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EXCHANGE RINGS WITH MANY UNITS

Huanyin Chen

Hangzhou Normal University, China

Abstract. A ringR satisfies Goodearl-Menal condition provided that
for any x, y ∈ R, there exists a u ∈ U(R) such that x−u, y−u−1

∈ U(R). If
R/J(R) is an exchange ring with primitive factors artinian, then R satisfies
Goodearl-Menal condition if, and only if it has no homomorphic images
Z/2Z,Z/3Z, M2

(

Z/2Z
)

. Exchange rings satisfying the primitive criterion
are also studied.

1. Introduction

A ring R is said to have unit 1-stable range if aR + bR = R implies
there exists a u ∈ U(R) such that a + bu ∈ U(R), where U(R) denotes the
group of all invertible elements in R. If R has unit 1-stable range, then
K1(R) ∼= U(R)/V (R), where V (R) = {(1+ab)(1+ba)−1 | 1+ab ∈ U(R)} (cf.
[9, Theorem 1.2]). Also we note that K2(R) is generated by < a, b, c >∗ if R
is a commutative ring having unit 1-stable range (cf. [11]). In [6], Goodearl
and Menal introduced a simple condition:

For any x, y ∈ R, there exists a u ∈ U(R) such that x− u, y − u−1 ∈ U(R).

They discovered that this condition supplied for many classes of rings having
unit 1-stable range. As is well known, such condition coincides with unit
1-stable range for any unital complex C∗-algebra (see [6, Theorem 4.1]).
This condition was also investigated in [3–6]. We say that a ring R
satisfies Goodearl-Menal condition provided that such condition holds. In
particular, Goodefroid observed that any topological ring R for which the
group of units is open and dense in R satisfies Goodearl-Menal condition.
If R satisfies Goodearl-Menal condition, by [9, Theorem 1.2 and Theorem
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1.3], the natural map U(R)ab → K1(R) is an isomorphism. Furthermore,
U(R)ab ∼= GLn(R)/En(R) for any n ≥ 2 (see [6, Theorem 1.4]).

A ring R is said to be an exchange ring provided that for any a ∈ R,
there exists an idempotent e ∈ Ra such that 1 − e ∈ R(1 − a). The class of
exchange rings is very large. It includes regular rings, π-regular rings, strongly
π-regular rings, semiperfect rings, left or right continuous rings, clean rings,
and unit C∗-algebras of real rank zero. Such rings have been extensively
studied by many authors (cf. [1–2], [7], [10] and [13–14]). For general
theory of exchange rings, we refer the reader to [12]. In [13, Theorem 1],
Yu proved that every exchange ring with artinian primitive factors has stable
range one. If R/J(R) is an exchange ring with primitive factors artinian,
we prove that R satisfies Goodearl-Menal condition if, and only if it has no
homomorphic images Z/2Z,Z/3Z,M2

(

Z/2Z
)

. Exchange rings satisfying the
primitive criterion are also studied.

Throughout, all rings are associative with an identity and all right R-
modules are unital. Mn(R) denotes the ring of all n × n matrices over R,
GLn(R) denotes the n-dimensional general linear group of R. We use |S| to
stands for the cardinal number of the set S.

2. Division rings

In this section, we investigate Goodeal-Menal condition for the matrix
rings over a division ring, which will be used in the sequel. A Morita context
(A,B,M,N, ψ, φ) consists of two rings A,B, two bimodules ANB,B MA and
a pair of bimodule homomorphisms ψ : N

⊗

B

M → A and φ : M
⊗

A

N → B

which satisfy the following associativity: ψ
(

n
⊗

m
)

n′ = nφ
(

m
⊗

n′
)

and

φ
(

m
⊗

n
)

m′ = mψ
(

n
⊗

m′
)

for any m,m′ ∈M,n, n′ ∈ N . These conditions
insure that the set T of generalized matrices

(

a n
m b

)

a ∈ A, b ∈ B,m ∈M,n ∈ N

will form a ring, called the ring of the Morita context. The class of the rings
of Morita contexts includes all 2 × 2 matrix rings and all triangular matrix
rings. We start by the following elementary result.

