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Vol. 47(67)(2012), 325 – 332
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Abstract. Let G be a finite p-group which has exactly one maximal
subgroup H such that |H′| > p. Then we have d(G) = 2, p = 2, H′ is a
four-group, G′ is abelian of order 8 and type (4, 2), G is of class 3 and the

structure of G is completely determined. This solves the problem Nr. 1800
stated by Y. Berkovich in [3].

We consider here only finite p-groups and our notation is standard (see
[1]). If G is a p-group all of whose maximal subgroups have its derived
subgroups of order ≤ p, then such groups G are characterized in [3, §137].
But there is no way to determine completely the structure of such p-groups.

It is quite surprising that we can determine completely (in terms of
generators and relations) the title groups, where exactly one maximal
subgroup has the commutator subgroup of order > p. We shall prove our
main theorem (Theorem 8) starting with some partial results about the title
groups. However, Propositions 4 and 6 are also of independent interest.

Proposition 1. Let G be a title p-group. Then we have d(G) ≤ 3,
cl(G) ≤ 3, p2 ≤ |G′| ≤ p3 and G′ is abelian of exponent ≤ p2. Also, G has at
most one abelian maximal subgroup.

Proof. Let H be the unique maximal subgroup of G with |H ′| > p. This
gives |G′| ≥ p2. LetK 6= L be maximal subgroups ofG which are both distinct
from H . We have |K ′| ≤ p, |L′| ≤ p and so K ′L′ ≤ Z(G) and |K ′L′| ≤ p2. By
a result of A. Mann ([1, Exercise 1.69]), we get |G′ : (K ′L′)| ≤ p. This implies
that |G′| ≤ p3, G′ is abelian and G is of class ≤ 3. Since K ′L′ is elementary
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abelian, we also get exp(G′) ≤ p2. If G would have more than one abelian
maximal subgroup, then (by the above argument) |G′| ≤ p, a contradiction.
Hence G has at most one abelian maximal subgroup.

Note that each nonabelian p-group X has exactly 0, 1 or p + 1 abelian
maximal subgroups and in the last case |X ′| = p (Exercise 1.6(a) in [1]).
Suppose that d(G) ≥ 4. Then G has at least 1+ p+ p2 + p3 distinct maximal
subgroups and so the set S of maximal subgroups of G with the commutator
group of order p has at least p+ p2 + p3 − 1 elements. Since G′ has at most
p2+p+1 pairwise distinct subgroups of order p (and the maximum is achieved
if G′ ∼= Ep3), it follows that there are K 6= L ∈ S such that K ′ = L′. By the
above argument (using a result of A. Mann), we get |G′| = p2 and so G′ has
at most p+ 1 pairwise distinct subgroups of order p (where the maximum is
achieved if G′ ∼= Ep2). If M ∈ S, then considering G/M ′, we see that there
are at most p+ 1 elements N ∈ S such that N ′ = M ′. This gives

p+ p2 + p3 − 1 ≤ (p+ 1)2, and so p3 − p ≤ 2 or p(p2 − 1) ≤ 2,

a contradiction. Our proposition is proved.

Proposition 2. Let G be a title p-group. Then the subgroup:

H0 = 〈M ′ | M is any maximal subgroup of G with |M ′| ≤ p〉

is noncyclic and so H0 is elementary abelian of order p2 or p3 and H0 ≤ Z(G).

Proof. Suppose that H0 is cyclic. Then we have |H0| = p and so |G′| =
p2 because (by [1, Exercise 1.69]) |G′ : H0| ≤ p and Proposition 1 implies
that |G′| ≥ p2. This gives that H ′ = G′, where H is the unique maximal
subgroup of G with |H ′| > p. Consider the nonabelian factor group G/H0. In
this case G/H0 has exactly one nonabelian maximal subgroup H/H0. Since
d(G/H0) = 2 or 3, the last statement would imply that the nonabelian p-
group G/H0 would have exactly p or p + p2 abelian maximal subgroups, a
contradiction (by [1, Exercise 1.6(a)]).

Proposition 3. Let G be a title p-group. Then we have d(G) = 2.

Proof. Assume that d(G) = 3 and we use the notation from Proposition
2.

First suppose that H0 = G′ so that G is of class 2 with an elementary
abelian commutator subgroup. For any x, y ∈ G, we get [xp, y] = [x, y]p = 1
and this implies that ℧1(G) ≤ Z(G). It follows Φ(G) = ℧1(G)G′ ≤ Z(G) and
G/Φ(G) ∼= Ep3 . Let X be any maximal subgroup of G so that X/Φ(G) ∼= Ep2

and all p+ 1 maximal subgroups of X which contain Φ(G) are abelian. This
implies |X ′| ≤ p. But then each maximal subgroup of G has its derived
subgroup of order ≤ p, contrary to our assumption.

