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EXCHANGE RINGS WITH MANY UNITS

HuaNYIN CHEN

Hangzhou Normal University, China

ABSTRACT. A ring R satisfies Goodearl-Menal condition provided that
for any =,y € R, there exists a u € U(R) such that x—u,y—u~! € U(R). If
R/J(R) is an exchange ring with primitive factors artinian, then R satisfies
Goodearl-Menal condition if, and only if it has no homomorphic images
Z/27,Z/3Z, M2(Z/2Z). Exchange rings satisfying the primitive criterion
are also studied.

1. INTRODUCTION

A ring R is said to have unit 1-stable range if aR + bR = R implies
there exists a u € U(R) such that a + bu € U(R), where U(R) denotes the
group of all invertible elements in R. If R has unit 1-stable range, then
Ki(R) 2 U(R)/V(R), where V(R) = {(14ab)(1+ba)~' | 1+abe U(R)} (cf.
[9, Theorem 1.2]). Also we note that K5(R) is generated by < a,b,c >, if R
is a commutative ring having unit 1-stable range (cf. [11]). In [6], Goodearl
and Menal introduced a simple condition:

For any x,y € R, there exists a u € U(R) such that  —u,y —u~' € U(R).

They discovered that this condition supplied for many classes of rings having
unit 1-stable range. As is well known, such condition coincides with unit
1-stable range for any unital complex C*-algebra (see [6, Theorem 4.1]).
This condition was also investigated in [3-6]. We say that a ring R
satisfies Goodearl-Menal condition provided that such condition holds. In
particular, Goodefroid observed that any topological ring R for which the
group of units is open and dense in R satisfies Goodearl-Menal condition.
If R satisfies Goodearl-Menal condition, by [9, Theorem 1.2 and Theorem
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1.3], the natural map U(R)*® — K;(R) is an isomorphism. Furthermore,
U(R)* = GL,(R)/E,(R) for any n > 2 (see [6, Theorem 1.4]).

A ring R is said to be an exchange ring provided that for any a € R,
there exists an idempotent e € Ra such that 1 —e € R(1 — a). The class of
exchange rings is very large. It includes regular rings, m-regular rings, strongly
m-regular rings, semiperfect rings, left or right continuous rings, clean rings,
and unit C*-algebras of real rank zero. Such rings have been extensively
studied by many authors (cf. [1-2], [7], [10] and [13-14]). For general
theory of exchange rings, we refer the reader to [12]. In [13, Theorem 1],
Yu proved that every exchange ring with artinian primitive factors has stable
range one. If R/J(R) is an exchange ring with primitive factors artinian,
we prove that R satisfies Goodearl-Menal condition if, and only if it has no
homomorphic images Z/2Z,7/37, M, (Z/QZ). Exchange rings satisfying the
primitive criterion are also studied.

Throughout, all rings are associative with an identity and all right R-
modules are unital. M, (R) denotes the ring of all n x n matrices over R,
GL,(R) denotes the n-dimensional general linear group of R. We use |S| to
stands for the cardinal number of the set S.

2. DIVISION RINGS

In this section, we investigate Goodeal-Menal condition for the matrix
rings over a division ring, which will be used in the sequel. A Morita context
(A, B, M, N,1,¢) consists of two rings A, B, two bimodules sNpg,5 M4 and
a pair of bimodule homomorphisms ¥y : NQM — Aand ¢ : MQN — B

B A

which satisfy the following associativity: 1 (n@m)n’ = né(m@n’) and
p(m@n)m’ = my(n@m’) for any m,m’ € M,n,n’ € N. These conditions
insure that the set T' of generalized matrices

(a n) ace Abe Bme M,ne N
m b

will form a ring, called the ring of the Morita context. The class of the rings
of Morita contexts includes all 2 x 2 matrix rings and all triangular matrix
rings. We start by the following elementary result.

LEMMA 2.1. If A and B satisfy Goodearl-Menal condition, then so does

T.
aiq ny as U»)
(o 5 ) (e ) er

Then there exist some a € U(A) and b € U(B) such that a1 —a = uy €
U(A),14 — aza = v; € U(A), (by — ¢(miu; " @n1)) —b = us € U(B) and

PROOF. Let
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1p — (qb(mgcwfl R n2) + b2)b = vy € U(B). One easily checks that
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and therefore we complete the proof. O

THEOREM 2.2. Let A and B be right R-modules. If Endr(A) and
Endg(B) satisfy Goodearl-Menal condition, then so does Endr(A ® B).

