
Pieterjan De Potter, Ioannis Kypraios, Steven Verstockt, Chris Poppe, Rik Van de Walle

Automatic Passengers Counting In Public Rail Transport Using
Wavelets

DOI
UDK
IFAC

10.7305/automatika.53-4.227
004.932.72’1.02:656.121.025.2
2.8; 1.1.8; 5.7 Original scientific paper

Previously, we introduced a passengers’ counting algorithm in public rail transport. The main disadvantage of
that algorithm is it lacks automatic event detection. In this article, we implement two automatic wavelet-based pas-
sengers counting algorithms. The new algorithms employ the spatial-domain Laplacian-of-Gaussian-based wavelet,
and the frequency-domain applied Non-Linear Difference of Gaussians-based wavelet bandpass video scene filters
to extract illumination invariant scene features and to combine them efficiently into the background reference frame.
Manual segmentation of the scene into rectangles and tiles for detecting an object as seated is no longer needed as
we now apply a boundary box tracker on the segmented moving objects’ blobs. A scene map is combined with
the wavelet-based methods and the boundary box for multi-camera object registration. We have developed a novel
holistic geometrical approach for exploiting the scene map and the recorded video sequences from both cameras in-
stalled in each train coach to separate the detected objects and locate their positions on the scene map. We test all the
algorithms with several video sequences recorded from the both cameras installed in each train coach. We compare
the previously developed non-automatic passengers’ counting algorithm with the two new automatic wavelet-based
passengers’ counting algorithms, and an additional spatial-domain automatic non-wavelet based Simple Mixture of
Gaussian Models algorithm.

Key words: Video analytics, Event detection, Automatic passengers’ seats counting, Wavelets, Laplacian-of-
Gaussian, Non-Linear Difference of Gaussians, Simple Mixture of Gaussians, Illumination invariant,
Frequency and spatial domain

Automatsko brojanje putnika u javnom željezničkom prijevozu uporabom waveleta. U prethodnim
radovima uveli smo algoritam za brojanje putnika u javnom željezničkom prijevozu. Glavna manjkavost dosadašn-
jeg algoritma odsustvo je sustava za automatsko otkrivanje doga�aja. U ovom radu implementirali smo dva al-
goritma za automatsko brojanje putnika temeljena na waveletima. Novi algoritmi koriste LoG (Laplacian-of-
Gaussian-based) wavelete u prostornoj domeni i pojasne filtre temeljene na waveletima nastalim na nelinearnim
razlikama Gaussovih funkcija u frekvencijskoj domeni, pomoću kojih se izdvajaju značajke neosjetljive na razlike
u osvjetljenju iz pojedine scene. Te značajke kombiniraju se u referentnu sliku koja prikazuje pozadinu scene.
Ručna segmentacija scene u pravokutnike korištena u prethodnom algoritmu više nije potrebna jer se sada ko-
risti automatsko praćenje rubova na segmentiranim objektima. Mapa scene kombinirana je s wavelet metodama i
okvirom granica slike u svrhu registracije objekata pomoću više kamera. Razvili smo i novi cjeloviti geometrijski
pristup koji koristi mapu scene i snimljeni videozapis iz dvije kamere postavljene u svakom vagonu vlaka pomoću
kojeg možemo odvojiti detektirane objekte i locirati njihove položaje na mapi scene. Algoritmi su ispitani na neko-
liko videosekvenci snimljenih s dvije kamere u vagonima. Usporedili smo ranije razvijene neautomatske algoritme
za brojanje putnika s dva nova algoritma i s jednostavnim MoG algoritmom u prostornoj domeni.

Ključne riječi: analiza videozapisa, otkrivanje doga�aja, automatsko brojanje sjedalica, waveleti, LoG, nelinearna
razlika Gaussovih funkcija, jednostavna MoG, neosjetljivost na promjene u rasvjeti, frekvencijska
i prostorna domena

1 INTRODUCTION

Over the past decade, the number of installed video
surveillance cameras has grown exponentially because of
the reduced cost and the fact that security has gained im-

portance over privacy in some scenarios. This has led to the
development of different video analytics systems to detect
various scenarios’ events [1–3]. In public transport, video
surveillance cameras are being installed, and video analyt-
ics are becoming helpful. Their primary goal is to provide
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additional security. However, the different conditions in
vehicles turn the video analytics’ task difficult.

While a lot of research recently has been conducted
on the topic of video analytics, the number of publica-
tions for scenarios inside moving vehicles is quite lim-
ited. In [4], Milcent and Cai present a system to detect
baggage in transit vehicles. They preprocess the video
stream to correct the lighting. A light location mask, in-
dicating reflecting metallic posts inside the vehicle, is used
to gather the different parts of one object. To increase the
speed of the segmentation algorithm, it is only applied on
a region indicated by a probability location mask. Sev-
eral projects, such as PRISMATICA (Pro-active Integrated
Systems for Security Management by Technological, In-
stitutional and Communication Assistance, [5]) and BOSS
(On-Board wireless Secured video Surveillance, [6]) men-
tion the transmission of video feeds upon the triggering of
an alarm, but do not describe how the alarm is exactly trig-
gered. In [7], Vu et al. present an event recognition system
based on face detection and tracking combined with audio
analysis. Three dimensional (3-D) context such as zones of
interest and static objects are recorded in a knowledge base
and 3-D positions are calculated for mobile objects using
calibration matrices. Strong changes in lighting conditions
occasionally prevent the system to detect people correctly.
Yahiaoui et al. [8] and Liu and Gao [9] report high accura-
cies in passenger counting using a dedicated setup. Since
the cameras used for this setup can not be used for other
purposes, this solution is too expensive to be used in some
real life scenarios. Also, it is impossible to retrieve the
location of the passengers.

In a previous paper [10], we proposed a system to tackle
the problem of seat counting. The main disadvantages are
that manual labour is needed for each camera view and
a training phase is necessary. In this paper, we propose
two automatic wavelet-based available seat counting al-
gorithms that extract and combine illumination invariant
scene features efficiently into their composed background
reference frame. A part of the work described in this paper,
was presented in [11].