Now assume H0 6= G′. In this case H0
∼= Ep2 , H0 ≤ Z(G) and |G′| = p3.

There are exactly p + p2 maximal subgroups Mi of G such that |M ′

i | ≤ p,
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i = 1, 2, ..., p+ p2. Since H0 has exactly p+ 1 subgroups of order p, it follows
that there exist the indices i 6= j ∈ {1, 2, ..., p+ p2} such that M ′

i = M ′

j is of
order p. Again by [1, Exercise 1.69] we have |G′ : (M ′

iM
′

j)| ≤ p and this gives

|G′| ≤ p2, a contradiction. Our proposition is proved.

Proposition 4. Let G be a two-generator p-group, p > 2, with G′ ∼= Cp2 .
Then each maximal subgroup of G is nonabelian.

Proof. Assume that G has an abelian maximal subgroup M so that
|M/Φ(G)| = p. Take an element a ∈ M \ Φ(G) and an element b ∈ G \ M
so that we have G = 〈a, b〉 and G′ = 〈[a, b]〉. Since G′ is cyclic, [1, Theorem
7.1(c)] implies that G is regular. We have bp ∈ Φ(G) < M and so [a, bp] = 1.
Hence

(a−1b−pa)bp = ((b−1)a)pbp = 1 and so (ba)p = bp.

By [1, Theorem 7.2(a)] (about regular p-groups), the last relation gives
((b−1)ab)p = 1 or equivalently [a, b]p = 1, a contradiction.

Remark 5. The assumption p > 2 in Proposition 4 is essential. This
shows a 2-group of maximal class and order 16.

Proposition 6. Let G be a two-generator p-group, p > 2, with G′ ∼= Ep2 .
Then G has an abelian maximal subgroup.

Proof. By [3, Proposition 137.4], each proper subgroup of G has its
derived subgroup of order at most p. Then we may apply [3, Proposition
137.5] and so for each x, y ∈ G, we get [xp, y] = [x, y]p = 1. This gives that
℧1(G) ≤ Z(G) and therefore we obtain that Φ(G) = ℧1(G)G′ is abelian. Let
M be a maximal subgroup of G which centralizes G′. We have |M : Φ(G)| = p
and M centralizes ℧1(G) and G′ so that Φ(G) ≤ Z(M). This implies that M
is abelian and we are done.

Remark 7. The assumption p > 2 in Proposition 5 is essential. Let G
ba a faithful and splitting extension of an elementary abelian group of order
8 by a cyclic group of order 4. Then we have d(G) = 2 and G′ ∼= E4 but G
has no abelian maximal subgroup.

Proposition 8. Let G be a title p-group and Γ1 = {H1, H2, ..., Hp, H}
be the set of all maximal subgroups of G, where |H ′| > p. Then G′ is abelian
of order p3, H ′ ∼= Ep2 , H ′ ≤ Z(G) and H ′

1, H
′

2, ..., H
′

p are pairwise distinct
subgroups of order p contained in H ′. If G = 〈x, y〉 for some x, y ∈ G, then
[x, y] ∈ G′ \ H ′ and [x, y] 6∈ Z(G) so that G is of class 3. Finally, G/H ′ is
nonmetacyclic minimal nonabelian and so if a ∈ G \G′ is such that ap ∈ G′,
then ap ∈ H ′.

Proof. Let H0 be the subgroup of G′ as defined in Proposition 2. Then
H0 ≤ Z(G) and H0 is elementary abelian of order p2 or p3. Suppose for a
moment that H0 = G′. We have G = 〈x, y〉 for some x, y ∈ G and [x, y] ∈ H0
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so that G/〈[x, y]〉 is abelian and G′ = 〈[x, y]〉 is of order p, a contradiction.
It follows that H0 6= G′ which gives that H0

∼= Ep2 , |G′ : H0| = p and
G′ is abelian of order p3. Since d(G/H0) = 2 and |G′/H0| = p, it follows
that G/H0 is minimal nonabelian (see [2, Lemma 65.2(a)]). In particular,
we have H ′ ≤ H0 which together with |H ′| > p implies H ′ = H0

∼= Ep2 . If
G/H ′ is metacyclic, then a result of N. Blackburn (see [1, Lemma 44.1] and
[1, Corollary 44.6]) gives that G is also metacyclic. This is a contradiction
because G′ is noncyclic. Hence G/H ′ is nonmetacyclic minimal nonabelian so
that [2, Lemma 65.1] gives that G′/H ′ is a maximal cyclic subgroup of G/H ′.
Thus for each element a ∈ G \G′ such that ap ∈ G′, we get ap ∈ H ′.