Lemma 2.1. If A and B satisfy Goodearl-Menal condition, then so does
T .

Proof. Let
(

a1 n1

m1 b1

)

,

(

a2 n2

m2 b2

)

∈ T.

Then there exist some a ∈ U(A) and b ∈ U(B) such that a1 − a = u1 ∈
U(A), 1A − a2a = v1 ∈ U(A),

(

b1 − φ(m1u
−1
1

⊗

n1)
)

− b = u2 ∈ U(B) and
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1B −
(

φ(m2av
−1
1

⊗

n2) + b2
)

b = v2 ∈ U(B). One easily checks that
(

a1 n1

m1 b1

)

−

(

a 0
0 b

)

=

(

u−1
1 + u−1

1 ψ(n1u
−1
2

⊗

m1u
−1
1 ) −u−1

1 n1u
−1
2

−u−1
2 m1u

−1
1 u−1

2

)−1

and

1T −

(

a2 n2

m2 b2

)(

a 0
0 b

)

=

(

v−1
1 + ψ(−v−1

1 n2bv
−1
2

⊗

−m2av
−1
1 ) −v−1

1 n2bv
−1
2

−v−1
2 m2av

−1
1 v−1

2

)−1

,

and therefore we complete the proof.

Theorem 2.2. Let A and B be right R-modules. If EndR(A) and
EndR(B) satisfy Goodearl-Menal condition, then so does EndR

(

A⊕B
)

.

Proof. Let e : A ⊕ B → A ⊕ B given by e(a + b) = a for any a ∈
A, b ∈ B. Then eEndR

(

A ⊕ B
)

e ∼= EndR
(

e(A⊕ B)
)

∼= EndR(A). Likewise,
(

1A⊕B − e
)

EndR
(

A ⊕ B
)(

1A⊕B − e
)

∼= EndR(B). As is well known, the
endomorphisms of the direct sum are given by a suitable Morita context.
Thus, we get

EndR
(

A⊕B
)

∼=

(

eEndR
(

A⊕B
)

e eEndR
(

A⊕B
)

(1− e)
(1− e)EndR

(

A⊕B
)

e (1− e)EndR
(

A⊕B
)

(1 − e)

)

.

By hypothesis and Lemma 2.1, EndR
(

A ⊕ B
)

satisfies Goodearl-Menal
condition.

Let e ∈ R be an idempotent. If eRe and (1− e)R(1− e) satisfy Goodearl-
Menal condition, it follows from Theorem 2.2 that R satisfies Goodearl-Menal
condition. The converse is not true. For instance, choosing R =M3(Z2

)

, and
e = diag(1, 0, 0). Then R satisfies Goodeal-Menal condition, but eRe ∼= Z2

does not satisfy such condition.

Corollary 2.3. A ring R satisfies Goodearl-Menal condition if, and only
if so does the ring TMn(R) of all n× n upper triangular matrix over R.

Proof. ⇐: This is obvious.
⇒: By Theorem 2.2 and induction, we complete the proof.

A ring R is unit-regular provided that for any x ∈ R, there exists a
u ∈ U(R) such that x = xux, e.g., every division ring and the endomorphism
ring of any finite-dimensional vector space over a division ring.
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Lemma 2.4. Let R be a unit-regular ring, and let n ∈ N. Then Mn(R)
satisfies Goodearl-Menal condition if, and only if for any X ∈ Mn(R) and
diagonal matrix Y ∈Mn(R), there exists a U ∈ GLn(R) such that X−U, Y −
U−1 ∈ GLn(R).

Proof. ⇒: This is an instance of the definition.
⇐: For any X,Y ∈Mn(R), there exist U, V ∈ GLn(R) such that UXV =

diag(x1, · · · , xn) for some x1, · · · , xn ∈ R. By hypothesis, we have some
W ∈ GLn(R) such that diag(x1, · · · , xn) − W,V Y U − W−1 ∈ GLn(R).

Thus, A− U−1WV −1, Y −
(

U−1WV −1
)−1

∈ GLn(R), as required.

It is directly verified that Z/2Z and Z/3Z do not satisfy Goodearl-Menal
condition. Choose

A =

(

0 0
1 0

)

, B =

(

0 0
0 1

)

∈M2

(

Z/2Z
)

.

