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FINITE p-GROUPS ALL OF WHOSE MAXIMAL
SUBGROUPS, EXCEPT ONE, HAVE ITS DERIVED
SUBGROUP OF ORDER <p

ZVONIMIR JANKO
University of Heidelberg, Germany

ABSTRACT. Let G be a finite p-group which has exactly one maximal
subgroup H such that |H’| > p. Then we have d(G) =2, p =2, H' is a
four-group, G’ is abelian of order 8 and type (4,2), G is of class 3 and the
structure of G is completely determined. This solves the problem Nr. 1800
stated by Y. Berkovich in [3].

We consider here only finite p-groups and our notation is standard (see
[1]). If G is a p-group all of whose maximal subgroups have its derived
subgroups of order < p, then such groups G are characterized in [3, §137].
But there is no way to determine completely the structure of such p-groups.

It is quite surprising that we can determine completely (in terms of
generators and relations) the title groups, where exactly one maximal
subgroup has the commutator subgroup of order > p. We shall prove our
main theorem (Theorem 8) starting with some partial results about the title
groups. However, Propositions 4 and 6 are also of independent interest.

PROPOSITION 1. Let G be a title p-group. Then we have d(G) < 3,
c(G) <3, p? < |G| < p? and G’ is abelian of exponent < p*. Also, G has at
most one abelian mazimal subgroup.

PROOF. Let H be the unique maximal subgroup of G with |H'| > p. This
gives |G| > p?. Let K # L be maximal subgroups of G which are both distinct
from H. We have |K’'| <p, |L'| <pandso K'L’ <Z(G) and |K'L’| < p*. By
a result of A. Mann ([1, Exercise 1.69]), we get |G’ : (K'L’)| < p. This implies
that |G| < p?, G’ is abelian and G is of class < 3. Since K'L’ is elementary
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abelian, we also get exp(G’) < p?. If G would have more than one abelian
maximal subgroup, then (by the above argument) |G’| < p, a contradiction.
Hence G has at most one abelian maximal subgroup.

Note that each nonabelian p-group X has exactly 0,1 or p 4+ 1 abelian
maximal subgroups and in the last case |X'| = p (Exercise 1.6(a) in [1]).
Suppose that d(G) > 4. Then G has at least 1 +p + p? + p? distinct maximal
subgroups and so the set S of maximal subgroups of G with the commutator
group of order p has at least p 4+ p? + p? — 1 elements. Since G’ has at most
p?+p-+1 pairwise distinct subgroups of order p (and the maximum is achieved
if G' = E,3), it follows that there are K # L € S such that K’ = L’. By the
above argument (using a result of A. Mann), we get |G’| = p? and so G’ has
at most p + 1 pairwise distinct subgroups of order p (where the maximum is
achieved if G = E,2). If M € S, then considering G/M’, we see that there
are at most p + 1 elements N € S such that N’ = M’. This gives

p+p*+p*—1<(p+1)% andsop® —p<2 or p(p®—1) <2,

a contradiction. Our proposition is proved. 0

PROPOSITION 2. Let G be a title p-group. Then the subgroup:
Hy = (M’ | M is any maximal subgroup of G with |M’| < p)
is noncyclic and so Hy is elementary abelian of order p* or p3 and Hy < Z(G).

PROOF. Suppose that Hy is cyclic. Then we have |Hp| = p and so |G'| =
p? because (by [1, Exercise 1.69]) |G’ : Ho| < p and Proposition 1 implies
that |G’| > p?. This gives that H' = G’, where H is the unique maximal
subgroup of G with |H’| > p. Counsider the nonabelian factor group G/Hy. In
this case G/Hy has exactly one nonabelian maximal subgroup H/Hj. Since
d(G/Hy) = 2 or 3, the last statement would imply that the nonabelian p-
group G/Hy would have exactly p or p + p? abelian maximal subgroups, a
contradiction (by [1, Exercise 1.6(a)]). O

PROPOSITION 3. Let G be a title p-group. Then we have d(G) = 2.

