A REMARK ON THE INJECTIVITY OF THE SPECIALIZATION HOMOMORPHISM

IVICA GUSIĆ AND PETRA TADIĆ University of Zagreb, Croatia

Abstract. Let

$$E: y^{2} = (x - e_{1})(x - e_{2})(x - e_{3}),$$

be a nonconstant elliptic curve over $\mathbb{Q}(T)$. We give sufficient conditions for a specialization homomorphism to be injective, based on the unique factorization in $\mathbb{Z}[T]$ and \mathbb{Z} .

The result is applied for calculating exactly the Mordell-Weil group of several elliptic curves over $\mathbb{Q}(T)$ coming from a paper by Rubin and Silverberg.

1. INTRODUCTION

Let E = E(T) be a nonconstant elliptic curve over $\mathbb{Q}(T)$, i.e. an elliptic curve that is not isomorphic over $\mathbb{Q}(T)$ to an elliptic curve over \mathbb{Q} . By Silverman's specialization theorem ([6, Theorem III.11.4]), for all but finitely many $t \in \mathbb{Q}$, the specialization homomorphism

$$E(\mathbb{Q}(T)) \to E(t)(\mathbb{Q})$$

is injective, where E(t) is the specialization of E(T). Therefore the rank of $E(\mathbb{Q}(T))$ is finite and, by Mazur's theorem, the torsion group of $E(\mathbb{Q}(T))$ is one of the following groups:

(1.1)
$$\mathbb{Z}/n\mathbb{Z}, \ 1 \le n \le 10 \text{ or } n = 12, \text{ or } \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, \ 1 \le n \le 4.$$

Here we observe nonconstant elliptic curves E over $\mathbb{Q}(T)$ given by an equation of the form

(1.2)
$$E: y^2 = (x - e_1)(x - e_2)(x - e_3), \ e_1, e_2, e_3 \in \mathbb{Z}[T],$$

2010 Mathematics Subject Classification. 11G05, 14H52.

 $Key\ words\ and\ phrases.$ Elliptic curve, specialization homomorphism, rank, generators.

265

and give sufficient conditions on the coefficients of the curve (specifically $e_1(T), e_2(T), e_3(T)$) for a specialization homomorphism to be an injection. The details are in Section 3. Basically the factorization in the unique factorization domains $\mathbb{Z}[T]$ and \mathbb{Z} plays a crucial role in the question of the injectivity of the specialization homomorphism.

The proof of this result uses the idea used in the paper by Dujella ([2, Theorem 4]), which relies on the homomorphism θ (see [3, 4.4]).

The obtained result may lead to determining the rank and even proving that a certain set of points are free generators of an elliptic curve over $\mathbb{Q}(T)$ in the form (1.2), basically by looking at an elliptic curve over \mathbb{Q} (one of its specialized curves which satisfies the condition of the Theorem 3.1).

In Section 4 we apply the result to a certain family of elliptic curves from the paper by Rubin and Silverberg ([5, Theorem 4.1]). For several concrete elliptic curves over $\mathbb{Q}(T)$, we calculate the rank and prove that a given set of points are free generators over $\mathbb{Q}(T)$. This is done by observing the curve's coefficients in $\mathbb{Q}(T)$ and in addition the rank and torsion and free generators of an elliptic curve over \mathbb{Q} (one of its specializations). The key to this is the existence of efficient algorithms for finding free generators of a large class of elliptic curves over \mathbb{Q} , which is available through John Cremona's program *mwrank* ([1]).

2. The homomorphism θ

Let K be the field of rational numbers \mathbb{Q} or the field of rational functions $\mathbb{Q}(T)$ in the variable T over \mathbb{Q} , let R be the ring of integers Z or the ring $\mathbb{Z}[T]$ of polynomials in the variable T over Z, respectively. Thus, R is a unique factorization domain.