Next, in Section 2, we discuss briefly the previously de-
veloped non-automatic passengers’ counting algorithm. In
Section 3, we describe in details the two wavelet-based
scene segmentation methods. In Section 4, we discuss
about the Simple Mixture of Gaussian Models scene seg-
mentation algorithm. In Section 5, we describe a novel
scene map with a holistic geometrical approach for multi-
camera objects’ separation and registration. In Section 6,
the bounding box tracking algorithm is given. In Section 7,
the recorded results for the two wavelet-based algorithms,
and the simple mixture of models algorithm for automatic
passengers’ counting are analyzed and discussed in com-
parison with the recorded results for the non-automatic

passengers’ counting algorithm. A brief subsection with
indications on each algorithm’s performance and compu-
tational complexity is included, too. Section 8 concludes
and future research work is suggested.

2 NON-AUTOMATIC PASSENGERS’ COUNTING

In [10], we presented an approach to tackle the avail-
able seat counting problem. This approach consists of two
stages: object detection and event detection.

The object detection consists of three consecutive steps:
first, Laplacian edge detection is applied to discover the
contours of moving objects. Secondly, a median based
background subtraction method is used to retrieve blobs of
potential foreground objects. A last step consists of merg-
ing the results of both techniques to obtain the blobs of the
actual foreground objects.

In the event detection stage, sit down and leave actions
are able to be detected. For this purpose, rectangular re-
gions are defined manually at the positions of the seats.
Those rectangles are further subdivided in manually de-
fined tiles. It is worth mentioning, that a major drawback
in this algorithm is that Camera 1 (CAM1, see Fig. 1(a))
can process only half of the passengers’ coach and Cam-
era 2 (CAM2, see Fig. 1(b)) can process the other half
of the passengers’ coach. This is due to the limitations
of drawing manually the rectangles and tiles with respect
to the perspective ratio of the passengers’ coach. A tile
is triggered when at least half of its pixels are detected as
foreground pixels. When half of the tiles of a rectangle are
triggered, the rectangle is triggered and sit action detection
is started. The order in which the tiles were triggered is
compared with previous presence of foreground pixels in
either the aisle or an adjacent seat region. Sit down ac-
tivity is registered when aisle or adjacent seat foreground
pixels are detected triggering the seat tiles. For leave seat
action detection, an opposite process is executed. Figure
2(a) shows an example of rectangular regions being de-
fined manually at the positions of the seats, and Fig. 2(b)
shows the manually defined tiles inside those rectangles.

3 WAVELET-BASED AUTOMATIC PASSENGERS’
COUNTING

3.1 Laplacian of Gaussian
In our previously described algorithm, we combined an

edge detection algorithm with a background subtraction
method. Now, since we want more robustness against illu-
mination changes, and the previously applied background
subtraction method is too computationally expensive and
needs a training phase, here we decided to work with
a Laplacian of Gaussian (LoG) wavelet-based algorithm
for efficiently segmenting the scene against illumination
changes.
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(a) Camera 1 (b) Camera 2

Fig. 1. An example of a test video sequence recorded by
two cameras installed in each train coach

(a) Manually defined rectangular
regions

(b) Sub-division of rectangles with
manually defined tiles

Fig. 2. Non-automatic passengers’ counting algorithm

3.1.1 Illumination Invariance

To assess the illumination invariance of the LoG
wavelet-based algorithm, we applied it on a test video se-
quence we have recorded outdoors. The selected test video
sequence has a high degree of illumination changes and
illumination sources, such as a curved wet surface road
which has an increased reflectivity, curved wet vehicles
metal surfaces which have an increased reflectivity, and
shadows created from the trees on the road surface and on
foreground objects (see Fig. 3(a)). Figure 3(b) shows LoG
applied on a video frame of the sequence for segmenting
the scene. It can be seen that LoG was able to be tuned ap-
propriately for selecting only the discriminative features of
the foreground scene objects and suppress the illumination
changes and any high-frequency noise in the input frame
scene.

3.1.2 Implementation

From (1), on each frame we first apply a Gaussian filter
G(x, y) in the spatial domain to cope with the noise in the
image. The variance σ of the filter is chosen to be the same
in x- and y- direction and dependent on the kernel size.
Then in (2), we apply a Laplacian filter L(x, y), again in
the spatial domain, to detect the edges. This results in the
LoG operation LoG(x, y), which is shown in (3). LoG can
be shown that it acts as a bandpass filter. By selecting the
right kernel dimensions, which for our test video sequences

(a) Frame from the illumination in-
variance video sequence

(b) Laplacian of Gaussian wavelet-
based scene segmentation applied
on a video frame we used to
demonstrate its illumination invari-
ance properties

Fig. 3. Illumination invariance for Laplacian of Gaussian

was found to be a 7x7 size kernel, the background noise
can be filtered out almost completely, while maintaining
the edges.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

L(x, y) =
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
(2)

LoG(x, y) =
x2 + y2 − 2σ2

2πσ6
e−

x2+y2

2σ2 (3)

The applied LoG operation on the image edges, pro-
duces positive values at the one side of the edge and nega-
tive values at the other side (see Fig. 4). Hence we check
the result of the LoG operation for zero-crossings in the
horizontal, vertical and both diagonal directions to obtain
the edges. The value 0 is returned if the adjacent edge
values have the same sign; the absolute of the difference
of the edge values is returned when they have an opposite
sign. For each pixel, the maximum edge value over all four
directions is given as the final result. The LoG transformed
(spatial domain) current frame is subtracted from the pre-
vious LoG transformed frame to obtain the moving edges
in the current frame.