PROOF. Assume that d(G) = 3 and we use the notation from Proposition

First suppose that Hy = G’ so that G is of class 2 with an elementary
abelian commutator subgroup. For any z,y € G, we get [2P,y] = [z,y]P =1
and this implies that U;(G) < Z(G). It follows ®(G) = U1(G)G’ < Z(G) and
G/®(G) = Eps. Let X be any maximal subgroup of G so that X/®(G) = E,-
and all p 4+ 1 maximal subgroups of X which contain ®(G) are abelian. This
implies |X’| < p. But then each maximal subgroup of G has its derived
subgroup of order < p, contrary to our assumption.

Now assume Hy # G’. In this case Hy 2 E,2, Hy < Z(G) and |G’| = p.
There are exactly p + p? maximal subgroups M; of G such that |M]| < p,
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i=1,2,...,p+p? Since Hy has exactly p + 1 subgroups of order p, it follows
that there exist the indices 7 # j € {1,2,...,p + p®} such that M] = Mj is of
order p. Again by [1, Exercise 1.69] we have |G’ : (M]Mj})| < p and this gives
|G’| < p?, a contradiction. Our proposition is proved. O

PROPOSITION 4. Let G be a two-generator p-group, p > 2, with G' = C,z.
Then each mazximal subgroup of G is nonabelian.

PRrROOF. Assume that G has an abelian maximal subgroup M so that
|M/®(G)| = p. Take an element a € M \ ®(G) and an element b € G\ M
so that we have G = (a,b) and G’ = ([a,b]). Since G’ is cyclic, [1, Theorem
7.1(c)] implies that G is regular. We have b? € ®(G) < M and so [a,bP] = 1.
Hence

(a™'07Pa)b? = ((b~1)*)PP =1 and so (b*)P = bP.
By [1, Theorem 7.2(a)] (about regular p-groups), the last relation gives
((b=1)2b)P = 1 or equivalently [a,b]? = 1, a contradiction. O

REMARK 5. The assumption p > 2 in Proposition 4 is essential. This
shows a 2-group of maximal class and order 16.

PROPOSITION 6. Let G be a two-generator p-group, p > 2, with G' = E,2.
Then G has an abelian mazimal subgroup.

Proor. By [3, Proposition 137.4], each proper subgroup of G has its
derived subgroup of order at most p. Then we may apply [3, Proposition
137.5] and so for each z,y € G, we get [2P,y] = [x,y]? = 1. This gives that
U1(GQ) < Z(G) and therefore we obtain that ®(G) = U1(G)G’ is abelian. Let
M be a maximal subgroup of G which centralizes G’. We have |M : ®(G)| =p
and M centralizes U1(G) and G’ so that ®(G) < Z(M). This implies that M
is abelian and we are done. O

REMARK 7. The assumption p > 2 in Proposition 5 is essential. Let G
ba a faithful and splitting extension of an elementary abelian group of order
8 by a cyclic group of order 4. Then we have d(G) = 2 and G’ 2 E4 but G
has no abelian maximal subgroup.

PROPOSITION 8. Let G be a title p-group and I'y = {Hy,H>,...,Hp, H}
be the set of all mazimal subgroups of G, where |H'| > p. Then G’ is abelian
of order p*, H = E,», H < Z(G) and Hi, Hj, ..., H, are pairwise distinct
subgroups of order p contained in H'. If G = (x,y) for some x,y € G, then
[z,y] € G'\ H' and [z,y] € Z(G) so that G is of class 3. Finally, G/H' is
nonmetacyclic minimal nonabelian and so if a € G\ G’ is such that a? € G,
then a? € H'.

PROOF. Let Hy be the subgroup of G’ as defined in Proposition 2. Then
Hy < Z(G) and Hy is elementary abelian of order p? or p*. Suppose for a
moment that Hy = G’. We have G = (x,y) for some z,y € G and [z,y] € Hy
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so that G/([z,y]) is abelian and G’ = ([z,y]) is of order p, a contradiction.
It follows that Ho # G’ which gives that Hy = E,, |G’ : Hyg| = p and
G' is abelian of order p®. Since d(G/Hp) = 2 and |G'/Hy| = p, it follows
that G/Hp is minimal nonabelian (see [2, Lemma 65.2(a)]). In particular,
we have H' < Hy which together with |[H’| > p implies H' = Hy = E,». If
G/H' is metacyclic, then a result of N. Blackburn (see [1, Lemma 44.1] and
[1, Corollary 44.6]) gives that G is also metacyclic. This is a contradiction
because G’ is noncyclic. Hence G/H' is nonmetacyclic minimal nonabelian so
that [2, Lemma 65.1] gives that G’/H’ is a maximal cyclic subgroup of G/H'.
Thus for each element a € G\ G’ such that a? € G', we get a? € H'.