For any U ∈ GL2

(

Z/2Z
)

, we can check that A−U 6∈ GL2

(

Z/2Z
)

orB−U−1 6∈

GL2

(

Z/2Z
)

. Thus, M2

(

Z/2Z
)

does not satisfy Goodearl-Menal condition. It
is worth noting that the Goodearl-Menal condition is obviously preserved in
homomorphic images.

Proposition 2.5. Let D be a division ring. Then Mn(D) satisfies
Goodearl-Menal condition if n = 1, D 6∼= Z/2Z,Z/3Z; or n = 2, D 6∼= Z/2Z; or
n ≥ 3.

Proof. It is proved by a computer in Microsoft Visual C++ that
M3

(

Z/2Z
)

,M4

(

Z/2Z
)

, M5

(

Z/2Z
)

, M2

(

Z/3Z
)

and M3

(

Z/3Z
)

satisfy Good-
earl-Menal condition.

Let n ≥ 2. In view of Theorem 2.2, M3n

(

Z/2Z
)

and M3(n−1)

(

Z/2Z
)

satisfy Goodearl-Menal condition. Clearly, we see that 3n + 1 = 3(n −
1) + 4, 3n + 2 = 3(n − 1) + 5. According to Theorem 2.2, M3n+1

(

Z/2Z
)

and M3n+2

(

Z/2Z
)

(n ∈ N) satisfy Goodearl-Menal condition. Consequently,

Mn

(

Z/2Z
)

(n ≥ 3) satisfies Goodearl-Menal condition.

By virtue of Theorem 2.2,M2n

(

Z/3Z
)

satisfies Goodearl-Menal condition.

Since 2n + 1 = 2(n − 1) + 3, analogously, M2n+1

(

Z/3Z
)

satisfies Goodearl-

Menal condition. Thus,Mn

(

Z/3Z
)

(n ≥ 2) satisfies Goodearl-Menal condition.
One easily checks that every division ring with at least 4 elements satisfies

Goodearl-Menal condition. Therefore we complete the proof by Theorem 2.2.

3. Exchange rings with primitive factors artinian

Lemma 3.1. Let R be a ring. Then R satisfies Goodearl-Menal condition
if, and only if for any x, y ∈ R, there exists a u ∈ U(R) such that (x−u)(yu−
1) ∈ U(R).
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Proof. ⇒: It is clear.
⇐: Assume that ab = 1. Then there exists a u ∈ U(R) such that (b −

u)(au − 1) = 1. Write v = b − u and w = a − u−1. Then vwu = 1 and
av = a(b− u) = 1− au = −wu, and so a = −wuwu. Thus,

ba = (−v2)(−wuwu)ba = (−v2)(ab)(−wuwu) = (−v2)(−wuwu) = 1.

That is, R is directly finite, as required.

Theorem 3.2. Let R/J(R) be an exchange ring whose primitive factors
are artinian. Then R satisfies Goodearl-Menal condition if, and only if it does
not admit Z/2Z,Z/3Z, M2

(

Z/2Z
)

as homomorphic images.

Proof. One direction is obvious by the observation on quotients of rings
with Goodearl-Menal condition.

Conversely, letting S = R/J(R), assume that there exist some x, y ∈ S
such that (x−u)(yu−1) 6∈ U(S) for any u ∈ U(S). Let Ω be the set of all ideals
I of S such that (x−u)(yu−1) is not a unit modulo I for any u+I ∈ U(S/I).
Clearly, Ω 6= ∅. Choose an ascending chain A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · in Ω.

Set M =
∞
⋃

i=1

Ai. Then M is an ideal of S. Assume that M is not in Ω. We

have u +M ∈ U(S/M) such that (x − u)(yu − 1) +M ∈ U(S/M). So there
are positive integers ni(1 ≤ i ≤ 4) such that

(x− u)(yu− 1)s− 1 ∈ An1
, s(x− u)(yu− 1)− 1 ∈ An2

,

ut− 1 ∈ An3
and tu− 1 ∈ An4

for some s, t ∈ S. Let n = max{n1, n2, n3, n4}. Then (x− u)(yu− 1) ∈
U(S/An) for u + An ∈ U(S/An), a contradiction. This implies that M ∈ Ω.
By using Zorn’s Lemma, there exists an ideal Q of S such that it is maximal
in Ω.