Let us define the maps

$$\theta_i^K : E(K) \to K^{\times}/(K^{\times})^2, \ i = 1, 2, 3$$

by

$$\begin{aligned} \theta_i^K(x,y) &= x - e_i, \text{ if } x \neq e_i, \\ \theta_i^K(e_i,0) &= (e_j - e_i)(e_k - e_i), \text{ where } i \neq j \neq k \neq i, \\ \theta_i^K(O) &= 1. \end{aligned}$$

Put $\theta^K := (\theta_1^K, \theta_2^K, \theta_3^K)$. Note that $K^{\times}/(K^{\times})^2$ has a natural structure of a multiplicative group. Then $(K^{\times}/(K^{\times})^2)^3$ has the corresponding group structure of the direct product.

LEMMA 2.1. The map $\theta^K : E(K) \to (K^{\times}/(K^{\times})^2)^3$ is a homomorphism of groups with the kernel 2E(K). Thus, $Im(\theta^K) \cong E(K)/2E(K)$.

PROOF. The first part of the statement is in [3, Chapter 6, Proposition (4.3)]. The second part follows from [3, Chapter 1, Theorem (4.1)].

We restrict consideration to nonconstant elliptic curves E over K given by

$$E: y^2 = (x - e_1)(x - e_2)(x - e_3), \ e_j \in R.$$

It is easy to see that E(K)/2E(K) has $2^{\operatorname{rank}(E(K))+2}$ elements.

For each $P \in E(K)$ there exists exactly one triple

$$\mu^K := (\mu_1^K, \mu_2^K, \mu_3^K) \in (R^{\times})^3$$

where $\mu_j^K = \mu_j^K(P)$, j = 1, 2, 3, such that the following three conditions are satisfied

(i)

$$\begin{aligned} \theta_1^K(P) &\equiv \mu_1^K \mu_2^K \pmod{(K^{\times})^2}, \\ \theta_2^K(P) &\equiv \mu_1^K \mu_3^K \pmod{(K^{\times})^2}, \\ \theta_3^K(P) &\equiv \mu_2^K \mu_3^K \pmod{(K^{\times})^2}, \end{aligned}$$

- (ii) μ_j^K are square-free and pairwise coprime in R, and
- (iii) If $R = \mathbb{Z}[T]$ then the leading coefficient of $\mu_1^{\mathbb{Q}(T)} \in \mathbb{Z}[T]$ is positive, and if $R = \mathbb{Z}$ then $\mu_1^{\mathbb{Q}} \in \mathbb{Z}$ is positive.

REMARK 2.2. Note that since $e_1, e_2, e_3 \in R$ we have

$$\mu_1^K | e_1 - e_2, \ \mu_2^K | e_1 - e_3, \ \mu_3^K | e_2 - e_3.$$

These relations will be crucial in the proof of Theorem 3.1.

It is easy to see that

l

$$\mu^{K}(P) = \mu^{K}(Q)$$
 if and and only if $\theta^{K}(P) = \theta^{K}(Q)$.

Therefore, by Lemma 2.1,

(2.2)
$$\mu^{K}(P) = \mu^{K}(Q) \text{ if and only if } Q - P \in 2E(K).$$

Especially,

(2.3)
$$\mu^{K}(P) = (1, 1, 1)$$
 if and only if $P \in 2E(K)$.

We will be using θ and (μ_1, μ_2, μ_3) for $R = \mathbb{Z}[T]$ and $K = \mathbb{Q}(T)$.

3. The injectivity of the specialization homomorphism

The main theorem in this section gives sufficient conditions on the coefficients of elliptic curves over $\mathbb{Q}(T)$ in the form (1.2), for a specialization homomorphism $T \mapsto t_0$ to be injective. Specifically, if the factors in the factorization of $(e_1(T) - e_2(T)) \cdot (e_1(T) - e_3(T)) \cdot (e_2(T) - e_3(T))$ in $\mathbb{Z}[T]$ evaluated at $T = t_0$ have a certain property concerning its factorizations in $\mathbb{Z},$ then the injectivity of the specialization homomorphism $T \mapsto t_0$ can be concluded.