PROOF. Let e : A® B — A ® B given by e(a + b) = a for any a €
A,b € B. Then eEndr(A ® B)e = Endr(e(A® B)) = Endgr(A). Likewise,
(1,4@3 - e)EndR(A @ B) (1,4@3 - e) >~ Endgr(B). As is well known, the
endomorphisms of the direct sum are given by a suitable Morita context.
Thus, we get

EndR(A@B)g( cEndp(A® B)e eEndr(A® B)(1—e) )

(1—e)Endr(A@® B)e (1—e)Endgr(Aa® B)(1—e)

By hypothesis and Lemma 2.1, EndR(A &) B) satisfies Goodearl-Menal
condition. O

Let e € R be an idempotent. If eRe and (1 —e)R(1 — e) satisfy Goodearl-
Menal condition, it follows from Theorem 2.2 that R satisfies Goodearl-Menal
condition. The converse is not true. For instance, choosing R = M3 (Zg), and
e = diag(1,0,0). Then R satisfies Goodeal-Menal condition, but eRe & Zy
does not satisfy such condition.

COROLLARY 2.3. A ring R satisfies Goodearl-Menal condition if, and only
if so does the ring TM,, (R) of all n x n upper triangular matriz over R.

PROOF. «: This is obvious.
=: By Theorem 2.2 and induction, we complete the proof. O

A ring R is unit-regular provided that for any x € R, there exists a
u € U(R) such that x = zuz, e.g., every division ring and the endomorphism
ring of any finite-dimensional vector space over a division ring.
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LEMMA 2.4. Let R be a unit-regular ring, and let n € N. Then M, (R)
satisfies Goodearl-Menal condition if, and only if for any X € M,(R) and
diagonal matrizY € M, (R), there exists a U € GL,(R) such that X —U,Y —
U~ e GL,(R).

PROOF. =: This is an instance of the definition.
<: For any X,Y € M, (R), there exist U,V € GL,(R) such that UXV =

diag(z1, -+, x,) for some 1, -+ ,x, € R. By hypothesis, we have some
W € GLyn(R) such that diag(z1, -+, x,) — W,VYU — W~! € GL,(R).
Thus, A - U 'WV-LY — (U’lT/VV’l)71 € GL,(R), as required. 0

It is directly verified that Z/27 and Z/3Z do not satisfy Goodearl-Menal
condition. Choose

A<(1) 8)3(8 ?)GMQ(Z/2Z).

For any U € GL3(Z/2Z), we can check that A—U ¢ GL2(Z/2Z) or B-U~! ¢
GL2(Z/2Z). Thus, M3(Z/2Z) does not satisfy Goodearl-Menal condition. It
is worth noting that the Goodearl-Menal condition is obviously preserved in
homomorphic images.

PROPOSITION 2.5. Let D be a division ring. Then My(D) satisfies
Goodearl-Menal condition if n =1,D % Z/27Z,7./37; or n = 2,D % Z/27; or
n > 3.

PROOF. It is proved by a computer in Microsoft Visual C++ that
M3(Z/27), My(Z/2Z), M5(Z/2Z), M2(Z/3Z) and M3(Z/3Z) satisfy Good-
earl-Menal condition.

Let n > 2. In view of Theorem 2.2, M3n(Z/2Z) and M3(n,1)(Z/2Z)
satisfy Goodearl-Menal condition. Clearly, we see that 3n +1 = 3(n —
1) +4,3n +2 = 3(n — 1) + 5. According to Theorem 2.2, Ms,11(Z/2Z)
and M3, 0 (Z/ QZ) (n € N) satisfy Goodearl-Menal condition. Consequently,
M, (Z/2Z)(n > 3) satisfies Goodearl-Menal condition.

By virtue of Theorem 2.2, My, (Z / 3Z) satisfies Goodearl-Menal condition.
Since 2n + 1 = 2(n — 1) + 3, analogously, M2n+1(Z/3Z) satisfies Goodearl-
Menal condition. Thus, M, (Z/3Z)(n > 2) satisfies Goodearl-Menal condition.