Set T = S/Q. If J(T ) 6= 0, then J(T ) = K/Q for some K % Q. Clearly,
T/J(T ) ∼= S/K. By the maximality of Q, there is some (v + Q) + J(T ) ∈
U
(

T/J(T )
)

such that
(

(x − v)(yv − 1) +Q
)

+ J(T ) ∈ U
(

T/J(T )
)

.

Clearly, v +Q ∈ U(S/Q). Further, we see that (x − v)(yv − 1) +Q ∈ U(T ).
This gives a contradiction, and so J(S/Q) = 0.

Moreover, S/Q is an indecomposable ring. In view of [14, Lemma 3.7],
S/Q ∼= Mn(D) for a division ring D. Since S has no isomorphic images
Z/2Z,Z/3Z,M2

(

Z/2Z
)

, we have that |D| = 2, n ≥ 3 or |D| = 3, n ≥ 2 or
|D| ≥ 4. In view of Proposition 2.5, S/Q satisfies Goodearl-Menal condition.

Thus, we have w + Q ∈ U(S/Q) such that (x− w)(yw − 1) ∈ U(S/Q), a
contradiction. According to Lemma 3.1, S satisfies Goodearl-Menal condition.
For any x, y ∈ R, we can find some w ∈ R/J(R) such that x − u, x − u−1 ∈
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U
(

R/J(R)
)

. Clearly, u ∈ U(R). Further, x − u, y − u−1 ∈ U(R). Therefore
R satisfies Goodearl-Menal condition.

A ring R is said to be strongly π-regular provided that for any x ∈ R,
there exists some n ∈ N such that xn ∈ xn+1R.

Corollary 3.3. Let R/J(R) be a strongly π-regular ring whose primitive
factors are artinian. Then R satisfies Goodearl-Menal condition if, and only
if it does not admit Z/2Z,Z/3Z, M2

(

Z/2Z
)

as homomorphic images.

Proof. Clearly, R/J(R) is an exchange ring, and so the result follows
by Theorem 3.2.

Recall that a ring R is semilocal provided that R/J(R) is artinian. Let
R = {m

n
| 2, 3 ∤ n, (m,n) = 1,m, n ∈ Z}. Then R is semilocal with only two

maximal ideals 2R and 3R. In this case, R/J(R) an exchange ring whose
primitive factors are artinian. But R is not an exchange ring. In fact, R has
only two idempotents, but R/J(R) ∼= Z2 ⊕ Z3 has four idempotents, and so
idempotents can not be lifted modulo J(R).

Corollary 3.4. Let R be a semilocal ring. Then R satisfies Goodearl-
Menal condition if, and only if it does not admit Z/2Z,Z/3Z,M2

(

Z/2Z
)

as
homomorphic images.

Proof. Since R is semilocal, R/J(R) is artinian. Thus, R/J(R) is an
exchange ring with all primitive factors artinian. Therefore we complete the
proof by Theorem 3.2.

Corollary 3.5. Let A be an artinian right R-module. If 1
2 ,

1
3 ∈ R, then

EndR(A) satisfies Goodearl-Menal condition.

Proof. Let S = EndR(A). Then S is semilocal, by the Camps-Dicks
theorem. Construct an R-morphism ϕ : A → A given by ϕ(a) = a · 1

2 for

any a ∈ A. Then ϕ ∈ AutR(A), and so 1
2 ∈ S. Likewise, 1

3 ∈ S. If there

exists an ideal I of S such that S/I ∼= Z/2Z or Z/3Z or M2

(

Z/2Z
)

, then
1
2 ,

1
3 ∈ S/I. This gives a contradiction. In view of Corollary 3.4, EndR(A)

satisfies Goodearl-Menal condition.

Recall that a ring R is of bounded index provided that there exists n ∈ N
such that xn = 0 for any nilpotent x ∈ R.

Corollary 3.6. Let R/J(R) be an exchange ring of bounded index.
Then R satisfies Goodearl-Menal condition if, and only if it does not admit
Z/2Z,Z/3Z,M2

(

Z/2Z
)

as homomorphic images.