Before the main theorem we mention the following. For a given non-zero rational number $q = \frac{a}{b}$, $(a, b \in \mathbb{Z})$, let $\operatorname{core}(q)$ denote the *integer square-free part* of q, meaning the integer that is the the square-free part of $a \cdot b$. For example, the integer square-free part of $\frac{5}{12}$ is 15. For a non-zero integer m let $\operatorname{rad}(m)$ (called the *radical* of m) denote the product of all different prime divisors of m.

THEOREM 3.1. Let $t_0 \in \mathbb{Q}$. Let E be the nonconstant elliptic curve over $\mathbb{Q}(T)$, given by the equation

$$E = E(T) : y^{2} = (x - e_{1})(x - e_{2})(x - e_{3}), (e_{1}, e_{2}, e_{3} \in \mathbb{Z}[T]).$$

Factor

ra

 $(e_1 - e_2) \cdot (e_1 - e_3) \cdot (e_2 - e_3) = a \cdot f_1^{a_1}(T) \cdots f_k^{a_k}(T),$

where $a \in \mathbb{Z}$ and $f_i \in \mathbb{Z}[T]$ irreducible (of positive degree) and $a_i \geq 1$. Assume that for each i = 1, ..., k the integer square-free part of each of $f_i(t_0)$ has at least one prime factor that doesn't appear in the integer square-free part of any of the other $f_j(t_0)$ ($\forall j \neq i$) and doesn't appear in the factorization of the radical of a. This condition includes the assumption that $f_i(t_0)$ is nonzero (i = 1, ..., k).

With the above notations the condition can be written as: |aoro(f(t))|

$$\frac{|\operatorname{core}(f_i(t_0))|}{\operatorname{d}[\operatorname{gcd}(\operatorname{core}(f_i(t_0)), \operatorname{rad}(a)) \cdot \prod_{j=1, j \neq i}^k \operatorname{gcd}(\operatorname{core}(f_i(t_0)), \operatorname{core}(f_j(t_0)))]} > 1,$$

for all i = 1, ..., k. Then the specialization homomorphism $E(\mathbb{Q}(T)) \rightarrow E(t_0)(\mathbb{Q})$ is injective.

PROOF. Since $(e_1(t_0) - e_2(t_0)) \cdot (e_1(t_0) - e_3(t_0)) \cdot (e_2(t_0) - e_3(t_0)) \neq 0$, the specialization $E(t_0)$ of E(T) is an elliptic curve.

Let $P \in E(\mathbb{Q}(T)) \setminus \{O\}$. Then the first coordinate of P is of the form $\frac{p(T)}{q(T)^2}$ with $p(T), q(T) \in \mathbb{Z}[T]$ coprime. Therefore

$$\left\{ \begin{array}{l} p(T) - e_1(T)q^2(T) = \mu_1^{\mathbb{Q}(T)}(P)\mu_2^{\mathbb{Q}(T)}(P)\Box_{\mathbb{Z}[T]}, \\ p(T) - e_2(T)q^2(T) = \mu_1^{\mathbb{Q}(T)}(P)\mu_3^{\mathbb{Q}(T)}(P)\Box_{\mathbb{Z}[T]}, \\ p(T) - e_3(T)q^2(T) = \mu_2^{\mathbb{Q}(T)}(P)\mu_3^{\mathbb{Q}(T)}(P)\Box_{\mathbb{Z}[T]}, \end{array} \right.$$

where $\Box_{\mathbb{Z}[T]}$ denotes a square of an element of $\mathbb{Z}[T]$. Let

$$\psi: E(\mathbb{Q}(T)) \to E(t_0)(\mathbb{Q})$$

be the specialization homomorphism (note that ψ is everywhere well-defined under the conditions of the theorem). Let $\bar{\mu}_{j}^{\mathbb{Q}(T)}(P)$, j = 1, 2, 3 denote the rational numbers obtained from $\mu_{j}^{\mathbb{Q}(T)}(P)$, by the specialization $T \mapsto t_{0}$.