We have G = (z,y) for some x,y € G. It is clear that ([x,y]) is not normal
in G. Indeed, if {[z,y]) IG, then G/{[x,y]) is abelian and so ([z,y]) = G’ is of
order < p? (noting that exp(G’) < p?), a contradiction. We have proved that
([z,y]) is not normal in G. In particular, [z,y] € Z(G) and so [z,y] € G’ \ H’
and G is of class 3.

Ty ={H, Ho,...,Hp, H} is the set of all maximal subgroups of G, then
we have H; < Hy = H' for all i = 1,2,...,p. We claim that H{, Hy, ..., H,,
are pairwise distinct subgroups of order p. Indeed, if |H;H}| < p for some
i # j, 4,7 € {1,2,...,p}, then a result of A. Mann (see [1, Exercise 1.69])
implies |G’ : (H;H})| < p and so |G'[ < p?, a contradiction. Our proposition
is proved. O

REMARK 9. If X is a two-generator p-group of class 2, then it is well
known that X’ is cyclic. Hence if G is any two-generator p-group, then
G’ /K3(G) is cyclic, where K3(G) = [, G].

ProrosiTioN 10. If G is a title p-group, then p = 2.

PROOF. Assume that p > 2 and we use Proposition 6 together with the
notation introduced there.

First suppose that G’ is not elementary abelian. Then we have o([z, y]) =
p? and ([z,y|P) is a subgroup of order p contained in H’. Let H/, i €
{1,2,...,p}, be such that H] # ([z,y]") which gives G' = H! x ([z,y]). We
consider the factor group G = G/H/. Since d(G) = 2, p > 2, and G’ = C,2, we
may use Proposition 4 saying that each maximal subgroup of G is nonabelian.
But H; = H;/H] is an abelian maximal subgroup of G, a contradiction.

We have proved that G’ is elementary abelian of order p3. Let
{H}, Hj,...,H,, K} be the set of all p + 1 subgroups of order p in H’ and
consider the factor group G/K. All p + 1 maximal subgroups of G/K are
nonabelian, d(G/K) =2, p > 2, and (G/K)" = G'/K = E,2. By Proposition
5, G/K possesses an abelian maximal subgroup, a contradiction. We have
proved that we must have p = 2. O

THEOREM 11. Let G be a p-group with exactly one mazimal subgroup H
such that |H'| > p. Then we have d(G) =2, p =2 and G’ is abelian of order 8
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and type (4,2). Also, [G',G] = Q1 (G') < Z(G), ®(G) = Cq(G') is abelian and
U2(GQ) <Z(Q). Let {Hy,Ha, H} be the set of mazimal subgroups of G. Then
H{ = (z1) and H) = (z2) are both of order 2, (z1,z2) = QU (G') = H = Ey,
d(H) =3 and G1(G’) = (z122). Finally, H is the unique mazimal subgroup of
G which contains an element acting invertingly on G'. We have the following
two possibilities:

(i) d(Hy1) = d(Hz2) = 2 in which case Hy and Hy are minimal nonabelian.
In this case either Hy and Hs are both metacyclic and G is isomorphic
to one of the groups of Theorem 100.3(a) and (b) in [3] or Hy and Hy
are both nonmetacyclic and G is isomorphic to one of the groups of
Theorem 100.3(c) in [3].

(ii) d(Hy) = d(H2) = 3 and the group G is given with:

G ={a,b|[a,b] =v, v =1, [v,a] = 21, [v,b] = 2{29, 2} = 25 = 1, v* = 2129,
[Zlaa] = [Zlvb] = [22,(1] = [ZQab] =1, a2m = Z?Zga b2n = Ziyzg>a
where m > 2, n > 2, and «, B,7,0,¢ € {0,1}. We have here |G| =
Mt > 97 G = (v,21) 2 Cy x Ca , [, G] = (21,22) = W (GF) <
Z(G) and the Frattini subgroup ®(G) = (G',a?,b?) is abelian. Finally,
if e=0, then H = ®(G){ab) and if e = 1, we have H = ®(G)(b).