Proof. By virtue of [13, Theorem 3], R/J(R) is an exchange ring with
primitive factors artinian. Thus, we obtain the result from Theorem 3.2.
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Example 3.7. Let R = k[x]/(x2) = {a + bt | a, b ∈ k, t2 = 0} where k
is a field of characteristic 5. Suppose a + bt ∈ R. If a 6= 0, then (a + bt)5 =
(a + bt)6(a − bt)a−2. If a = 0, then (a + bt)2 = (a + bt)3. Therefore R is a
strongly π-regular ring. Assume that (a+ bt)n = 0 in R. Then (a+ bt)5n = 0,

hence a5n =
(

(a + bt)5
)n

= 0. So a = 0, and then (a + bt)5 = a5 = 0. That

is, R is a strongly π-regular ring of bounded index 5. Clearly, 1
3! ∈ R. Hence,

R is an exchange ring of bounded index. In addition, it has no homomorphic
images Z/2Z,Z/3Z,M2

(

Z/2Z
)

. In view of Corollary 3.6, R satisfies Goodearl-
Menal condition.

A ring R is a right (left) quasi-duo if every maximal right (left) ideal is a
two-sided ideal.

Corollary 3.8. Let R be a right (left) quasi-duo exchange ring. Then
R satisfies Goodearl-Menal condition if, and only if it does not admit Z/2Z
and Z/3Z as homomorphic images.

Proof. ⇒: In this case, R/J(R) is abelian, and so it is clear as in the
proof of Theorem 3.2.

⇐: Since R is a right (left) quasi-duo exchange ring, R/J(R) is an
exchange ring with all idempotents central. Similarly to [13, Theorem 6],
R/J(R) is an exchange ring of bounded index 1. By virtue of Corollary 3.6,
R satisfies Goodearl-Menal condition.

Let R/J(R) be an exchange ring with all idempotents central. Analogo-
usly, we deduce that R satisfies Goodearl-Menal condition if, and only if it
does not admit Z/2Z and Z/3Z as homomorphic images.

Proposition 3.9. Let R/J(R) be an exchange ring whose primitive
factors are artinian. Then Mn(R) satisfies Goodearl-Menal condition for all
n ≥ 3.

Proof. Let S = Mn

(

R/J(R)
)

(n ≥ 3). Then S is an exchange ring
with all primitive factors artinain. If there exists an ideal I of S such that
S/I ∼= Z/2Z,Z/3Z,M2

(

Z/2Z
)

, then we have an idealK/J(R) of R/J(R) such

that Mn

(

R/K
)

∼= Z/2Z,Z/3Z,M2

(

Z/2Z
)

. As
∣

∣Mn

(

R/K
)∣

∣ ≥ 2n
2

≥ 512,

Mn

(

R/K
)

≇ Z/2Z,Z/3Z,M2

(

Z/2Z
)

. Hence, S has no homomorphic images

Z/2Z,Z/3Z,M2

(

Z/2Z
)

. According to Theorem 3.2, S satisfies Goodearl-

Menal condition. Clearly, S ∼=Mn(R)/J
(

Mn(R)
)

. From this, we deduce that
Mn(R) satisfies Goodearl-Menal condition, as asserted.

Corollary 3.10. Let R be a semilocal ring. Then Mn(R) satisfies
Goodearl-Menal condition for all n ≥ 3.

Proof. Since R is semilocal, R/J(R) is an exchange ring with all
primitive factors artinian. The result follows from Proposition 3.9.
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If G is a group and [G,G] its commutator subgroup, then Gab stands for
G/[G,G]. If R satisfies Goodearl-Menal condition, then K1(R) ∼= U(R)ab.
Let R = M2(Z/2Z

)

. We note that K1(R) ≇ U(R)ab. Clearly, K1(R) ∼=
Z/2Z ∼= {1}. It is easy to verify that

U(R) =

{(

0 1
1 0

)

,

(

0 1
1 1

)

,

(

1 0
0 1

)

,

(

1 0
1 1

)

,

(

1 1
0 1

)

,

(

1 1
1 0

)}

,

[

U(R), U(R)
]

=

{(

1 0
0 1

)

,

(

1 1
1 0

)

,

(

0 1
1 1

)}

.