• We first prove that $\psi(P) = O$ implies $P \in 2E(\mathbb{Q}(T))$: Let $P \in E(\mathbb{Q}(T)) \setminus \{O\}$, then $\psi(P) = O$ implies $q(t_0) = 0$ (while $p(t_0) \neq 0$). We mention that $P \neq (e_i(T), 0)$, (i = 1, 2, 3), so we are in the first case in the definition of θ which we will use to prove the statement. Therefore

$$\begin{cases} p(t_0) = \bar{\mu}_1^{\mathbb{Q}(T)}(P)\bar{\mu}_2^{\mathbb{Q}(T)}(P)\Box_{\mathbb{Q}}, \\ p(t_0) = \bar{\mu}_1^{\mathbb{Q}(T)}(P)\bar{\mu}_3^{\mathbb{Q}(T)}(P)\Box_{\mathbb{Q}}, \\ p(t_0) = \bar{\mu}_2^{\mathbb{Q}(T)}(P)\bar{\mu}_3^{\mathbb{Q}(T)}(P)\Box_{\mathbb{Q}}, \end{cases}$$

where $\Box_{\mathbb{Q}}$ denotes a square of a rational number. We claim that $\mu_i^{\mathbb{Q}(T)}(P) \in \{-1,1\}, \text{ for each } i. \text{ Assume, for example, that } \mu_2^{\mathbb{Q}(T)}(P) \notin$ $\{-1, 1\}$. By multiplying the first two above relations, we get

$$p(t_0)^2 = \bar{\mu}_2^{\mathbb{Q}(T)}(P)\bar{\mu}_3^{\mathbb{Q}(T)}(P)\Box_{\mathbb{Q}}$$

- ► Assume that at least one of $\mu_2^{\mathbb{Q}(T)}(P)$, $\mu_3^{\mathbb{Q}(T)}(P)$ has a positive degree. Then from Remark 2.2, the fact that $\mu_j^{\mathbb{Q}(T)}(P)$ are degree. Then non internark 2.2, the fact that μ_j (T) are square-free and mutually coprime, and the condition of the Theorem, we conclude that μ₂^{Q(T)}(P)μ₃^{Q(T)}(P) is not a square in Q. It is in contradiction with (3.1).
 Assume that both μ₂^{Q(T)}(P), μ₃^{Q(T)}(P) are constants. Since they are square-free and coprime, and μ₂^{Q(T)}(P) ∉ {-1,1} we get a
- contradiction with (3.1).

Since we know that $\mu_i^{\mathbb{Q}(T)}(P) \in \{-1,1\}$, for each *i* and using the fact that $\mu_1^{\mathbb{Q}(T)}(P) > 0$, we easily conclude that $\mu_i^{\mathbb{Q}(T)}(P) = 1$ for i = 1, 2, 3. Now we see that $\theta^{\mathbb{Q}(T)}(P) = (1, 1, 1)$, hence by (2.3) we have $P \in 2E(\mathbb{Q}(T))$.

Since $\psi(O) = O$ and $O \in 2E(\mathbb{Q}(T))$, we proved that $\psi(P) = O$ implies $P \in 2E(\mathbb{Q}(T))$.

• Now we prove that $\psi(P) \in 2\mathrm{Im}\psi$ if and only if $P \in 2E(\mathbb{Q}(T))$: if $\psi(P) \in 2 \operatorname{Im} \psi$, then $\psi(P) = 2\psi(Q)$ for some $Q \in E(\mathbb{Q}(T))$, then $\psi(P-2Q) = O$, which implies, by the former, that $P-2Q \in 2E(\mathbb{Q}(T))$. So $P \in 2E(\mathbb{Q}(T))$. The rest is obvious.

We thus conclude that

(3.2)
$$E(\mathbb{Q}(T))/2E(\mathbb{Q}(T)) \cong \mathrm{Im}\psi/2\mathrm{Im}\psi.$$

Since ψ is injective on the torsion part [6, p. 272–273, proof of Theorem III.11.4], and since a possible form of the torsion part is

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, \ 1 \le n \le 4,$$

by (3.2) we conclude

$$2^{\operatorname{rank}(E(\mathbb{Q}(T))+2)} = 2^{\operatorname{rank}(\operatorname{Im}(\psi))+2}$$

hence the rank of $E(\mathbb{Q}(T))$ is the same as the rank of $\operatorname{Im}(\psi)$.