Figure 5 shows the results of the LoG operator applied
on the test video sequence shown in Fig. 1. It can be seen
that we were able to tune the kernel dimensions appropri-
ately, so that LoG is able to be tuned for selecting only
the discriminative pass-band mid-frequency features of the
moving passengers and stop lower cutoff frequencies of
illumination changes effects and any upper cutoff high fre-
quency noise in the scene. Now, after segmenting the scene
and detecting the foreground objects we can apply a track-
ing bounding box in the scene (see Section 6).
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(a) Edge (b) Gaussian smoothed edge

(c) Laplacian of Gaussian edge de-
tection

Fig. 4. Laplacian of Gaussian operator applied to an edge;
the zero-plane is also plotted

3.2 Non-Linear Difference of Gaussians
By subtracting two Gaussian concentric kernels with

different standard deviation values for a limited time du-
ration, it forms a new kernel [12], which has an average
value of zero, and it becomes useful for wavelet analysis
applications. The resulted Difference of Gaussians (DoG)
filter can detect edges independent of orientation and pro-
duce, when applied, an edged enhanced image [12]. This
operation can be shown that is given by:

ΦDoG(x, y) = (Φ(x, y)⊗ g1(x, y, σ1))

− (Φ(x, y)⊗ g2(x, y, σ2)),
(4)

where g1(x, y, σ1) and g2(x, y, σ2) are the two Gaus-
sian kernels with standard deviations σ1 and σ2, Φ(x, y)
is the input image (in spatial domain), and ΦDoG(x, y) is
the linearly (linear difference) convolutioned image with
the two Gaussian kernels. It can be found that DoG filter
forms a type of band-pass filter with lower and upper cut-
off frequencies set by the two Gaussian kernels. By tuning
with appropriate values the standard deviation parameters
σ1 and σ2, DoG filter is able to select the discriminative
pass-band mid-frequency features as the foreground scene
objects, and stop the low-frequency illumination changes
effects and any high-frequency noise in the input image
scene [13]. It is proven that DoG filter approximates best
the Laplacian∇2 operator (or the two-dimensional second
directional derivative of the Gaussian kernels ∇2 for cre-
ating a narrow band-pass differential operator [13]) when
the ratio of the two standard deviations σ1/σ2 is equal to
1.6.

(a) Camera 1 (b) Camera 2

Fig. 5. Laplacian of Gaussian wavelet applied on the test
video sequences

The following observations can be made on DoG filter
operation: (a) DoG∇2 operator creates a non-uniform dis-
tribution of energy around the image it is applied on [14];
(b) the partially closed areas of the image have higher en-
ergy levels relative to other areas. Thus, this unequal en-
ergy distribution causes the image being highly sensitive
to rotation and scale changes of edges. In [14], the au-
thors have shown that by applying a non-linear function
on top of the DoG ∇2 operator, the produced non-linear
DoG (NL-DoG) filter allows a more uniform distribution
of energy around the closed regions of the image. In prac-
tice, this causes more fine details of the image around the
edges to be enhanced. The non-linear function ℵ is applied
in the spatial domain of the image [14]. When ℵ is ap-
plied on top of the DoG ∇2 operator the resulting image
ΦNL−DoG(x, y) is given by:

ΦNL−DoG(x, y) = ℵ · ΦDoG(x, y). (5)

3.2.1 Illumination Invariance

As we did for LoG, in order to assess the NL-DoG
wavelet-based filter’s illumination invariance properties,
we decided to apply it on the same, as before, test video
sequence recorded outdoors which has a high degree of il-
lumination changes and illumination sources. Figure 6(a)
shows a video frame from the recorded test video se-
quence, and Fig. 6(b) shows NL-DoG applied on that
video frame for segmenting the scene. It can be seen that
NL-DoG was able to be tuned for selecting only the dis-
criminative pass-band mid-frequency features of the fore-
ground scene objects and suppress the low-frequency illu-
mination changes effects and any high-frequency noise in
the input frame scene.

3.2.2 Implementation

Though the NL-DoG filter is formulated in the spatial
(time) domain, for calculating its coefficients when applied
on the input images we use a Fast Fourier Transform (FFT)
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(a) Frame from the illumination in-
variance video sequence

(b) Non-linear Difference of Gaus-
sians wavelet-based scene segmen-
tation applied on a video frame we
used to demonstrate its illumina-
tion invariance properties

Fig. 6. Illumination invariance for Non-linear Difference
of Gaussians

operation and, then, calculate them in frequency domain.
Hence, (4) becomes:

ΦDoG
FFT (x, y) = FFT (Φ(x, y))

· FFT (g1(x, y, σ1)− g2(x, y, σ2)),
(6)

where the Fast Fourier Transform operation is shown as
FFT and ΦDoG

FFT (x, y) is the DoG filter transformed image
ΦDoG(x, y) in the frequency domain. Then, (5) can be re-
written as:

ΦNL−DoG(x, y) = ℵ · IFFT (ΦDoG
FFT (x, y)), (7)

where the Inverse-Fast Fourier Transform is shown as
IFFT . Thus, ℵ is applied in the spatial domain but the rest
of the NL-DoG filter is applied in the frequency domain. ℵ
is chosen to be a sigmoidal-type function.

Figure 7 shows the NL-DoG filter implementation for
scene segmentation of foreground objects in the automatic
passengers’ counting algorithm we have developed. We
used the previously described in details algorithm Time
Intervals with Memory (TIME) for composing the refer-
ence background frame [15]. Thus, a background frame
is selected at regular time intervals for the whole dura-
tion of each test video sequence recorded from CAM1 or
CAM2 installed in the passengers’ train coaches. NL-DoG
filter is applied on each selected frame in the frequency
domain. Then, NL-DoG filter’s coefficients are computed
(frequency domain) for each selected frame, and all the
NL-DoG filter transformed frames are averaged to com-
pose the background reference frame. In Fig. 7, assume
for example that the test video sequence we used has a to-
tal duration of 35 seconds with 13 frames-per-second (fps),

Fig. 7. Foreground scene objects extraction in the test
video sequences recorded from Camera 1 and 2, installed
in the passengers’ train coaches, using TIME algorithm
and NL-DoG wavelet-based filter

then we select one frame per fixed time intervals each sec-
ond i.e. in total 35 frames were selected for composing
the reference background frame. We apply NL-DoG fil-
ter in the frequency domain on the current test video se-
quence frame, and we subtract the composed background
reference frame for extracting the foreground scene ob-
jects [16]. Figure 8 shows the results of the NL-DoG
(TIME) wavelet-based filter applied on the test video se-
quence shown in Fig. 1. It is seen that NL-DoG wavelet-
based filter has successfully selected all the foreground ob-
jects’ features and suppressed the background scene fea-
tures. Notice that NL-DoG has allowed a more uniform
distribution of energy around the closed regions of the in-
put frame scene. Thus, in the detected foreground ob-
jects finer details can be observed in comparison to the
LoG where the energy seems to be concentrated around
the edges of the objects. Now, as for LoG, after segment-
ing the scene and detecting the foreground objects we can
apply a tracking bounding box in the scene (see Section 6).
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(a) Camera 1 (b) Camera 2