Thus, we see that | U(R)ab | = 2, and so K1(R) ≇ U(R)ab. But K1(R) ∼=
U(R)ab if R = Mn

(

Z/2Z
)

(n ≥ 3). In general, K1(R) ∼= GLn(R)
ab(n ≥

3) if R/J(R) is an exchange ring with primitive factors artinian, e.g., R is
semilocal. This is an immediate consequence of Proposition 3.9.

Let S(R) be the nonempty set of all ideals of a ring R generated by central
idempotents. By Zorn’s Lemma, S(R) contains maximal elements. If P is a
maximal element of the set S(R), we say that R/P is a Pierce stalk of R.

Theorem 3.11. Let R be an exchange ring whose Pierce stalks are of
bounded index. Then R satisfies Goodearl-Menal condition if, and only if it
does not admit Z/2Z,Z/3Z, M2

(

Z/2Z
)

as homomorphic images.

Proof. One direction is clear. Conversely, letting x, y ∈ R. Let

f1(X1, Y1, X2, Y2, X3, Y3) = 1− (X1 −X2)X3,

f2(X1, Y1, X2, Y2, X3, Y3) = 1−X3(X1 −X2),

f3(X1, Y1, X2, Y2, X3, Y3) = 1− (Y1 − Y2)Y3,

f4(X1, Y1, X2, Y2, X3, Y3) = 1− Y3(Y1 − Y2),

f5(X1, Y1, X2, Y2, X3, Y3) = 1−X2Y2,

f6(X1, Y1, X2, Y2, X3, Y3) = 1− Y2X2

be the polynomials in noncommutative indeterminate X1, Y1, X2, Y2, X3, Y3.
Let R/P be an arbitrary Pierce stalk of R. Then R/P is an exchange ring of
bounded index. This implies that R/P is an exchange ring with all primitive
factors artinian. It is easy to check that

(

R/P
)

/J
(

R/P
)

is an exchange ring
whose primitive factors are artinian. By hypothesis, it is not easy to show
that R/P does not admit Z/2Z,Z/3Z,M2

(

Z/2Z
)

as homomorphic images.
According to Theorem 3.2, R/P satisfies Goodearl-Menal condition. Thus,
we can find a u ∈ U(R/P ) such that x− u, y − u−1 ∈ U(R/P ). Set v = u−1.
Then we have some s, t, c, d ∈ R/P such that

1− (x− u)s = 0, 1− s(x− u) = 0, 1− (y − v)t = 0,

1− t(y − v) = 0, 1− uv = 0, 1− vu = 0.
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This means that
f1(x, y, u, v, s, t) = 1− (x− u)s,

f2(x, y, u, v, s, t) = 1− s(x− u),

f3(x, y, u, v, s, t) = 1− (y − v)t,

f4(x, y, u, v, s, t) = 1− t(y − v),

f5(x, y, u, v, s, t) = 1− uv,

f6(x, y, u, v, s, t) = 1− vu.

In view of [12, Lemma 11.4], there exist some α, β, γ, δ ∈ R such that each
fi(x, y, α, β, γ, δ) = 0. As a result, we deduce that x − γ, y − γ−1 ∈ U(R).
Therefore R satisfies Goodearl-Menal condition.

Proposition 3.12. Let R be a exchange ring ring whose Pierce stalks are
right (left) quasi-duo. Then R satisfies Goodearl-Menal condition if, and only
if it does not admit Z/2Z,Z/3Z,M2

(

Z/2Z
)

as homomorphic images.

