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Abstract. Let d(m) be the number of divisors of the positive integer
m. Here, we show that if n 6∈ {3, 5}, then d(n!) is a divisor of n!. We also
show that the only positive integers n such that d(Fn) divides Fn, where
Fn is the nth Fibonacci number, are n ∈ {1, 2, 3, 6, 24, 48}.

1. Introduction

Let d(m) be the number of divisors of the positive integer m. The number
of divisors of n! was studied in the paper [5]. The equation d(n!) = m! was
studied in [6]. More generally, the fractions d(n!)/m! were studied in [1].
Here, we look at positive integers n such that d(n!) is a divisor of n!. Positive
integers m such that d(m) divides m were studied in [8].

Our first result is the following.

Theorem 1.1. If n > 6, then d(n!) is a divisor of n!.

Let {Fn}n>1 be the Fibonacci sequence given by F1 = F2 = 1 and Fn+2 =
Fn + Fn+1 for all n > 1. Our result is the following.

Theorem 1.2. The only positive integers n such that d(Fn) divides Fn

are n ∈ {1, 2, 3, 6, 24, 48}.

For a positive real number x, we write π(x) for the number of primes
p 6 x.
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2. Proof of Theorem 1.1

We first ran computations with Mathematica and with PARI which
verified that d(n!) | n! for all n < 3400 except for n = 3, 5; this verification
takes only a few minutes of computational time. From now on, we assume
that n > 3400.

We write

n! =
∏

p6n

pap(n).

It is then well-known that

(2.1) ap(n) =
n− sp(n)

p− 1
,

where sp(n) is the sum of the digits of n written in base p. Clearly,

(2.2) 1 6 sp(n) 6 (p− 1)

(⌊

logn

log p

⌋

+ 1

)

for all primes p 6 n.

Then

(2.3) d(n!) =
∏

p6n

(ap(n) + 1).

The method of proof consists in finding an injection f : {p 6 n} 7→ {m 6 n}
such that f(p) is a multiple of ap(n) + 1 for all primes p 6 n. Then d(n!) is a
divisor of

∏

p6n f(p), which is a product of π(n) distinct integers 6 n; hence,

d(n!) is a divisor of n!.
In order to define f(p), we split the primes p 6 n in three ranges.
Case 1. p 6

√
n/2.

In this case, we take f(p) = ap(n) + 1. Clearly,

ap(n) + 1 6
n− 1

p− 1
+ 1 6 n for all primes p > 2.

To see that the numbers f(p) are distinct for distinct primes p in this range,
assume that q < p are both primes in [2,

√
n/2] and that f(p) = f(q). Then

the equation f(p) = f(q) can be rewritten as

n− sp(n)

p− 1
=

n− sq(n)

q − 1
,

which yields

n− sp(n)

n− sq(n)
=

p− 1

q − 1
= 1 +

p− q

q − 1
> 1 +

1

q − 1
,

which in turn implies that

1

q − 1
6

sq(n)− sp(n)

n− sq(n)
6

sq(n)− 1

n− sq(n)
.
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Thus,

(2.4)

n 6 sq(n) + (q − 1)(sq(n)− 1) = qsq(n)− q + 1 < qsq(n)

6 q(q − 1)

(⌊

logn

log q

⌋

+ 1

)

<
q2 log(qn)

log q
<

3q2 logn

2 log q
=

3q2 logn

log(q2)
.

In the above chain of inequalities, we used aside from the right inequality
(2.2) also the fact that q < n1/2, therefore qn < n3/2, so log(qn) < (3/2) logn.
Since 4 6 q2 6 n/4, and the function x 7→ x/ log x is increasing for x > e,
inequality (2.4) above yields

n

logn
<

3q2

log(q2)
6

3n

4 log(n/4)
,

leading to log(n/4) < (3/4) logn, or n/4 < n3/4, or n < 44 = 256, which is
not the case we are considering.

Case 2.
√
n/2 < p 6 n/2.

Let p1 < p2 < · · · be the increasing sequence of all prime numbers. Let
k := π(

√
n/2) and assume that pk+1, . . . , pk+s are all the primes in this case,

where k + s = π(n/2). Observe that for such p, we have p3 > n3/2/8 > n.
Thus,

ap(n) =

⌊

n

p

⌋

+

⌊

n

p2

⌋

,

and the second integer appearing on the right–hand side above is in {0, 1, 2, 3}.
We pick inductively f(pk+i) for i = 1, . . . , s to be a positive integer in the
interval I = [(n+ 2)/2, n], satisfying the following properties

(i) it is distinct from a2(n) + 1 = n− s2(n) + 1;
(ii) it is distinct from f(pk+j) for all j = 1, . . . , i− 1;
(iii) it is a multiple of apk+i

(n) + 1.