Conversely, all groups stated in parts (i) and (ii) of this theorem are p-
groups all of whose maximal subgroups, except one, have its derived subgroup
of order < p.

Proor. We use Proposition 6 together with the notation introduced
there. By Proposition 7, we have in addition p = 2.

Let X be a maximal subgroup of G. By Schreier’s inequality ([2, Theorem
A.25.1]), we have

d(X) <1+|G: X|(d(G) — 1),

and so d(X) < 3. Since H' 2 E4 and H' < Z(H), the maximal subgroup H
cannot be two-generator (see Remark 3). It follows that we have d(H) = 3.
Since G is a nonmetacyclic two-generator 2-group, we may use [3, Theorem
107.1] saying that such a group has an even number of two-generator maximal
subgroups. It follows that we have either d(H;) = d(Hz) = 2 or d(H;y) =
d(Hz) = 3.

Set H{ = (z1), H5 = (22) so that we have H' = (z1) x (22) = E4 and
®(G) = H1 N Hy. Since (P(G)) < (z1) N (z2) = {1}, it follows that ®(G) is
abelian and so ®(G) is a maximal normal abelian subgroup of G (containing
G'). Take elements h; € Hy \ ®(G) and hy € Hy \ ®(G) so that we have
G = (hi1,ha), [h1,hs] =v € G'\ H' and o(v) < 4. If v commutes with both
hi and hg, then we get v € Z(G), a contradiction. Without loss of generality
we may assume that [v, hi] # 1 and so we get [v, hi] = 2.
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Assume for a moment that G’ = Eg so that v is an involution. We
compute

[h%, h2] = [hl, hg]hl [hl, h2] = ’Uhl’U = (’UZl)’U = ’U221 = Z1.

This is a contradiction since h? € ®(G) and (h?, hy) < Ha, where H) = (z3).
We have proved that G is abelian of type (4,2) and so o(v) = 4 and 1 # v? €
H'.

We have K3(G) = [G',G] > (z1). Since d(G) = 2, it follows by Remark 1
that G'/K3(G) is cyclic. Suppose that [v, ha] = 1 so that in this case we have
K3(G) = (z1). We compute

[h1, h3] = [h1, ho][h1, ho]™? = vo2 = 0% #£ 1.

We have (h1,h3) < H; and so v? = z;. But then we have G'/K3(G) =
G'/(z1) = E4, a contradiction. We have proved that [v,hg] # 1 and so
[v, ho] = z2. This gives

Ks(G) = (21, 22) = H' < Z(G)

and G is of class 3.
We get

[h3, ha] = [h1, ko)™ [h1, ha] = v 0 = (v21)v = V221,

and since (h?, ha) < Hs , it follows that v?z; € (22) and so v? € {21, 2122}
Similarly, we get

[hl, h%] = [hl, hg] [hl, hg]hz = ’U’Uh2 = ’U(’UZQ) = ’U222,

and since (h1, h3) < Hy , it follows that v225 € (1) and so v? € {2, 2122}. As
aresult, we get v2 = 2129 and so U1(G’) = (2122). Note that H = ®(G)(h1h2)
and

vt = (v = w(212p) = 2 =0 =0 7!
and so hihs acts invertingly on G’. It follows that ®(G) = Cg(G’) and
H is the unique maximal subgroup of G which contains an element acting
invertingly on G’.

Let z,y € G. Then (2%, y) is contained in one of the maximal subgroups
X, of G, where X/ is elementary abelian of order < 4 and cl(X;) =2 (i =
1,2,3). It follows

[y = ()%, 9] = [2?,y)" = 1,
and so we get U2(G) < Z(G).