One easily checks that every division ring with at least 4 elements satisfies

Goodearl-Menal condition. Therefore we complete the proof by Theorem 2.2.
O

3. EXCHANGE RINGS WITH PRIMITIVE FACTORS ARTINIAN

LEMMA 3.1. Let R be a ring. Then R satisfies Goodearl-Menal condition
if, and only if for any x,y € R, there exists a uw € U(R) such that (v —u)(yu—
1) e U(R).
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PROOF. =: It is clear.
<: Assume that ab = 1. Then there exists a u € U(R) such that (b —
uw)(au —1) = 1. Write v = b—u and w = a — u~!. Then vwu = 1 and

av =a(b—u) =1 — au = —wu, and so a = —wuwu. Thus,
ba = (—v?)(—wuwu)ba = (—v?)(ab)(—wuwu) = (—v?)(—wuwu) = 1.
That is, R is directly finite, as required. O

THEOREM 3.2. Let R/J(R) be an exchange ring whose primitive factors
are artinian. Then R satisfies Goodearl-Menal condition if, and only if it does
not admit Z./27,7./37, Mz (Z/2Z) as homomorphic images.

PROOF. One direction is obvious by the observation on quotients of rings
with Goodearl-Menal condition.

Conversely, letting S = R/J(R), assume that there exist some z,y € S
such that (x—u)(yu—1) € U(S) for any u € U(S). Let  be the set of all ideals
I of S such that (x —u)(yu—1) is not a unit modulo [ for any u+1 € U(S/I).
Clearly, 2 # (). Choose an ascending chain Ay C A C---C A, C--- in Q.

Set M = |J A;. Then M is an ideal of S. Assume that M is not in 2. We

=1
have u+ M € U(S/M) such that (z —u)(yu — 1) + M € U(S/M). So there
are positive integers n;(1 < i < 4) such that

(x—uw)(yu—1)s—1€ A4,,, s(x—u)(yu—1)—1€ A,,,
ut—1€A,, and tu—1€ A4,

for some s,t € S. Let n = max{ni,ng,n3,na}. Then (z —u)(yu—1) €
U(S/Ay,) for u+ A, € U(S/A,), a contradiction. This implies that M € Q.
By using Zorn’s Lemma, there exists an ideal ) of S such that it is maximal
in Q.

Set T'=S/Q. If J(T') # 0, then J(T') = K/Q for some K 2 Q. Clearly,
T/J(T) =2 S/K. By the maximality of @, there is some (v + Q) + J(T) €
U(T/J(T)) such that

((:c —v)(yv —1) +Q) +J(T) e U(T/J(T)).

Clearly, v + Q € U(S/Q). Further, we see that (x —v)(yv — 1) + Q € U(T).
This gives a contradiction, and so J(S/Q) = 0.

Moreover, S/@ is an indecomposable ring. In view of [14, Lemma 3.7],
S/Q = M, (D) for a division ring D. Since S has no isomorphic images
Z/27,7,/37, M3(Z/2Z), we have that |D| = 2,n > 3 or |[D| = 3,n > 2 or
|D| > 4. In view of Proposition 2.5, S/Q satisfies Goodearl-Menal condition.
Thus, we have w + Q € U(S/Q) such that (x —w)(yw —1) € U(S/Q), a
contradiction. According to Lemma 3.1, S satisfies Goodearl-Menal condition.
For any x,y € R, we can find some w € R/J(R) such that T —u,T —u ' €
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U(R/J(R)). Clearly, u € U(R). Further, z — u,y —u~' € U(R). Therefore
R satisfies Goodearl-Menal condition. O

A ring R is said to be strongly m-regular provided that for any x € R,
there exists some n € N such that 2" € 2" R.

COROLLARY 3.3. Let R/J(R) be a strongly m-regular ring whose primitive

factors are artinian. Then R satisfies Goodearl-Menal condition if, and only
if it does not admit Z/27,7./37, M, (Z/2Z) as homomorphic images.