Fig. 8. Non-linear difference of Gaussians applied on the
test video sequences

4 SIMPLE MIXTURE OF MODELS

4.1 Illumination Invariance

As we did for LoG and NL-DoG wavelet-based filters,
to assess the simple mixture of models algorithm’s illu-
mination invariance properties, we applied it on the same,
as before, test video sequence recorded outdoors which
has a high degree of illumination changes and illumina-
tion sources. Figure 9(a) shows a video frame from the
recorded test video sequence, and Fig. 9(b) shows simple
mixture of models algorithm applied on that video frame
for segmenting the scene. It can be seen from the seg-
mented scene that the pedestrians on the pavement are be-
ing detected, while also the two pedestrians walking and a
vehicle moving at the far back of the frame are also being
detected. However, in overall the simple mixture of models
algorithm is not performing as well as LoG and NL-DoG
wavelet-based filters, since for example background fea-
tures are detected and not adequately suppressed, such as
the moving tree at the left hand side of the video sequence.

4.2 Implementation

Mixture of Gaussians Model (MGM) is one of the
most popular background subtraction techniques, which
can handle highly complex, multi-modal scenes with diffi-
cult situations like moving trees and bushes, clutter, noise,
and permanent changes of the background. However, al-
though MGM gives good results in many video surveil-
lance applications, the use of the Gaussian models and the
update scheme are complex.

To overcome the complexity of the traditional MGM, a
simple mixture of models technique (SMM) is proposed
by Poppe et al. [17]. The SMM models consist of an av-
erage, an upper and lower threshold, a maximum differ-
ence with the last background value, and an illumination
allowance based on Skellam parameters. In many cases,
only performing temporal background subtraction is insuf-
ficient, so SMM is extended with spatial information, i.e.,

(a) Frame from the illumination in-
variance video sequence

(b) Simple Mixture of Models non-
wavelet based scene segmentation
applied on a video frame we used
to test its illumination invariance
properties

Fig. 9. Illumination invariance for Simple Mixture of Mod-
els

fast edge-based image segmentation, to improve the de-
tection results. The experimental results in [17] show that
this advanced MGM method is more robust than ’standard’
MGM and more recent techniques, resulting in less false
positives and negatives. This is also the reason why SMM
is selected as one of the non-wavelet based BG subtraction
methods in our evaluation. For more detailed information
on SMM, the reader can be referred to the original work.

Figure 10 shows the results of SMM algorithm when
we applied it on the test video sequence shown in Fig.
1. In overall, the SMM algorithm is not performing as
well as LoG and NL-DoG wavelet-based filters, since the
resulted segmented scene contains significant amount of
background noise. Though SMM algorithm has detected
the foreground moving passengers it was not able to sup-
press dynamic illumination changes effects, such as pas-
sengers’ shadows on the train coach floor and passengers
reflections on different areas in the input scene. This can
be explained due to the static nature of Skellam parameters
which cannot be tuned for adapting to dynamically chang-
ing environments, such as the tested video sequences.

(a) Camera 1 (b) Camera 2

Fig. 10. Simple Mixture of Gaussian Models applied on
the test video sequences
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5 SCENE MAP: A HOLISTIC GEOMETRICAL
APPROACH

We have applied a novel scene map [18] for multi-
camera objects separation and registration. The scene map
is independent of the actual train coach settings. We de-
fine separate monitoring zones in the scene as being, FAR-
LEFT, FAR-RIGHT, MID-LEFT, MID-RIGHT, NEAR-
LEFT, NEAR-RIGHT (see Fig. 11). In contrast to the
manually defined rectangles and tiles of the non-automatic
passengers’ counting algorithm, here there is no explicit
pixel counting for separating the scene into the different
event monitoring zones. The detected objects can be clas-
sified as seated when they move to any of the –LEFT or
–RIGHT zones of the map where the passengers seats are
located.

Inspired by stereo vision [19, 20] methods and human
vision cognitive processes [21] we use a novel holistic ge-
ometrical approach for separating the detected objects and
positioning them in the scene map. In a similar fashion to
GPS triangulation techniques [22] and to simultaneous lo-
calisation and mapping (SLAM) techniques [23, 24] used
in robotics we exploit, first, the novel scene map we have
developed and, second, the multi-camera view from both
of the installed cameras in each train coach. Figure 11(a)
and Fig. 11(b) show an example where we have used
the novel holistic geometrical approach for separating the
detected passengers and registering their position on the
scene map.

On Fig. 11(a) (FRAME CAM1) and Fig. 11(b)
(FRAME CAM2) assume the fixed co-ordinates of CAM1
to be XC1 = M/2, YC1 = 0 and the fixed co-ordinates of
CAM2 to be XC2 = M/2, YC2 = N for an [M × N ] =
[640 × 480] resolution video frame. If we can extract
from our algorithm the co-ordinates of the detected ob-
ject (XCobj , YCobj) and we already know the fixed co-
ordinates of CAM1 (XC1, YC1), then for each detected ob-
ject we can calculate on Fig. 11(a) (FRAME CAM1) for
Y-axis:

Kobj
Y−CAM1 =

∣∣∣∣
YCobj

N
− YC1

N

∣∣∣∣ , (8)

where Kobj
Y−CAM1 is the unit normalised absolute distance

for Y-axis of a detected object’s Y-axis co-ordinate to the
fixed Y-axis co-ordinate of CAM1.

Kobj
Y−CAM2 =

∣∣∣∣
YCobj

N
− YC2

N

∣∣∣∣ , (9)

where Kobj
Y−CAM2 is the unit normalised absolute distance

for Y-axis of a detected object’s Y-axis co-ordinate to the
fixed Y-axis co-ordinate of CAM2.