Now suppose that d(H;) = d(Hz) = 2. In this case both H; and Hs
are minimal nonabelian (see [2, Lemma 65.2(a)]) and H is neither abelian
nor minimal nonabelian. Since d(G) = 2 and H; # H} such 2-groups are
completely determined in [3, Theorem 100.3] which gives the groups quoted
in part (i) of our theorem.

It remains to consider the case d(H;) = d(Hz) = 3. By [3, Theorem
107.2(a)], a nonmetacyclic two-generator 2-group G has the property that
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every maximal subgroup of G is not generated by two elements if and only
if G/G’ has no cyclic subgroup of index 2. Thus G/G’ is abelian of type
(2m,2™), where m > 2, n > 2 and so |G| = |G'|2m*t" = 2mHnt3 > of,
There are normal subgroups A and B of G such that G = AB, ANB =G/,
A/G" =2 Com, B/G' 2 Con, m>2,n>2 Letaec A\G',be B\G be
such that (a) covers A/G’ and (b) covers B/G’. Since G/H’ is nonmetacyclic
minimal nonabelian, we know that (see [2, Lemma 65.1]) G'/H’ is a maximal
cyclic subgroup of G/H' and so we have a®" € H' and b*" € H'. We have
G = (a,b) and so [a,b] = v is an element of order 4 contained in G' \ H'.

Maximal subgroups of G are M; = A(b?), My = B(a?) and M3 =
®(G)(ab), where ®(G) = G'(a?)(b?) is abelian. Since ®(G) = Cg(G’) and
W (G") = H < Z(G), we see that G/P(G) = E4 acts faithfully on G’
stabilizing the chain G’ > H’ > {1}. Interchanging A and B (if necessary),
we may assume that |M| = 2 and so we may set v® = vz; which gives that
[v,a] = 21 and M| = (z1), where 21 € H'\ (v?). Set 2o = 21v? so that we
have v? = z125. Then we have two possibilities.

(1) We assume v* = vz129 = v~ 1 or equivalently [v,b] = 2122 so that the
element b inverts each element in G’. Since the maximal subgroup H is the
unique maximal subgroup of G which contains an element acting invertingly
on G', we have in this case Ms = B(a?) = H, where we should have H' =
(21, 22). Indeed, we have

[a?,b] = [a,b]*[a,b] = v®v = (vz1)v = v%2; = (2122)21 = 22,

and so we get H' = (z1,22). In this case M3 = ®(G)(ab) has the property
M3 = (z2). Indeed, here we have

[ab, 0] = [a,b°]" = ([a, b][a, b)°)" = (v0*)" = (v0™!)" =1,

and
v = (v21)° = (v2122)21 = V2o and so [v,ab] = 2.

(2) Now we suppose v°

get M), = (z9) since

= vzy or equivalently [v,b] = z3. In this case we

[a2,b] = [a,b]*[a,b] = v*v = (vz1)v = v?21 = (2122)21 = 22.
Also, we have here M3 = H because
v = (’UZl)b = (vz2)z1 = v(2122) = 2= =071
and so ab acts invertingly on G’. We have [v, ab] = 2129 and

[a?, ab] = [a®,b] = [a,D]*[a,b] = v = (vz1)v = v22; = (2122)21 = 20,

and so we have here M§ = (z1, 2z2).
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In both cases (1) and (2), we may set v® = 2§25, where in case (1) we
have € = 1 and in case (2) we have ¢ = 0. Thus, if € = 0, then H = ®(G)(ab)
and if € = 1, we have H = ®(G)(b).

Also, we may set

= e, B =,
where a, 3,7,8 € {0,1} since we know that a®", b>" € H' = (21, z3).

Conversely, by inspection of groups given in parts (i) and (ii) of our
theorem, we see that all these groups have the title property. Our theorem is
proved. O

REFERENCES

[1] Y. Berkovich, Groups of prime power order, Vol. 1, Walter de Gruyter, Berlin-New
York, 2008.

[2] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 2, Walter de Gruyter,
Berlin-New York, 2008.

[3] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 3, Walter de Gruyter,
Berlin-New York, 2011.

Z. Janko

Mathematical Institute

University of Heidelberg

69120 Heidelberg

Germany

E-mail: janko@mathi.uni-heidelberg.de

Received: 16.6.2011.
Revised: 2.10.2011.