Observe that condition (i) says that f(pk+i) 6= f(2) = a2(n)+1 = n−s2(n)+1.
To check that f(pk+i) 6= f(p) for all p ∈ [3,

√
n/2], observe that for such p we

have that

f(p) = ap(n)+1 =
n− sp(n)

p− 1
+1 6

n− 1

p− 1
+1 6

n− 1

2
+1 =

n+ 1

2
< f(pk+i).

To justify that we can choose f(pk+i) as in (i)–(iii) above, it suffices to show
that the number of multiples of apk+i

(n) + 1 in [(n+ 2)/2, n] exceeds i, since
then one such multiple can be chosen to avoid the single number n− s2(n) +
1 appearing at (i), and the already chosen i − 1 numbers f(pk+j) for j =
1, . . . , i− 1. Now since

apk+i
(n) + 1 6

n− 1

pk+i − 1
+ 1 =

n+ pk+i − 2

pk+i − 1
,
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we find that the number of integers multiples of apk+i
(n) + 1 in I is at least

⌊

n− (n+ 2)/2

apk+i
(n) + 1

⌋

>

⌊

(n− 2)(pk+i − 1)

2(n+ pk+i − 2)

⌋

.

So, it suffices to show that

(2.5)
(n− 2)(pk+i − 1)

2(n+ pk+i − 2)
> i+ 2.

The above inequality (2.5) is equivalent to

(2.6) pk+i >
(n− 2)(2i+ 5)

n− 2(i+ 3)
.

We first show that inequality

(2.7)
n− 2

n− 2(i+ 3)
6

5

4

holds. Inequality (2.7) is equivalent to i+ 2.2 6 n/10. But clearly

i+ 2.2 6 π(n/2)− π(
√
n/2) + 2.2 6 π(n/2),

where the last inequality follows because n > 100, so
√
n/2 > 5, so π(

√
n/2) >

3. Thus, we need that π(n/2) 6 n/10. By Theorem 2 on [7, Page 69], we
have that

π(n/2) <
n/2

log(n/2)− 1.5
.

Thus, inequality (2.7) holds provided that

n/2

log(n/2)− 1.5
6

n

10
,

which is equivalent to n > 2e6.5, which holds for n > 1331. Thus, inequality
(2.7) holds, so in order for inequality (2.6) to hold, it is enough that

(2.8) pk+i >
5

2

(

i+
5

2

)

.

By inequality (3.12) on [7, Page 69], we have

pk+i > (k + i) log(k + i) > (2.5 + i) log k,

where the right–most inequality holds because k = π(
√
n/2) > 2.5. Thus, in

order for inequality (2.8) to hold, it suffices that k > e2.5, or k > 13. Since
k = π(

√
n/2), it suffices that

√
n/2 > p13, or n > 2p213 = 3362. In conclusion,

since n > 3400, the inequality (2.5) holds for all i = 1, . . . , π(n/2)−π(
√
n/2),

which takes case of the injection f(p) in this case.
Case 3. n/2 < p 6 n.
In this case, ap(n)+1 = 2 for all such primes p. We assign to each prime p

a distinct even number in the interval [(n+4)/4, n/2], except for the possibly
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even number a3(n) + 1 = (n − s3(n) + 2)/2. Observe that if p is a prime in
this case, then

a2(n) + 1 = n+ 1− s2(n) > n+ 1−
(

logn

log 2
+ 1

)

= n− logn

log 2
>

n

2
,

so f(p) is not f(2). Also, f(p) is not f(3) by construction. If q > 5 is in Case
1, then

f(q) = aq(n) + 1 =
n− sq(n)

q − 1
+ 1 6

n− 1

q − 1
+ 1 6

n− 1

4
+ 1 =

n+ 3

4
< f(p).

Finally, if q is in Case 2, then f(q) > (n + 2)/2 > f(p). Thus, in order to
justify that one can define f(p) in the above way for all primes p ∈ (n/2, n],
it suffices to show that the interval J = [(n + 4)/4, n/2] contains at least
π(n) − π(n/2) + 1 even numbers. The number of even numbers in J is at
least

⌊

n/2− (n+ 4)/4

2

⌋

=

⌊

n− 4

8

⌋

>
n− 11

8
.

Thus, we need to check that

(2.9)
n− 11

8
> π(n)− π(n/2) + 1.