PrOOF. Clearly, R/J(R) is an exchange ring, and so the result follows
by Theorem 3.2. O

Recall that a ring R is semilocal provided that R/J(R) is artinian. Let
R={212,3fn,(m,n)=1,m,n € Z}. Then R is semilocal with only two
maximal ideals 2R and 3R. In this case, R/J(R) an exchange ring whose
primitive factors are artinian. But R is not an exchange ring. In fact, R has
only two idempotents, but R/J(R) = Zs @ Zs has four idempotents, and so
idempotents can not be lifted modulo J(R).

COROLLARY 3.4. Let R be a semilocal ring. Then R satisfies Goodearl-
Menal condition if, and only if it does not admit Z/27,7/3Z, M, (Z/QZ) as
homomorphic images.

PROOF. Since R is semilocal, R/J(R) is artinian. Thus, R/J(R) is an
exchange ring with all primitive factors artinian. Therefore we complete the
proof by Theorem 3.2. O

COROLLARY 3.5. Let A be an artinian right R-module. If %, % € R, then
Endr(A) satisfies Goodearl-Menal condition.

ProOOF. Let S = Endgr(A). Then S is semilocal, by the Camps-Dicks
theorem. Construct an R-morphism ¢ : A — A given by p(a) = a - % for
any a € A. Then ¢ € Autr(A), and so % € S. Likewise, % € S. If there
exists an ideal I of S such that S/I = Z/27Z or Z/3Z or My(Z/2Z), then
%,% € S/I. This gives a contradiction. In view of Corollary 3.4, Endgr(A)
satisfies Goodearl-Menal condition. O

Recall that a ring R is of bounded index provided that there exists n € N

such that ™ = 0 for any nilpotent = € R.

COROLLARY 3.6. Let R/J(R) be an exchange ring of bounded indez.
Then R satisfies Goodearl-Menal condition if, and only if it does not admit
Z./27,7./37, M3(Z/2Z) as homomorphic images.

PROOF. By virtue of [13, Theorem 3], R/J(R) is an exchange ring with
primitive factors artinian. Thus, we obtain the result from Theorem 3.2. O



EXCHANGE RINGS WITH MANY UNITS 301

EXAMPLE 3.7. Let R = k[z]/(z?) = {a + bt | a,b € k,t*> = 0} where k
is a field of characteristic 5. Suppose a + bt € R. If a # 0, then (a + bt)> =
(a+bt)%(a —bt)a=2. If a = 0, then (a + bt)? = (a + bt)?. Therefore R is a
strongly m-regular ring. Assume that (a+bt)" = 0 in R. Then (a+ bt)>™ = 0,
hence a®® = ((a +bt)®)" = 0. So a = 0, and then (a + bt)° = a® = 0. That
is, R is a strongly w-regular ring of bounded index 5. Clearly, % € R. Hence,
R is an exchange ring of bounded index. In addition, it has no homomorphic
images Z/27, 7./3Z, M2(Z/2Z). In view of Corollary 3.6, R satisfies Goodearl-
Menal condition.

A ring R is a right (left) quasi-duo if every maximal right (left) ideal is a
two-sided ideal.

COROLLARY 3.8. Let R be a right (left) quasi-duo exchange ring. Then
R satisfies Goodearl-Menal condition if, and only if it does not admit Z /27
and Z/37 as homomorphic images.

PROOF. =: In this case, R/J(R) is abelian, and so it is clear as in the
proof of Theorem 3.2.

<: Since R is a right (left) quasi-duo exchange ring, R/J(R) is an
exchange ring with all idempotents central. Similarly to [13, Theorem 6],
R/J(R) is an exchange ring of bounded index 1. By virtue of Corollary 3.6,
R satisfies Goodearl-Menal condition. 0

Let R/J(R) be an exchange ring with all idempotents central. Analogo-
usly, we deduce that R satisfies Goodearl-Menal condition if, and only if it
does not admit Z/2Z and Z/3Z as homomorphic images.

PROPOSITION 3.9. Let R/J(R) be an exchange ring whose primitive
factors are artinian. Then M, (R) satisfies Goodearl-Menal condition for all
n > 3.