Similarly, for X-axis we can calculate:

Kobj
X−CAM1 =

∣∣∣∣
XCobj

M
− XC1

M

∣∣∣∣ , (10)

(a) The recorded frame from CAM1

(b) The recorded frame from CAM2

Fig. 11. Novel Scene Map with event monitoring zones
shown as FAR-LEFT, FAR-RIGHT, MID-LEFT, MID-
RIGHT, NEAR-LEFT, NEAR-RIGHT. We used a holistic
geometrical approach for object separation and registra-
tion

where Kobj
X−CAM1 is the unit normalised absolute distance

for X-axis of a detected object’s X-axis co-ordinate to the
fixed X-axis co-ordinate of CAM1.

Kobj
X−CAM2 =

∣∣∣∣
XCobj

M
− XC2

M

∣∣∣∣ , (11)

where Kobj
X−CAM2 is the unit normalised absolute distance

for X-axis of a detected object’s X-axis co-ordinate to the
fixed X-axis co-ordinate of CAM2.

Then, assuming that CAM1 and CAM2 have the same
angle of view and the same view field width, the following
conditions must be satisfied:

Kobj
Y−CAM1 +Kobj

Y−CAM2 = 1, (12)
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Kobj
X−CAM1 = Kobj

X−CAM2, (13)

Kobj
X−CAM1 = Lobj

X−CAM1, (14)

where Lobj
X−CAM1 is the unit normalised absolute distance

for X-axis of a detected object’s X-axis co-ordinate to the
fixed X-axis co-ordinate of CAM1 for FRAME CAM2
(see Fig. 11(b)).

Eqns. (12), (13), (14) above can be proven by re-
placing with the co-ordinates values the equations’ vari-
ables that are uniquely satisfied by the detected object’s
co-ordinates and not by any other detected object in the
scene of FRAME CAM1.

Similarly, if we can extract from our algorithm the co-
ordinates of the detected object (XCobj , YCobj) and we al-
ready know the fixed co-ordinates of CAM1 (XC1, YC1),
then for each detected object we can write eqns. (8) and
(9) on Fig. 11 (b) (FRAME CAM2) for Y-axis, and eqns.
(10) and (11) on Fig. 11 (b) for X-axis. Then, assuming
that CAM1 and CAM2 have the same angle of view and
the same view field width, the following conditions must
be satisfied:

Lobj
Y−CAM1 + Lobj

Y−CAM2 = 1, (15)

Lobj
X−CAM1 = Lobj

X−CAM2, (16)

Lobj
X−CAM1 = Kobj

X−CAM1, (17)

where Lobj
Y−CAM1 and Lobj

Y−CAM2 are the unit normalised
absolute distances for Y-axis of a detected object’s Y-axis
co-ordinate to the fixed Y-axis co-ordinate of CAM1 and
of CAM2, respectively.

Eqns. (15), (16), (17) above can be proven by re-
placing with the co-ordinates values the equations’ vari-
ables that are uniquely satisfied by the detected object’s
co-ordinates and not by any other detected object in the
scene of FRAME CAM2.

Also, it can be proven that eqns. (12), (13), (14) for
FRAME CAM1 and eqns. (15), (16), (17) for FRAME
CAM2 are simultaneously satisfied only by Object 1 (lin-
ear algebraic Gauss system solution).

Therefore, from eqns. (12), (13), (14) and (15), (16),
(17) we were able to distinguish between the different de-
tected foreground objects and register their positions on the
scene map for Frame CAM1 and Frame CAM2.

We can now extract, if we need to, metadata where the
position of each detected object is shown on the scene map
with their co-ordinates inside an event monitoring zone for
FRAME CAM1 and FRAME CAM2, e.g. detected ob-
ject 1 is in FAR-RIGHT zone for FRAME CAM1 and in
NEAR-LEFT zone for FRAME CAM2.

6 BOUNDING BOX TRACKING

To achieve automatic passengers’ counting in our devel-
oped algorithms, we implemented a Bounding Box (BB)
tracking method for object classification. The segmented
scenes by applying LoG (spatial domain) and NL-DoG
(frequency domain) wavelet-based filters, and SMM (spa-
tial domain) non-wavelet based algorithm with the de-
tected foreground objects are passed to the BB tracker.
First, a threshold value is used for the LoG, NL-DoG and
SMM segmented scenes. Then, we use morphological clo-
sure and opening of the detected foreground objects. The
produced objects’ blobs are compared with those detected
in the previous frame. If there is detected a similar object
blob in the previous frame, BB is matched and passed on
to the next step. In the next step, BBs are classified based
on multiple criteria concerning their size relative to their
position and the perspective ratio in the passengers’ coach.
Thus, detected objects further away from the camera are
assumed to be smaller than objects closer to the camera. In
effect, certain BBs are recognised and others rejected by
the tracker. The recognised BBs are used in the final step
with the scene map and for multi-camera object separation
and position registration (see Fig. 12(a) and Fig. 12(b)).

(a) Recognized bounding boxes for
CAM1

(b) Recognized bounding boxes
for CAM2

Fig. 12. Bounding box tracker

7 EVALUATION

7.1 Test Setup

We evaluated the different algorithms on video se-
quences recorded in a train of the Belgian national rail-
way company (NMBS-Group). Two cameras, CAM1 and
CAM2, installed in the passengers’ train coach were used
to record those sequences. An example of the recorded
video sequences is shown on Fig. 1(a) for CAM1 and
on Fig. 1(a) for CAM2. For all the test video sequences
we have preprocessed them for clearing out any duplicate
patterns of frames created during the acquisition and stor-
ing stage of the sequences. The used sequences are avail-
able at http://multimedialab.elis.ugent.
be/users/pdpotter/public_transport/.
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7.2 Evaluation Metrics

For each frame in the sequences, the actual number of
persons in the seats of the train is compared with the num-
ber given by the different approaches. The minimum of
these two numbers are counted as true positives (TP); if the
actual number of persons is greater than the detected num-
ber, this excess is counted as false negatives (FN); if the
actual number of persons is less, this shortage is counted
as false positives (FP). The true negatives (TN) consist of
the number of frames that are correctly detected as frames
with no persons present.