Let $\bar{\psi}: E(\mathbb{Q}(T)) \otimes_{\mathbb{Z}} \mathbb{Q} \to \operatorname{Im} \psi \otimes_{\mathbb{Z}} \mathbb{Q}$ be the \mathbb{Q} -linear map corresponding to $\psi: E(\mathbb{Q}(T)) \to \operatorname{Im} \psi$. Since ψ is a surjective linear map among vector spaces

(3.1)

of the same dimension, it is injective. By the fact that ψ is injective on the torsion part, we conclude that ψ is injective, too.

This result could be applied to determining the rank (and even the free generators) of an elliptic curves over $\mathbb{Q}(T)$ in the form (1.2), by basically choosing a good candidate $t_0 \in \mathbb{Q}$ that of course satisfies the conditions of Theorem 3.1 and looking at an elliptic curve over \mathbb{Q} (one of its specialized curves corresponding to $T = t_0$).

The following Corollary is used in the next section.

COROLLARY 3.2. Let $t_0 \in \mathbb{Q}$. Let E be the nonconstant elliptic curve over $\mathbb{Q}(T)$ in the form (1.2). If the condition from Theorem 3.1 is satisfied, and if

 $|E(\mathbb{Q}(T))_{Tors}| = |E(t_0)(\mathbb{Q})_{Tors}|$

and there exist $P_1, \ldots, P_r \in E(\mathbb{Q}(T))$ such that $P_1(t_0), \ldots, P_r(t_0)$ are the free generators of $E(t_0)(\mathbb{Q})$, then the specialization homomorphism

$$E(\mathbb{Q}(T)) \to E(t_0)(\mathbb{Q})$$

is an isomorphism.

Thus $E(\mathbb{Q}(T))$ and $E(t_0)(\mathbb{Q})$ have the same rank r, and P_1, \ldots, P_r are the free generators of $E(\mathbb{Q}(T))$.

PROOF. The specialization is obviously an epimorphism, and by Theorem 3.1 it is an isomorphism.

REMARK 3.3. If $|E(t_0)(\mathbb{Q})_{\text{Tors}}| = 4$, then the condition $|E(\mathbb{Q}(T))_{\text{Tors}}| = |E(t_0)(\mathbb{Q})_{\text{Tors}}|$ is satisfied.

4. Application to a family of Rubin and Silverberg

Now we will give an example of the usage of the main Theorem 3.1 for obtaining new results concerning the paper by Rubin and Silverberg [5, Theorem 4.1]. We will determine the rank and free generators of several elliptic curves over $\mathbb{Q}(T)$ using Theorem 3.1 (moreover Corollary 3.2), by observing for each, its coefficients in $\mathbb{Z}[T]$ and one of its specialized curves over \mathbb{Q} . The possibility of determining the free generators of a large class of elliptic curve over \mathbb{Q} is of essential importance for this, for which we use John Cremona's program *mwrank* ([1]).

The program *mwrank* uses 2-descent via 2-isogeny to determine the rank of an elliptic curve E over \mathbb{Q} , and obtain a set of points which generate $E(\mathbb{Q})$ modulo $2E(\mathbb{Q})$, and finally saturate it to a full basis over \mathbb{Z} for $E(\mathbb{Q})$.

EXAMPLE 4.1. Let $a \in \mathbb{Q}^{\times}$, let $\lambda = -2a^2$, and let $g^{(a)}(T)$ be the polynomial of degree 12 in T

$$g^{(a)}(T) = 2N(\lambda, T)(N(\lambda, T) - 2D(\lambda, T)^2)(N(\lambda, T) - 2\lambda D(\lambda, T)^2),$$

where

$$\begin{split} D(\lambda,T) &= \lambda (2\lambda - 1)T^2 + 2 - \lambda, \\ N(\lambda,T) &= \lambda^2 (\lambda + 1)(2\lambda - 1)^2 T^4 - 4\lambda^2 (\lambda - 1)(2\lambda - 1)T^3 \\ &+ 2\lambda (\lambda + 1)(2\lambda^2 - 3\lambda + 2)T^2 \\ &- 4\lambda (\lambda - 1)(\lambda - 2)T + (\lambda - 2)^2 (\lambda + 1). \end{split}$$