PROOF. Let S = M,(R/J(R))(n > 3). Then S is an exchange ring
with all primitive factors artinain. If there exists an ideal I of S such that
S/1=7/27,7/3Z, M3(Z/2Z), then we have an ideal K/J(R) of R/J(R) such
that M, (R/K) = Z/22,7,/3Z, Ms(Z/2Z). As |M,(R/K)| > 2%° > 512,
M, (R/K) 2 7/27,7/3Z, My (Z/QZ). Hence, S has no homomorphic images
7/27,7./37,M3(Z/2Z). According to Theorem 3.2, S satisfies Goodearl-
Menal condition. Clearly, S & M, (R)/J(M,(R)). From this, we deduce that
M,,(R) satisfies Goodearl-Menal condition, as asserted. O

COROLLARY 3.10. Let R be a semilocal ring. Then My (R) satisfies
Goodearl-Menal condition for all n > 3.

PROOF. Since R is semilocal, R/J(R) is an exchange ring with all
primitive factors artinian. The result follows from Proposition 3.9. O
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If G is a group and [G, G] its commutator subgroup, then G stands for
G/|G,G]. If R satisfies Goodearl-Menal condition, then K;(R) = U(R)
Let R = M(Z/2Z). We note that K;(R) 2 U(R)*. Clearly, Ki(R) =
7/27 = {1}. It is easy to verify that

rm={ (Vo) (1) oV )G () Ga)h
e ={(o ¥)- (o ) (Y1)}

Thus, we see that | U(R)® | = 2, and so K1(R) 2 U(R)%. But K;(R) =
U(R)® if R = M,(Z/2Z)(n > 3). In general, Ki(R) = GL,(R)"(n >
) if R/J(R) is an exchange ring with primitive factors artinian, e.g., R is
semilocal. This is an immediate consequence of Proposition 3.9.
Let S(R) be the nonempty set of all ideals of a ring R generated by central
idempotents. By Zorn’s Lemma, S(R) contains maximal elements. If P is a
maximal element of the set S(R), we say that R/P is a Pierce stalk of R.

THEOREM 3.11. Let R be an exchange ring whose Pierce stalks are of
bounded index. Then R satisfies Goodearl-Menal condition if, and only if it
does not admit Z/27,7)3Z, Ms (Z/2Z) as homomorphic images.

PROOF. One direction is clear. Conversely, letting x,y € R. Let

fl(X15Y1)X27Yé7X3)}%) =1- (Xl - X2)X37
(X15Y15X27Y727X3;}/3)_1_X3(X1 X2)a
fS(X Y15X27Y27X3;}/3)71*(Y1 YQ)}/37
f4(X1;Y1;X27Y27X3; 3) 1*}/3(}/1*}/2)7
f5(X Y15X27Y27X3; 3)
fo(X1,Y1, X2, Y2, X3,V3) =
be the polynomials in noncommutative indeterminate X1, Y7, Xo, Y5, X3, V3.
Let R/P be an arbitrary Pierce stalk of R. Then R/P is an exchange ring of
bounded index. This implies that R/P is an exchange ring with all primitive
factors artinian. It is easy to check that (R/P)/J(R/P) is an exchange ring
whose primitive factors are artinian. By hypothesis, it is not easy to show
that R/P does not admit Z/27Z,Z/3Z, M(Z/27Z) as homomorphic images.
According to Theorem 3.2, R/P satisfies Goodearl-Menal condition. Thus,
we can find a u € U(R/P) such that Z — u,y —u~! € U(R/P). Set v =u"".
Then we have some s,t,¢,d € R/P such that
1-T—-u)s=0, 1-s(T—u)=0, 1—(g—ov)t=0,
1—tg—v)=0, 1—uv=0, 1—vu=0.
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This means that

1@, 7, u,v,8,t) =1 — (z —u)s,
f2(Z, g, u,v,8,t) =1 — s(x —u),
f3(Z, g, u,v,8,t) =1 — (¥ —v)t,
fa(@, g, u,v,8,t) =1 —t(y — v),
f5(Z, 9, u,v,5,t) =1 —uv,

In view of [12, Lemma 11.4], there exist some «, 3,7v,d € R such that each
filx,y,a,8,7,6) = 0. As a result, we deduce that z — v,y — v~ ! € U(R).
Therefore R satisfies Goodearl-Menal condition. O

PROPOSITION 3.12. Let R be a exchange ring ring whose Pierce stalks are
right (left) quasi-duo. Then R satisfies Goodearl-Menal condition if, and only
if it does not admit Z/27,7./37, My (Z/2Z) as homomorphic images.