Proof. Let x, y ∈ R. Construct the polynomials f1, · · · , f6 as in
Theorem 3.11. Let R/P be an arbitrary Pierce stalk of R. Then R/P
is a right (left) quasi-duo exchange ring. In view of Corollary 3.8, R/P
satisfies Goodearl-Menal condition. As in the proof of Theorem 3.11, there
exist some α, β, γ, δ ∈ R such that each fi(x, y, α, β, γ, δ) = 0. Consequently,
x− γ, y − γ−1 ∈ U(R), as required

A commutative ring R satisfies the primitive criterion if for each
polynomial f(x) = a0+a1x+· · ·+anxn (n ≥ 0) with a0R+· · ·+anR = R, i.e.,
f(x) ∈ R[x] is primitive, then there exists an α ∈ R such that f(α) ∈ U(R)
(cf. [8]). As is well known, every commutative ring satisfying the primitive
criterion satisfies Goodearl-Menal condition. If R/J(R) is a commutative
exchange ring, it follows that R satisfies Goodearl-Menal condition if, and
only if |R/M | ≥ 4 for all maximal ideals M of R. Explicitly, we can derive
the following.

Proposition 3.13. Let R/J(R) be a commutative exchange ring. Then
the following are equivalent:

(1) R satisfies the primitive criterion.
(2) R/M is an infinite field for all maximal ideals M of R.

Proof. (1) ⇒ (2) Suppose that R satisfies the primitive criterion and
M is a maximal ideal of R. Then R/M is a field. Assume that R/M =
{x1, · · · , xn} is a finite field. Let f(x) = (x − x1) · · · (x − xn) ∈ R[x]. Then
f(x) is primitive; hence, there exists some α ∈ R such that f(α) ∈ U(R).
This implies that f(α) = (α− x1) · · · (α − xn) ∈ U(R/M), and so α 6∈ R/M .
This gives a contradiction. Therefore R/M is an infinite field.

(2) ⇒ (1) If R/J(R) satisfies the primitive criterion, then so does R.
Thus, without loss of the generality, we may assume that R is a commutative
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exchange ring. Assume that R doesn’t satisfy the primitive criterion. Then
there exists a primitive f(x) = a0 + a1x+ · · ·+ anx

n such that f(α) 6∈ U(R)
for all α ∈ R. Let Ω be the set of all the ideals A of R such that f(α) =
a0 + a1α+ · · ·+ anαn 6∈ U(R/A) for all α ∈ R. Clearly, Ω 6= ∅.

Given any ascending chain A1 ⊆ A2 ⊆ · · · ⊆ Ak ⊆ · · · in Ω, we set

M =
∞
⋃

i=1

Ai. Then M is an ideal of R. If M is not in Ω, then there exists

α ∈ R such that f(α) ∈ U(R/M). Hence, we have some r ∈ R such that
f(α)r−1 ∈M . Thus, we can find positive integers n such that f(α)r−1 ∈ An;

hence, f(α) ∈ U(R/An). This gives a contradiction. Thus, Ω is inductive. By
using Zorn’s Lemma, we have an ideal Q of R such that Q is maximal in Ω.
Let S = R/Q. The maximality of Q ∈ Ω implies that S is indecomposable
as a ring. If J(S) 6= 0, we may assume that J(S) = N/Q with Q $ N . By

the maximality of Q, there exists some α ∈ R such that f(α) ∈ U(R/N).
Since S/J(S) ∼= R/N , we may assume that f(α) ∈ U

(

S/J(S)
)

. As units lift

modulo the Jacobson radical of S, we see that f(α) ∈ U(R/Q), and yields a
contradiction. This implies that J(S) = 0, so S is an indecomposable ring
with J(S) = 0. Since R is a commutative exchange ring, S is simple artinian.
That is, S is a field. We infer that Q is a maximal ideal of R, and so R/Q is
an infinite field. Thus, we can find some β ∈ R such that f(β) ∈ U(R/Q), a
contradiction. Therefore R satisfies the primitive criterion.

Corollary 3.14. Let R be a commutative exchange ring. Then the
following are equivalent:

(1) R satisfies the primitive criterion.
(2) R/M is an infinite field for all maximal ideals M of R.

Proof. In view of [12, Theorem 29.2], R/J(R) is an exchange ring.
Therefore we complete the proof by Proposition 3.13.

As an immediate consequence, we claim that R satisfies the primitive
criterion if and only if R/M is an infinite field for all maximal ideals M of R
if R is generalized n-like (n ≥ 2), i.e., (xy)n − xyn − xny + xy = 0 for any
x, y ∈ R. In this case, R/J(R) is a commutative exchange ring, and we are
done.
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