In [5, Theorem 4.1] it is proven that the elliptic curve $C^{(a)}$ over $\mathbb{Q}(T)$ with equation

$$g^{(a)}(T)y^2 = x(x-1)(x-\lambda)$$

has rank at least 3, with independent points $P^{(a)}, Q^{(a)}, R^{(a)} \in C^{(a)}(\mathbb{Q}(T))$ given by

$$\begin{split} P^{(a)} &= \left(\frac{N(\lambda,T)}{2D(\lambda,T)^2}, \frac{1}{4D(\lambda,T)^3}\right),\\ Q^{(a)} &= \left(\frac{\lambda^2(D(\lambda,T)^2 - 4\lambda T(T-1)(\lambda(2\lambda-1)T+2-\lambda))}{(\lambda(2\lambda-1)T^2 - 2\lambda(2\lambda-1)T + \lambda - 2)^2}, \\ \frac{a\lambda}{(\lambda(2\lambda-1)T^2 - 2\lambda(2\lambda-1)T + \lambda - 2)^3}\right),\\ R^{(a)} &= \left(\frac{D(\lambda,T)^2 + 4\lambda T(T-1)(\lambda(2\lambda-1)T+2-\lambda)}{\lambda(\lambda(2\lambda-1)T^2 - (2\lambda-4)T + \lambda - 2)^2}, \\ -\frac{a}{\lambda^2(\lambda(2\lambda-1)T^2 - (2\lambda-4)T + \lambda - 2)^3}\right). \end{split}$$

By [7, Section 4, Corollary 1] and [5, Remark 2.12], we know that the rank of $C^{(a)}$ over $\mathbb{Q}(T)$ is at most 5, for each a. Now we will show that for each integer value a, where $1 \leq a \leq 60$, the elliptic curve $C^{(a)}$ over $\mathbb{Q}(T)$ has rank exactly equal to 3 and torsion $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, where free generators are the points

$$P^{(a)}, Q^{(a)}, R^{(a)} \in C^{(a)}(\mathbb{Q}(T))$$

given above. This strongly suggests that the rank in the family $C^{(a)}$ is constant and equals to 3, as well as that $P^{(a)}, Q^{(a)}, R^{(a)}$ are free generators.

The coordinate transformation

$$(x,y) \mapsto \left(g^{(a)}(T) \cdot x, g^{(a)}(T)^2 \cdot y\right)$$

applied to the elliptic curve $C^{(a)}$ over $\mathbb{Q}(T)$ leads to the elliptic curve over $\mathbb{Q}(T)$ given by the equation

$$y^{2} = x(x - g^{(a)}(T))(x - \lambda g^{(a)}(T))$$

which we also denote by $C^{(a)}$. The corresponding points also remain denoted as the old ones. Then

$$e_1(T) = 0, \ e_2(T) = g^{(a)}(T), \ e_3(T) = \lambda g^{(a)}(T),$$

and four torsion points are O, (0,0), $(g^{(a)}(T),0)$, $(\lambda g^{(a)}(T),0)$.

PROPOSITION 4.2. Let a be an integer such that $1 \le a \le 60$. The elliptic curve $C^{(a)}$ over $\mathbb{Q}(T)$ has rank 3, more precisely

 $C^{(a)}(\mathbb{Q}(T)) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}^3,$

and the points $P^{(a)}, Q^{(a)}, R^{(a)}$ are free generators of the group $C^{(a)}(\mathbb{Q}(T))$.