PRrROOF. Let z,y € R. Construct the polynomials fi,---, fg as in
Theorem 3.11. Let R/P be an arbitrary Pierce stalk of R. Then R/P
is a right (left) quasi-duo exchange ring. In view of Corollary 3.8, R/P
satisfies Goodearl-Menal condition. As in the proof of Theorem 3.11, there
exist some a, 3,7,0 € R such that each f;(z,y,a,8,7,0) = 0. Consequently,
x—7,y—v"1 € U(R), as required O

A commutative ring R satisfies the primitive criterion if for each
polynomial f(z) = ag+ai1x+---+a,a™ (n > 0) with agR+---+a,R = R, i.e.,
f(z) € R[] is primitive, then there exists an o € R such that f(a) € U(R)
(cf. [8]). As is well known, every commutative ring satisfying the primitive
criterion satisfies Goodearl-Menal condition. If R/J(R) is a commutative
exchange ring, it follows that R satisfies Goodearl-Menal condition if, and
only if |R/M| > 4 for all maximal ideals M of R. Explicitly, we can derive
the following.

PROPOSITION 3.13. Let R/J(R) be a commutative exchange ring. Then
the following are equivalent:

(1) R satisfies the primitive criterion.
(2) R/M is an infinite field for all mazimal ideals M of R.

PROOF. (1) = (2) Suppose that R satisfies the primitive criterion and
M is a maximal ideal of R. Then R/M is a field. Assume that R/M =
{T1, -+ ,Tn} is a finite field. Let f(z) = (x — 1)+ (x — z,) € R[z]. Then
f(z) is primitive; hence, there exists some a € R such that f(a) € U(R).
This implies that f(@) = (@ —77) - (@ — Ty) € U(R/M), and so @ &€ R/M.
This gives a contradiction. Therefore R/M is an infinite field.

(2) = (1) If R/J(R) satisfies the primitive criterion, then so does R.
Thus, without loss of the generality, we may assume that R is a commutative
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exchange ring. Assume that R doesn’t satisfy the primitive criterion. Then
there exists a primitive f(z) = ag + a1z + - - - + anz™ such that f(a) € U(R)
for all @ € R. Let Q be the set of all the ideals A of R such that f(a) =
o+ aia+ -+ a,a” € U(R/A) for all o € R. Clearly, Q # 0.

Given any ascending chain A; C As C --- C A C --- in (), we set
oo

M = | A;. Then M is an ideal of R. If M is not in £, then there exists
i=1

a € R such that f(@) € U(R/M). Hence, we have some r € R such that
f(a)r—1 € M. Thus, we can find positive integers n such that f(a)r—1 € A,;
hence, f(@) € U(R/A,). This gives a contradiction. Thus, Q is inductive. By
using Zorn’s Lemma, we have an ideal @) of R such that @ is maximal in €.
Let S = R/Q. The maximality of @ € € implies that S is indecomposable
as a ring. If J(S) # 0, we may assume that J(S) = N/Q with @ & N. By
the maximality of @, there exists some a € R such that f(@) € U(R/N).
Since S/J(S) = R/N, we may assume that f(@) € U(S/J(S)). As units lift
modulo the Jacobson radical of S, we see that f(@) € U(R/Q), and yields a
contradiction. This implies that J(S) = 0, so S is an indecomposable ring
with J(S) = 0. Since R is a commutative exchange ring, S is simple artinian.
That is, S is a field. We infer that @ is a maximal ideal of R, and so R/Q is
an infinite field. Thus, we can find some 3 € R such that f(8) € U(R/Q), a
contradiction. Therefore R satisfies the primitive criterion. O

COROLLARY 3.14. Let R be a commutative exchange ring. Then the
following are equivalent:

(1) R satisfies the primitive criterion.
(2) R/M ‘s an infinite field for all maximal ideals M of R.

PROOF. In view of [12, Theorem 29.2], R/J(R) is an exchange ring.
Therefore we complete the proof by Proposition 3.13. o

As an immediate consequence, we claim that R satisfies the primitive
criterion if and only if R/M is an infinite field for all maximal ideals M of R
if R is generalized n-like (n > 2), i.e., (zy)" — zy™ — 2™y + 2y = 0 for any
x,y € R. In this case, R/J(R) is a commutative exchange ring, and we are
done.
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