Based on these metrics the precision, recall, true nega-
tive rate (TNR), and accuracy are calculated as follows:

Precision =
TP

TP + FP
, (18)

Recall =
TP

TP + FN
, (19)

TNR =
TN

TN + FP
, (20)

Accuracy =
TP + TN

TP + TN + FP + FN
. (21)

7.3 Simulation Results

We have formulated into several tables the results we
have taken from the conducted tests with the video se-
quences. Table 1 summarizes the recorded performance
metrics of LoG and NL-DoG wavelet-based filters and
SMM algorithm, and the non-automatic passengers’ count-
ing algorithm for the conducted initial tests with Short
Cam1, Short Cam2, Long Cam1 and Long Cam2 video
sequences. Short sequence has a duration length of 35
seconds. Long sequence has a duration of 4 minutes ap-
proximately. For the non-automatic passengers’ counting
algorithm we show on Table 1 only one value instead of
two, one for each camera. That is due to the limitations of
that algorithm where CAM1 can be used to process only
half of the passengers’ coach and CAM2 can be used to
process the other half of the passengers’ coach. Thus, the
value shown is the combined one for the two cameras.

Table 2 summarizes the results we have taken for LoG
and NL-DoG wavelet-based filters and SMM algorithm,
and the non-automatic passengers’ counting algorithm.
For those tests now we have 4 different video sequences,
two ones recorded by CAM1 and two others recorded by
CAM2. Thus, Long 1 Cam1 and Long 1 Cam2 have a dura-
tion length of approximately 4 minutes, and Long 2 Cam1
and Long 2 Cam2 have a duration length of approximately
2.50 minutes. Again, for the non-automatic passengers’

Table 1. Performance Metrics Values for NL-DoG and LoG
wavelet-based automatic passengers’ counting algorithms,
for SMM non-wavelet automatic passengers’ counting al-
gorithm, and for non-automatic passengers’ counting al-
gorithm (Short Cam1, Short Cam2, Long Cam1 and Long
Cam2 video sequences)

Precision Recall TNR Accuracy

Previous approach
Short 1 0.8325 1 0.8839
Long 0.6366 0.9940 0.0274 0.6379

Laplacian of Gaussian
Short cam1 0.9918 0.9032 0.9816 0.9258
Short cam2 1 0.8846 1 0.9162
Long cam1 0.9260 0.8468 0.1653 0.7957
Long cam2 0.9706 0.7819 0.3429 0.7667

Non-linear difference of Gaussians
Short cam1 1 0.5146 1 0.603
Short cam2 1 0.5529 1 0.9679
Long cam1 0.9533 0.6641 0.2446 0.6467
Long cam2 0.8570 0.8867 0.0866 0.7752

Simple mixture of models
Short cam1 1 0.5326 1 0.6204
Short cam2 1 0.5142 1 0.6015
Long cam1 0.9944 0.6002 0.7373 0.6020
Long cam2 0.9926 0.6301 0.6788 0.6311

counting algorithm we show on Table 2 only one value in-
stead of two, one for each camera.

On Table 3 we show the results we have taken for LoG
and NL-DoG wavelet-based filters and SMM algorithm,
but for only one of the sequences, namely the Long 1
Cam2. Here, we have shown the performance metrics
values for each event monitoring zone separately (FAR-
LEFT, FAR-RIGHT, MID-LEFT, MID-RIGHT, NEAR-
LEFT, NEAR-RIGHT). Obviously, there are no values
shown for the non-automatic passengers’ counting algo-
rithm since it does not use the novel scene map. In Ap-
pendix at the end of this article we have included Table 4,
Table 5, and Table 6 where we have shown the results from
the separate event monitoring zones taken for LoG and
NL-DoG wavelet-based filters and SMM algorithm with
the rest of the test video sequences Long 1 Cam1, Long 2
Cam1, and Long 2 Cam2.

From Table 1, Table 2 and Table 3 (and the rest of the ta-
bles in Appendix) the taken results for Precision and Accu-
racy have proven that the automatic wavelet-based passen-
gers’ counting algorithms and the automatic non-wavelet
passengers’ counting algorithm perform better than the
non-automatic passengers’ counting algorithm. In effect,
the automatic passengers’ counting algorithms are able to
produce a higher number of TPs than the non-automatic
passengers’ counting algorithm. From the taken Recall
performance metric values, it can be found that, in overall,
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Table 2. Performance Metrics Values for NL-DoG and LoG
wavelet-based automatic passengers’ counting algorithms,
for SMM non-wavelet automatic passengers’ counting al-
gorithm, and for non-automatic passengers’ counting al-
gorithm (Long 1 Cam1 and Long 1 Cam2, Long 2 Cam1
and Long 2 Cam2 video sequences)

Precision Recall TNR Accuracy

Previous approach
Long 1 0.6135 0.9879 0.1232 0.6241
Long 2 0.8296 0.7975 0.3820 0.7111

Laplacian of Gaussian
Long 1 cam1 0.9328 0.8646 0.3252 0.8190
Long 1 cam2 0.8859 0.8620 0.0964 0.7782
Long 2 cam1 0.9150 0.8118 0.3056 0.7621
Long 2 cam2 0.8372 0.8976 0.1065 0.7683

Non-linear difference of Gaussians
Long 1 cam1 0.9807 0.6120 0.6377 0.6128
Long 1 cam2 0.9615 0.8278 0.2557 0.8034
Long 2 cam1 1.0000 0.5000 1.0000 0.5175
Long 2 cam2 0.8660 0.7462 0.0402 0.6703