PROOF. Note that $C^{(a)}$ is a nonconstant elliptic curve over $\mathbb{Q}(T)$ for each $a \neq 0$, although its *j*-invariant is a rational constant. Therefore, we can apply Theorem 3.1 and Corollary 3.2. First we will give a detailed proof for a = 1 For a = 1 and $t_0 = 4$ we have

• the elliptic curve $C^{(1)}(4)$ over \mathbb{Q} is given by the equation

 $y^2 = x^3 + 502511523471360x^2 - 505035662443014384369480499200x,$

• the torsion group has four elements, mwrank ([1]) showed that $C^{(1)}(4)(\mathbb{Q})$ has rank 3 and free generators

$$\begin{split} G_1 &= \left(-\frac{1689903343134720000}{1849}, -\frac{863283322778865481285632000}{79507}\right), \\ G_2 &= (790444733644800, 20214846265347853516800), \\ G_3 &= (13076929429218304, -1521697307273039513157632). \end{split}$$

• using the commands elladd and ellsub in Pari ([4]) we obtain

$$P^{(1)}(4) = (-2g^{(1)}(4), 0) - G_2 - G_3,$$

$$Q^{(1)}(4) = (0, 0) + G_1 + G_2,$$

$$R^{(1)}(4) = (-2g^{(1)}(4), 0) + G_2.$$

Thus we conclude that $P^{(1)}(4)$, $Q^{(1)}(4)$, $R^{(1)}(4)$ are free generators of the group $C^{(1)}(4)(\mathbb{Q})$ which has rank 3.

• so we conclude that $\psi: C^{(1)}(\mathbb{Q}(T)) \to C^{(1)}(4)(\mathbb{Q})$ is a surjection.

• we have

$$e_1(T) = 0, \ e_2(T) = g^{(1)}(T), \ e_3(T) = -2g^{(1)}(T),$$

 \mathbf{SO}

$$(e_1(T) - e_2(T)) \cdot (e_1(T) - e_3(T)) \cdot (e_2(T) - e_2(T))$$

= -9172942848 \cdot (25T^4 + 60T^3 - 16T^2 - 24T + 4)^3
\cdot (25T^4 + 20T^3 + 8T^2 - 8T + 4)^3 \cdot (25T^4 - 20T^3 + 32T^2 + 8T + 4)^3,

thus

$$rad(a) = 6,$$

$$k = 3,$$

$$f_1(T) = 25T^4 + 60T^3 - 16T^2 - 24T + 4,$$

$$f_2(T) = 25T^4 + 20T^3 + 8T^2 - 8T + 4,$$

$$f_3(T) = 25T^4 - 20T^3 + 32T^2 + 8T + 4.$$

If we take $t_0 = 4$ then we have the "prime" conditions of Theorem 3.1:

$$rad(a) = 2 \cdot 3,$$

$$f_1(4) = 2^2 \cdot 2473,$$

$$f_2(4) = 2^2 \cdot 5 \cdot 389,$$

$$f_3(4) = 2^2 \cdot 13 \cdot 109$$

Thus the prime for $f_1(4)$ is 2473, the prime for $f_2(4)$ is 5 or 389, and the prime for $f_3(4)$ is 13 or 109.

Thus we conclude by Corollary 3.2 applied to a = 1 and $t_0 = 4$, that the specialization homomorphism $\psi : C^{(1)}(\mathbb{Q}(T)) \to C^{(1)}(4)(\mathbb{Q})$ is an isomorphism, so

$$C^{(1)}(\mathbb{Q}(T)) \cong C^{(1)}(4)(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}^3,$$

and finally since $\psi(P^{(1)}), \psi(Q^{(1)}), \psi(R^{(1)})$ are free generators of $C^{(1)}(4)(\mathbb{Q})$ we conclude that $P^{(1)}, Q^{(1)}, R^{(1)}$ are free generators of $C^{(1)}(\mathbb{Q}(T))$ which has rank 3.

The Table 4.1. below, shows for integer values $a \in \{1, 2, ..., 60\}$, the corresponding t_0 for which the following conditions of the Corollary 3.2 are satisfied:

- the "prime" condition of Theorem 3.1 is satisfied for $e_1(T) = 0$, $e_2(T) = g^{(a)}(T)$, $e_3(T) = \lambda g^{(a)}(T)$,
- the torsion subgroup of $C^{(a)}(t_0)(\mathbb{Q})$ has four elements,
- the rank of $C^{(a)}(t_0)(\mathbb{Q})$ is 3, and free generators G_1, G_2, G_3 are found using *mwrank* ([1])
- the combination of $P^{(a)}(t_0), Q^{(a)}(t_0), R^{(a)}(t_0)$ of the torsion point and the generators G_1, G_2, G_3 is checked, which shows that