We have G = 〈x, y〉 for some x, y ∈ G. It is clear that 〈[x, y]〉 is not normal
in G. Indeed, if 〈[x, y]〉EG, then G/〈[x, y]〉 is abelian and so 〈[x, y]〉 = G′ is of
order ≤ p2 (noting that exp(G′) ≤ p2), a contradiction. We have proved that
〈[x, y]〉 is not normal in G. In particular, [x, y] 6∈ Z(G) and so [x, y] ∈ G′ \H ′

and G is of class 3.
If Γ1 = {H1, H2, ..., Hp, H} is the set of all maximal subgroups of G, then

we have H ′

i ≤ H0 = H ′ for all i = 1, 2, ..., p. We claim that H ′

1, H
′

2, ..., H
′

p

are pairwise distinct subgroups of order p. Indeed, if |H ′

iH
′

j | ≤ p for some
i 6= j, i, j ∈ {1, 2, ..., p}, then a result of A. Mann (see [1, Exercise 1.69])
implies |G′ : (H ′

iH
′

j)| ≤ p and so |G′| ≤ p2, a contradiction. Our proposition
is proved.

Remark 9. If X is a two-generator p-group of class 2, then it is well
known that X ′ is cyclic. Hence if G is any two-generator p-group, then
G′/K3(G) is cyclic, where K3(G) = [G′, G].

Proposition 10. If G is a title p-group, then p = 2.

Proof. Assume that p > 2 and we use Proposition 6 together with the
notation introduced there.

First suppose that G′ is not elementary abelian. Then we have o([x, y]) =
p2 and 〈[x, y]p〉 is a subgroup of order p contained in H ′. Let H ′

i, i ∈
{1, 2, ..., p}, be such that H ′

i 6= 〈[x, y]p〉 which gives G′ = H ′

i × 〈[x, y]〉. We
consider the factor group Ḡ = G/H ′

i. Since d(Ḡ) = 2, p > 2, and Ḡ′ ∼= Cp2 , we
may use Proposition 4 saying that each maximal subgroup of Ḡ is nonabelian.
But H̄i = Hi/H

′

i is an abelian maximal subgroup of Ḡ, a contradiction.
We have proved that G′ is elementary abelian of order p3. Let

{H ′

1, H
′

2, ..., H
′

p,K} be the set of all p + 1 subgroups of order p in H ′ and
consider the factor group G/K. All p + 1 maximal subgroups of G/K are
nonabelian, d(G/K) = 2, p > 2, and (G/K)′ = G′/K ∼= Ep2 . By Proposition
5, G/K possesses an abelian maximal subgroup, a contradiction. We have
proved that we must have p = 2.

Theorem 11. Let G be a p-group with exactly one maximal subgroup H
such that |H ′| > p. Then we have d(G) = 2, p = 2 and G′ is abelian of order 8



FINITE p-GROUPS 329

and type (4, 2). Also, [G′, G] = Ω1(G
′) ≤ Z(G), Φ(G) = CG(G

′) is abelian and
℧2(G) ≤ Z(G). Let {H1, H2, H} be the set of maximal subgroups of G. Then
H ′

1 = 〈z1〉 and H ′

2 = 〈z2〉 are both of order 2, 〈z1, z2〉 = Ω1(G
′) = H ′ ∼= E4,

d(H) = 3 and ℧1(G
′) = 〈z1z2〉. Finally, H is the unique maximal subgroup of

G which contains an element acting invertingly on G′. We have the following
two possibilities:

(i) d(H1) = d(H2) = 2 in which case H1 and H2 are minimal nonabelian.
In this case either H1 and H2 are both metacyclic and G is isomorphic
to one of the groups of Theorem 100.3(a) and (b) in [3] or H1 and H2

are both nonmetacyclic and G is isomorphic to one of the groups of
Theorem 100.3(c) in [3].