Simple mixture of models
Long 1 cam1 0.9712 0.6591 0.5310 0.6540
Long 1 cam2 0.9161 0.8559 0.1306 0.7959
Long 2 cam1 0.8981 0.6145 0.2658 0.5842
Long 2 cam2 0.9899 0.5844 0.8009 0.5907

for most of the test video sequences the non-automatic pas-
sengers’ counting algorithm exhibits a higher value than
the automatic (wavelet-based or non-wavelet) passengers’
counting algorithms. Specifically, focusing on the Long
Cam1 and Long Cam2, and on Long 1 Cam1 and Long
1 Cam2 sequences, and if we take the average value of
CAM1 and CAM2, then we get approximately 0.81 and
0.86 for LoG, 0.78 and 0.72 for NL-DoG, and 0.62 and
0.76 for SMM. Thus, it means that the non-automatic pas-
sengers’ counting algorithm recognizes wrongly as a pas-
senger less times than the automatic Passengers’ counting
algorithms. But that is expected, since the non-automatic
algorithm applies a manual segmentation and recognition
of the objects which obviously can outperform any auto-
matic passengers’ counting algorithm. That is the case for
the True Negative Rate performance metric value, where
focusing again on the Long Cam1 and Long Cam2, and
on Long 1 Cam1 and Long 1 Cam2 sequences, and if we
take the average value of CAM1 and CAM2, then we get
approximately 0.25 and 0.21 for LoG, 0.17 and 0.45 for
NL-DoG, and 0.71 and 0.33 for SMM, but 0.03 and 0.12,
smaller values, i.e. less TNs in comparison to FPs for the
non-automatic passengers’ counting algorithm.

Moreover, in overall, we can find that the wavelet-based
NL-DoG and LoG automatic passengers’ counting algo-
rithms are performing better than the SMM non-wavelet

Table 3. Performance Metrics Values for NL-DoG and LoG
wavelet-based automatic passengers’ counting algorithms,
and for SMM non-wavelet automatic passengers’ count-
ing algorithm: Long 1 Cam2 video sequence with separate
scene map event monitoring zones

Precision Recall TNR Accuracy

Laplacian of Gaussian
Far-left 0.4142 0.9939 0.0486 0.4301
Far-right 0.9618 0.6087 0.7646 0.6232
Mid-left 0.9676 0.7791 0.9905 0.9340
Mid-right 0.2006 1.0000 0.3657 0.4528
Near-left 1.0000 0.5000 1.0000 0.5792
Near-right 0.0000 - 0.9665 0.9665

Non-linear difference of Gaussians
Far-left 0.5433 0.9164 0.0371 0.5256
Far-right 1.0000 0.5000 1.0000 0.5315
Mid-left 0.2829 0.6864 0.3159 0.4205
Mid-right 0.1999 1.0000 0.1825 0.3211
Near-left 0.9997 0.5400 0.9993 0.6177
Near-right - - 1.0000 1.0000

Simple mixture of models
Far-left 0.9870 0.5901 0.9799 0.6987
Far-right 0.9456 0.7540 0.6146 0.7399
Mid-left 0.9895 0.5024 0.9970 0.8184
Mid-right 0.3719 0.6367 0.6637 0.6573
Near-left 0.5241 0.9109 0.2848 0.5751
Near-right - - 1.0000 1.0000

automatic passengers’ counting algorithm. In effect, fo-
cusing on the Long Cam1 and Long Cam2, and on Long 1
Cam1 and Long 1 Cam2 sequences, and if we take the aver-
age Precision value of CAM1 and CAM2, then we get ap-
proximately 0.95 and 0.91 for LoG, and 0.90 and 0.97 for
NL-DoG, but 0.99 and 0.94 for SMM. Similarly, if we take
the average Accuracy value of CAM1 and CAM2, then we
get approximately 0.78 and 0.80 for LoG, and 0.71 and
0.71 for NL-DoG, but 0.62 and 0.72 for SMM. This can
be explained, as we saw earlier, due to the static nature of
Skellam parameters which cannot be tuned for adapting to
dynamically changing environments. In effect, SMM fails
to completely suppress the background features when ap-
plied to the test video sequences.

Also, in overall, we can find that for all the video
sequences NL-DoG wavelet-based automatic passengers’
counting algorithm is performing slightly better than the
LoG wavelet-based automatic passengers’ counting algo-
rithm. This can be explained due to NL-DoG allowing
a more uniform distribution of energy around the closed
regions of the input frame scene in comparison to LoG
which, in turn, caused slightly more TPs for the NL-DoG.

Additionally, we can observe that both the wavelet-
based LoG and NL-DoG automatic passengers’ counting
algorithm, and the non-wavelet SMM passengers’ count-
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ing algorithm perform less well for the video sequences
Long 2 Cam1 and Long 2 Cam2 than the video sequences
Long 1 Cam1 and Long 1 Cam2. By observing care-
fully the test video sequences, this can be explained due
to the higher scene complexity of Long 2 Cam1 and Long
2 Cam2, i.e. more passengers moving in and out of the
scene, and more reflections shown on the coach’s surfaces.
With an even closer observation, we can find that both
the wavelet-based LoG and NL-DoG automatic passen-
gers’ counting algorithm, and the non-wavelet SMM pas-
sengers’ counting algorithm perform less well for the video
sequence Long 2 Cam1 than the video sequence Long 2
Cam2. This can only be explained, after carefully examin-
ing the data, due to discrepancies on the frame rate created
during the acquisition and storing stage of the sequence i.e.
the frame rate was not kept constant throughout the com-
plete duration of the video sequence which consequently
caused non-deterministic errors in the scene segmentation
stage.

7.4 Algorithm Performance and Complexity

We have used for running our simulations a dual-core
CPU at 2.0 GHz with 4GB RAM. Non-wavelet SMM au-
tomatic passengers’ counting algorithm was able to pro-
cess the test video sequences at approximately 2.5773
frames per second, wavelet-based LoG automatic passen-
gers’ counting algorithm was able to process the test video
sequences at approximately 10.2296 frames per second,
and wavelet-based NL-DoG automatic passengers’ count-
ing algorithm at approximately 1.6129 frames per second.
Thus, it is found that the wavelet-based LoG automatic
passengers’ counting algorithm is able to process the test
video sequences at a higher rate. This can be explained due
to the different complexity of each of the three algorithms.
In effect, SMM algorithm’s complexity lies on the compu-
tational operation of updating the background model each
frame. NL-DoG algorithm’s complexity lies on perform-
ing the FFT and IFFT computational operations on each
test video sequence frame (IFFT is needed for applying the
non-linear sigmoidal function). LoG algorithm’s complex-
ity lies on the Laplace Transform computational operation
on each test video sequence frame. Therefore, NL-DoG al-
gorithm has the higher complexity cost than the other two
algorithms due to a higher total number of floating point
operations needed which in turn increases the processing
time of each frame.