 $P^{(a)}(t_0), Q^{(a)}(t_0), R^{(a)}(t_0)$

are also the generators of $C^{(a)}(t_0)(\mathbb{Q})$

By Corollary 3.2 we conclude that for all integer values $a \in \{1, \ldots, 60\}$ the specialization $\psi: C^{(a)}(\mathbb{Q}(T)) \to C^{(a)}(t_0)(\mathbb{Q})$ is an isomorphism, so

$$C^{(a)}(\mathbb{Q}(T)) \cong C^{(a)}(t_0)(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}^3,$$

and $P^{(a)}, Q^{(a)}, R^{(a)}$ are free generators of $C^{(a)}(\mathbb{Q}(T))$.

I. GUSIĆ AND P. TADIĆ

a	1	2	3	4	5	6	7	8	9	10
\mathbf{t}_0	4	$\frac{21}{2}$	-9	$-\frac{3}{20}$	5	6	$\frac{2}{7}$	$-\frac{3}{8}$	-7	$-\frac{5}{2}$
a	11	12	13	14	15	16	17	18	19	20
\mathbf{t}_0	-9	25	15	-10	25	$\frac{3}{16}$	-7	$-\frac{9}{2}$	-21	-8
a	21	22	23	24	25	26	27	28	29	30
\mathbf{t}_0	$\frac{25}{3}$	-9	-9	-8	-8	-10	-8	-7	4	-8
a	31	32	33	34	35	36	37	38	39	40
\mathbf{t}_0	-10	$-\frac{5}{32}$	-10	61	$\frac{7}{5}$	-6	4	$\frac{1}{2}$	4	-3
a	41	42	43	44	45	46	47	48	49	50
\mathbf{t}_0	$\frac{2}{41}$	$-\frac{23}{2}$	30	$\frac{6}{11}$	-6	-13	$-\frac{9}{47}$	$-\frac{11}{3}$	3	$\frac{13}{2}$
a	51	52	53	54	55	56	57	58	59	60
\mathbf{t}_0	$-\frac{7}{3}$	4	$\frac{55}{7}$	$\frac{11}{2}$	$\frac{47}{2}$	-6	13	$-\frac{15}{2}$	-5	$\frac{25}{3}$

Table 4.1. List of values a and corresponding t_0

For obtaining the table we observed t_0 that satisfy Corollary 3.2 such that the numerator is in absolute value ≤ 80 and the denominator minimal. We looked at t_0 for which the root number of $C^{(a)}(t_0)$ is -1 and after that we let *mwrank* try to calculate the rank (and free generators).

ACKNOWLEDGEMENTS.

The authors would like to sincerely thank professor Andrej Dujella. This article would not have been possible without his kind support, help, suggestions and useful comments.

References

- [1] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
- [2] A. Dujella, A parametric family of elliptic curves, Acta Arith. 94 (2000), 87–101.
- [3] D. Husemöller, Elliptic Curves, Second Edition GTM 111, Springer, New York, 2004.
- [4] Pari/GP, version 2.3.3, Bordeaux, 2008, http://pari.math.u-bordeaux.fr/.
 [5] K. Rubin and A. Silverberg, Rank frequencies for quadratic twists of elliptic curves,
- Experiment. Math. 10 (2001), 559–569.
 [6] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151, Springer, Berlin, 1994.
- [7] C. L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary forms, J. Amer. Math. Soc. 8 (1995), 943–973.

I. Gusić Faculty of Chemical Engin. and Techn. University of Zagreb Marulićev trg 19, 10000 Zagreb Croatia *E-mail*: igusic@fkit.hr

P. Tadić Geotechnical faculty University of Zagreb Hallerova aleja 7, 42000 Varaždin Croatia *E-mail*: petra.tadic.zg@gmail.com, ptadic@gfv.hr *Received*: 14.1.2012.

Revised: 17.2.2012.