(ii) d(H1) = d(H2) = 3 and the group G is given with:

G = 〈a, b | [a, b] = v, v4 = 1, [v, a] = z1, [v, b] = zǫ1z2, z
2
1 = z22 = 1, v2 = z1z2,

[z1, a] = [z1, b] = [z2, a] = [z2, b] = 1, a2
m

= zα1 z
β
2 , b

2
n

= zγ1 z
δ
2〉,

where m ≥ 2, n ≥ 2, and α, β, γ, δ, ǫ ∈ {0, 1}. We have here |G| =
2m+n+3 ≥ 27, G′ = 〈v, z1〉 ∼= C4 × C2 , [G′, G] = 〈z1, z2〉 = Ω1(G

′) ≤
Z(G) and the Frattini subgroup Φ(G) = 〈G′, a2, b2〉 is abelian. Finally,
if ǫ = 0, then H = Φ(G)〈ab〉 and if ǫ = 1, we have H = Φ(G)〈b〉.

Conversely, all groups stated in parts (i) and (ii) of this theorem are p-
groups all of whose maximal subgroups, except one, have its derived subgroup
of order ≤ p.

Proof. We use Proposition 6 together with the notation introduced
there. By Proposition 7, we have in addition p = 2.

Let X be a maximal subgroup of G. By Schreier’s inequality ([2, Theorem
A.25.1]), we have

d(X) ≤ 1 + |G : X |(d(G)− 1),

and so d(X) ≤ 3. Since H ′ ∼= E4 and H ′ ≤ Z(H), the maximal subgroup H
cannot be two-generator (see Remark 3). It follows that we have d(H) = 3.
Since G is a nonmetacyclic two-generator 2-group, we may use [3, Theorem
107.1] saying that such a group has an even number of two-generator maximal
subgroups. It follows that we have either d(H1) = d(H2) = 2 or d(H1) =
d(H2) = 3.

Set H ′

1 = 〈z1〉, H
′

2 = 〈z2〉 so that we have H ′ = 〈z1〉 × 〈z2〉 ∼= E4 and
Φ(G) = H1 ∩H2. Since (Φ(G))′ ≤ 〈z1〉 ∩ 〈z2〉 = {1}, it follows that Φ(G) is
abelian and so Φ(G) is a maximal normal abelian subgroup of G (containing
G′). Take elements h1 ∈ H1 \ Φ(G) and h2 ∈ H2 \ Φ(G) so that we have
G = 〈h1, h2〉, [h1, h2] = v ∈ G′ \H ′ and o(v) ≤ 4. If v commutes with both
h1 and h2, then we get v ∈ Z(G), a contradiction. Without loss of generality
we may assume that [v, h1] 6= 1 and so we get [v, h1] = z1.
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Assume for a moment that G′ ∼= E8 so that v is an involution. We
compute

[h2
1, h2] = [h1, h2]

h1 [h1, h2] = vh1v = (vz1)v = v2z1 = z1.

This is a contradiction since h2
1 ∈ Φ(G) and 〈h2

1, h2〉 ≤ H2, where H ′

2 = 〈z2〉.
We have proved that G′ is abelian of type (4, 2) and so o(v) = 4 and 1 6= v2 ∈
H ′.

We have K3(G) = [G′, G] ≥ 〈z1〉. Since d(G) = 2, it follows by Remark 1
that G′/K3(G) is cyclic. Suppose that [v, h2] = 1 so that in this case we have
K3(G) = 〈z1〉. We compute

[h1, h
2
2] = [h1, h2][h1, h2]

h2 = vvh2 = v2 6= 1.

We have 〈h1, h
2
2〉 ≤ H1 and so v2 = z1. But then we have G′/K3(G) =

G′/〈z1〉 ∼= E4, a contradiction. We have proved that [v, h2] 6= 1 and so
[v, h2] = z2. This gives

K3(G) = 〈z1, z2〉 = H ′ ≤ Z(G)

and G is of class 3.
We get

[h2
1, h2] = [h1, h2]

h1 [h1, h2] = vh1v = (vz1)v = v2z1,

and since 〈h2
1, h2〉 ≤ H2 , it follows that v2z1 ∈ 〈z2〉 and so v2 ∈ {z1, z1z2}.

Similarly, we get

[h1, h
2
2] = [h1, h2][h1, h2]

h2 = vvh2 = v(vz2) = v2z2,

and since 〈h1, h
2
2〉 ≤ H1 , it follows that v

2z2 ∈ 〈z1〉 and so v2 ∈ {z2, z1z2}. As
a result, we get v2 = z1z2 and so ℧1(G

′) = 〈z1z2〉. Note that H = Φ(G)〈h1h2〉
and

vh1h2 = (vz1)
h2 = v(z1z2) = vv2 = v3 = v−1

and so h1h2 acts invertingly on G′. It follows that Φ(G) = CG(G
′) and

H is the unique maximal subgroup of G which contains an element acting
invertingly on G′.