By [7, Theorem 2], we have that both inequalities

(2.10) π(n) <
n

logn− 1.5
and π(n/2) >

n/2

log(n/2)− 0.5

hold in our range for n > 3400. Hence, in order for (2.9) to hold it suffices,
via inequalities (2.10), that the inequality

n− 11

8
>

n

logn− 1.5
− n/2

log(n/2)− 0.5
+ 1

holds. This last inequality certainly holds for all n > 3400.
Thus, we have just showed that d(n!) divides n! for all n > 3400, which

completes the proof of this theorem.

3. The Proof of Theorem 1.2

First, some preliminaries. We let {Ln}n>1 be the Lucas companion of
the Fibonacci sequence given by L1 = 1, L2 = 3 and Ln+2 = Ln+1 + Ln for
all n > 1. There are many identities relating Fibonacci and Lucas numbers,
such as

(3.1) F2n = FnLn, L2
n − 5F 2

n = 4(−1)n and L3n = Ln(L
2
n − 3(−1)n)

valid for all positive integers n. We shall freely use such identities in what
follows. They can be easily shown to hold by using the Binet formulas

Fn =
αn − βn

α− β
and Ln = αn + βn
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valid for all n > 1, where (α, β) :=

(

1 +
√
5

2
,
1−

√
5

2

)

are the two roots of

the characteristic equation x2 − x − 1 = 0 of the sequence of Fibonacci (or
Lucas) numbers.

We also use the well–known fact that Fn is even if and only if n is a
multiple of 3. Furthermore, if n = 3m with m odd, then 2‖Fn, while if
n = 2a · 3m with some a > 1 and m odd, then 2a+2‖Fn.

The main idea for this proof is that if a positive integerm has the property
that the exponent of 2 in the factorization of d(m) is bounded above by some
nonnegative integer K, then m can have at most K distinct primes appearing
at odd exponents in its factorization. In particular, m is a square when K = 0.
Throughout this proof, we use � for a square of an integer. It is well–known
that the only positive integers n such that Fn is � or 2� are n ∈ {1, 2, 3, 6, 12},
and the only positive integers n such that Ln = � or 2� are n ∈ {1, 3, 6} (see
[3, 4]).

After the above preliminaries, we are ready to proceed with the proof
of Theorem 1.2. We use a divide and conquer approach. We divide the set
of potential n such that d(Fn) | Fn according to the exponent of 2 in the
factorization of Fn.

(i) Fn is odd. Then d(Fn) is a divisor of Fn, so it is odd. Hence, Fn = �,
so n ∈ {1, 2, 12}. The only convenient solutions here are n ∈ {1, 2}.

(ii) 2‖Fn. Then n = 3m, where m is odd. Since 2‖Fn and d(Fn) can be a
multiple of 2 but not of 4, it follows that Fn = 2�. Thus, n ∈ {3, 6},
of which only the solution n = 3 is convenient.

(iii) There is no n such that 4‖Fn.
(iv) 8‖Fn. Then d(8) = 4 divides d(Fn), a number which may be divisible

by 8 but not by 16. We then get that Fn = 8δ�, where δ ∈ {1, p} and
p is some odd prime. Furthermore, n = 6m with m odd. Then Fn =
F3mL3m by the first of the relations (3.1), and the greatest common
divisor of F3m and L3m is 2 by the second of the relations (3.1). More
precisely, 2‖F3m and 4‖L3m. Now the equation F2mL3m = 8δ� implies
that either F3m = 2�, or L3m = �, both of which giving m ∈ {1, 2},
of which only m = 1, leading to n = 6 is a convenient solution.

(v) 16‖Fn. Then n = 12m, where m is odd. Furthermore d(Fn) is a
multiple of d(16) = 5, so 5 | Fn, therefore 5 | m. Hence, n is a
multiple of 60. Suppose first that n = 24 · 3b · 5c with some positive
integers b and c. Then F60 | Fn, and F60 has five prime factors p > 5
each one of them appearing with exponent one in its factorization,
namely p ∈ {11, 31, 41, 61, 2521}. Since all prime factors of n are
6 5, it follows that each of these five primes appears with exponent
one in the factorization of Fn. Hence, 25 | d(Fn) | Fn, which is a
contradiction. Thus, n must have at least a prime factor exceeding 5,
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and, in particular, ω(n) > 4, where, as usual, for a positive integer t
we write ω(t) for the number of distinct prime factors of t. Write

(3.2) Fn = F12m = F3mL3mL6m.