8 CONCLUSION AND FUTURE WORK

This paper described two new automatic wavelet-based
passengers’ counting algorithms. One was based on LoG
and we applied it on the spatial domain, and the other
one was based on NL-DoG and we applied it on the
frequency domain. We have shown that both are able
to select illumination invariant features in the synthesis
of their background reference frame. We used a novel
scene map with a holistic geometrical approach for sepa-
rating the detected objects and registering their positions
in the scene for both cameras. We have developed a
BB tracker for classifying the detected objects in the seg-
mented scenes. We have extensively tested the wavelet-
based LoG and NL-DoG and non-wavelet SMM automatic
passengers’ counting algorithms, and the previously devel-
oped non-automatic passengers’ counting algorithm with
several video sequences. From the recorded results, we
have shown that both the wavelet-based and non-wavelet
automatic passengers’ counting algorithms are performing
better than the non-automatic passengers’ counting algo-
rithm. We have shown that the wavelet-based LoG and
NL-DoG automatic passengers’ counting algorithms are
performing, in overall, better than the non-wavelet SMM
automatic passengers’ counting algorithm. This can be ex-
plained due to the dynamically changing illumination con-
ditions of the test video sequences which SMM is not able
to adequately adapt for. Also, we have found that NL-
DoG wavelet-based algorithm produced more TPs than
LoG wavelet-based algorithm.

In future, we plan to continue experimenting with a
more robust tracking mask to recognize multiple objects
and to classify them into different categories [25, 26]. A
more robust tracking mask can tackle the performance
deterioration caused by objects’ occlusions in the scene.
Also, it worth performing a detailed computational com-
plexity analysis of the wavelet-based algorithms of LoG
and NL-DoG. Finally, we plan to exploit further the pos-
sible extraction of automatic forensics metadata for the
video sequences with the application of the scene map.
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APPENDIX A TABLES FOR SCENE MAP MONI-
TORING ZONES OF SEQUENCES
LONG 1 CAM1, LONG 2 CAM1,
AND LONG 2 CAM2

Table 4. Performance Metrics Values for NL-DoG and LoG
wavelet-based automatic passengers’ counting algorithms,
and for SMM non-wavelet automatic passengers’ count-
ing algorithm: Long 1 Cam1 video sequence with separate
scene map event monitoring zones

Precision Recall TNR Accuracy

Laplacian of Gaussian
Far-left 0.8199 0.9055 0.5172 0.7922
Far-right 0.9582 0.7840 0.6183 0.7703
Mid-left 1.0000 0.9920 1.0000 0.9944
Mid-right - - 1.0000 1.0000
Near-left - - 1.0000 1.0000
Near-right - - 1.0000 1.0000

Non-linear difference of Gaussians
Far-left 0.8002 0.6289 0.4855 0.5953
Far-right 1.0000 0.5000 1.0000 0.5215
Mid-left 1.0000 0.9375 1.0000 0.9554
Mid-right - - 1.0000 1.0000
Near-left - - 1.0000 1.0000
Near-right - - 1.0000 1.0000

Simple mixture of models
Far-left 0.9993 0.5678 0.9984 0.6558
Far-right 0.9859 0.5902 0.8592 0.6054
Mid-left 0.8161 0.9933 0.5880 0.8506
Mid-right - - 1.0000 1.0000
Near-left - - 1.0000 1.0000
Near-right - - 1.0000 1.0000

Table 5. Performance Metrics Values for NL-DoG and LoG
wavelet-based automatic passengers’ counting algorithms,
and for SMM non-wavelet automatic passengers’ count-
ing algorithm: Long 2 Cam1 video sequence with separate
scene map event monitoring zones

Precision Recall TNR Accuracy

Laplacian of Gaussian
Far-left 0.9986 0.6805 0.9838 0.6972
Far-right 0.5476 0.9962 0.6381 0.7475
Mid-left 0.0000 - 0.9081 0.9081
Mid-right 0.0000 - 0.7938 0.7938
Near-left - - 1.0000 1.0000
Near-right - - 1.0000 1.0000

Non-linear difference of Gaussians
Far-left 0.9646 0.5945 0.5703 0.5933
Far-right 1.0000 0.5000 1.0000 0.7419
Mid-left 0.0000 - 0.9693 0.9693
Mid-right - - 1.0000 1.0000
Near-left - - 1.0000 1.0000
Near-right - - 1.0000 1.0000

Simple mixture of models
Far-left 0.9450 0.5574 0.4545 0.5516
Far-right 0.7045 0.9849 0.7764 0.8496
Mid-left 0.0000 - 0.9996 0.9996
Mid-right - - 1.0000 1.0000
Near-left 0.0000 - 0.8923 0.8923
Near-right - - 1.0000 1.0000

Table 6. Performance Metrics Values for NL-DoG and LoG
wavelet-based automatic passengers’ counting algorithms,
and for SMM non-wavelet automatic passengers’ count-
ing algorithm: Long 2 Cam2 video sequence with separate
scene map event monitoring zones

Precision Recall TNR Accuracy

Laplacian of Gaussian
Far-left 0.7368 0.8339 0.7932 0.8099
Far-right 0.8610 0.7597 0.1451 0.6826
Mid-left 0.0000 - 0.9275 0.9275
Mid-right 0.0000 - 0.6508 0.6508
Near-left - - 1.0000 1.0000
Near-right - - 1.0000 1.0000

Non-linear difference of Gaussians
Far-left 0.3999 0.9043 0.3280 0.5189
Far-right 1.0000 0.5854 1.0000 0.5997
Mid-left 0.0000 - 0.7649 0.7649
Mid-right 0.0000 - 0.7987 0.7987
Near-left - - 1.0000 1.0000
Near-right - - 1.0000 1.0000

Simple mixture of models
Far-left 1.0000 0.5000 1.0000 0.7318
Far-right 1.0000 0.5858 1.0000 0.6000
Mid-left - - 1.0000 1.0000
Mid-right 0.0000 - 0.9795 0.9795
Near-left 0.0000 - 0.9758 0.9758
Near-right 0.0000 - 0.9233 0.9233
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