2012) 1, 41-48.

[5] BAJIĆ, D.; JOZIĆ, S.; PODRUG, S.: Design of
experiment’s application in the optimization of

milling process, Metalurgija, 49 (2010) 2, 123-

126.

[6] JURKOVIĆ, Z.; BREZOČNIK, M.; GRIZELJ, B.;

MANDIĆ, V.: Optimization of extrusion process
by genetic algorithms and conventional
techniques, Technical Gazette, 16 (2009) 4, 27-33.

[7] LEE, B.J.; TARNG, Y.S.: Cutting-parameter
selection for maximizing production rate or
minimizing production cost in multistage turning
operations, Journal of Materials Processing

Technology, 105 (2000) 1-2, 61-66.

[8] YANG, S.-H.; SRINIVAS, J.; MOHAN, S.; LEE,

D.-M.; BALAJI, S.: Optimization of electric
discharge machining using simulated annealing,

Journal of Materials Processing Technology, 209

(2009) 9, 4471-4475.

[9] KARPAT, Y.; ÖZEL, T.: Multi-objective
optimization for turning processes using neural
network modeling and dynamic-neighborhood
particle swarm optimization, International Journal

of Advanced Manufacturing Technology, 35

(2007) 3-4, 234-247.

[10] HIMMELBLAU, D.M.: Applied nonlinear
programming, McGraw-Hill Book Company, New

York, 1972.

[11] LAZAREVIĆ, D.; JANKOVIĆ, P.; MADIĆ, M.;

LAZAREVIĆ, A.: Study on surface roughness
minimization in turning of polyamide PA-6 using
Taguchi method, Proceedings of 34

th
 International

Conference on Production Engineering, Niš, 2011.

[12] ŠIMUNOVIĆ, K.; ŠIMUNOVIĆ, G.; ŠARIĆ, T.:

Application of artificial neural networks to
multiple criteria inventory classification,

Strojarstvo, 51 (2009) 4, 313-321.