The above relation follows by applying the first of relations (3.1) twice,
once for n = 12m, and once for n/2 = 6m. The greatest common
divisor of any two of the three factors from the right–hand side of
relation (3.2) above is 2. [2, Lemma 3] shows that F3m has at least
ω(3m) > 3 distinct odd prime factors appearing in its factorization
at an odd exponent. If L3m = � or 2�, we then get m ∈ {1, 2}, so
n ∈ {12, 24}, and none leads to a convenient solution. So, L3m has
(at least) an odd prime factor appearing at an odd exponent in its
factorization. Similarly, if L6m = � or 2�, then m = 1, leading to
n = 12, which is not convenient. Thus, L6m also has (at least) an
odd prime factor appearing at an odd exponent in its factorization.
But this shows that Fn has at least five prime factors appearing at
an odd exponent in its factorization, so 25 | d(Fn) | Fn, which is a
contradiction.

From now on, we assume that a > 5 is such that 2a‖Fn. Then n =
2a−2 · 3m, where m is odd. To continue, we need the following lemma.

Lemma 3.1. Let m = 12k, where k is a positive integer. Then Lm has at

least two odd primes appearing with odd exponent in its prime factorization.

Proof. Assume that this is not so. Note that 2‖Lm. Then Lm = 2δ�,
where δ ∈ {1, p} with p a prime. We use the formula L12k = L4k(L

2
4k − 3),

which is the third of the formulae (3.1) with n = 4k. The two factors on the
right of the previous equality are coprime, for if q is some common prime factor
of them, then q | L4k and q | L2

4k − 3, so q | 3, therefore q = 3. Hence, 3 | L4k,
which is false because the only numbers of the form Lt which are multiples of
3 are for t ≡ 2 (mod 4). Thus, from L4k(L

2
4k − 2) = 2δ�, we get that either

L4k = � or 2�, or L2
4k − 3 = �, or 2�. None of the two equations of the first

possibility can hold by the results from [3,4]. As for the pair of equations of the
second possibility, observe that the first one leads to a positive integer solution
(x, y) of the equation x2−3 = y2, or (x−y)(x+y) = 3, whose only solution is
(x, y) = (2, 1), which is not convenient because L4k > 2, whereas the second
one leads to a positive integer solution (x, y) of the equation x2 − 3 = 2y2,
which reduced modulo 3 gives x2 ≡ 2 (mod 3), which is also impossible. This
completes the proof of the lemma.

We continue the proof of Theorem 1.2. We assume next that m = 1, so
n = 2a−2 · 3 for some a > 5. One can check that both a = 5 and a = 6
for which n = 24 and n = 48, respectively, are convenient solutions to our
problem, but that a = 7 and a = 8 for which n = 96 and n = 192, respectively,
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are not convenient solutions. For a > 9, write

(3.3) Fn = F3L6L12L24 · · ·L2a−3
·3,

by repeated applications of the first relation (3.1). The greatest common
divisor of any two factors appearing in the right–hand side of the above
relation (3.3) is 2. The number L2i·3 has at least two odd prime factors
appearing at odd exponents in its factorization; hence in the factorization
of Fn, for all i = 2, . . . , a − 3, by Lemma 3.1. Thus, Fn has at least
2(a − 4) = 2a − 8 > a odd distinct primes appearing at odd exponents in
its factorization. Hence, d(Fn) is divisible with 2a+1, a contradiction.

Next assume that n = 2a−2 · 3m, where m > 1 is odd. Now write

(3.4) Fn = F3mL3mL6mL12m · · ·L2a−3m,

again by repeated applications of the first relation (3.1). Again any two of
the factors appearing on the right–hand side of the above relation (3.4) have
greatest common divisor 2. By Lemma 3.1, the numbers L2i·3m have each at
least two odd primes appearing at odd exponents in their factorization; hence
in the factorization of Fn. Further, none of F3m, L3m, and L6m is of the form
� or 2� because m > 1 is odd. Hence, each one of these three numbers has at
least one odd prime appearing at an odd exponent in its factorization; hence
in the factorization of Fn. Thus, Fn has at least 3 + 2(a − 4) = 2a − 5 odd
prime factors appearing at odd exponents in the factorization of Fn. If a > 5,
then 2a− 5 > a, so d(Fn) is divisible by 2a+1, a contradiction. If a = 5, then
2a − 5 = 5, but in this case also the prime 2 appears with an odd exponent
in the factorization of Fn (namely with the exponent 5), so in fact d(Fn) is
divisible by 26, again a contradiction.

This finishes the proof of Theorem 1.2.
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There are no multiply–perfect Fibonacci numbers, Integers 11A (2011), A7.
[3] J. H. E. Cohn, Fibonacci square numbers, etc., Fibonacci Quarterly 2 (1964), 109–113.
[4] J. H. E. Cohn, Lucas and Fibonacci numbers and some Diophantine equations, Proc.

Glasgow Math. Assoc. 7 (1965), 24–28.



ON THE NUMBER OF DIVISORS OF n! AND OF THE FIBONACCI NUMBERS 293
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