Let x, y ∈ G. Then 〈x2, y〉 is contained in one of the maximal subgroups
Xi of G, where X ′

i is elementary abelian of order ≤ 4 and cl(Xi) = 2 (i =
1, 2, 3). It follows

[x4, y] = [(x2)2, y] = [x2, y]2 = 1,

and so we get ℧2(G) ≤ Z(G).
Now suppose that d(H1) = d(H2) = 2. In this case both H1 and H2

are minimal nonabelian (see [2, Lemma 65.2(a)]) and H is neither abelian
nor minimal nonabelian. Since d(G) = 2 and H ′

1 6= H ′

2 such 2-groups are
completely determined in [3, Theorem 100.3] which gives the groups quoted
in part (i) of our theorem.

It remains to consider the case d(H1) = d(H2) = 3. By [3, Theorem
107.2(a)], a nonmetacyclic two-generator 2-group G has the property that
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every maximal subgroup of G is not generated by two elements if and only
if G/G′ has no cyclic subgroup of index 2. Thus G/G′ is abelian of type
(2m, 2n), where m ≥ 2, n ≥ 2 and so |G| = |G′|2m+n = 2m+n+3 ≥ 27.
There are normal subgroups A and B of G such that G = AB, A ∩ B = G′,
A/G′ ∼= C2m , B/G′ ∼= C2n , m ≥ 2, n ≥ 2. Let a ∈ A \ G′, b ∈ B \ G′ be
such that 〈a〉 covers A/G′ and 〈b〉 covers B/G′. Since G/H ′ is nonmetacyclic
minimal nonabelian, we know that (see [2, Lemma 65.1]) G′/H ′ is a maximal
cyclic subgroup of G/H ′ and so we have a2

m

∈ H ′ and b2
n

∈ H ′. We have
G = 〈a, b〉 and so [a, b] = v is an element of order 4 contained in G′ \H ′.

Maximal subgroups of G are M1 = A〈b2〉, M2 = B〈a2〉 and M3 =
Φ(G)〈ab〉, where Φ(G) = G′〈a2〉〈b2〉 is abelian. Since Φ(G) = CG(G

′) and
Ω1(G

′) = H ′ ≤ Z(G), we see that G/Φ(G) ∼= E4 acts faithfully on G′

stabilizing the chain G′ > H ′ > {1}. Interchanging A and B (if necessary),
we may assume that |M ′

1| = 2 and so we may set va = vz1 which gives that
[v, a] = z1 and M ′

1 = 〈z1〉, where z1 ∈ H ′ \ 〈v2〉. Set z2 = z1v
2 so that we

have v2 = z1z2. Then we have two possibilities.
(1) We assume vb = vz1z2 = v−1 or equivalently [v, b] = z1z2 so that the

element b inverts each element in G′. Since the maximal subgroup H is the
unique maximal subgroup of G which contains an element acting invertingly
on G′, we have in this case M2 = B〈a2〉 = H , where we should have H ′ =
〈z1, z2〉. Indeed, we have

[a2, b] = [a, b]a[a, b] = vav = (vz1)v = v2z1 = (z1z2)z1 = z2,

and so we get H ′ = 〈z1, z2〉. In this case M3 = Φ(G)〈ab〉 has the property
M ′

3 = 〈z2〉. Indeed, here we have

[a2, ab] = [a2, b] = z2,

[ab, b2] = [a, b2]b = ([a, b][a, b]b)b = (vvb)b = (vv−1)b = 1,

and

vab = (vz1)
b = (vz1z2)z1 = vz2 and so [v, ab] = z2.

(2) Now we suppose vb = vz2 or equivalently [v, b] = z2. In this case we
get M ′

2 = 〈z2〉 since

[a2, b] = [a, b]a[a, b] = vav = (vz1)v = v2z1 = (z1z2)z1 = z2.

Also, we have here M3 = H because

vab = (vz1)
b = (vz2)z1 = v(z1z2) = vv2 = v3 = v−1

and so ab acts invertingly on G′. We have [v, ab] = z1z2 and

[a2, ab] = [a2, b] = [a, b]a[a, b] = vav = (vz1)v = v2z1 = (z1z2)z1 = z2,

and so we have here M ′

3 = 〈z1, z2〉.
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In both cases (1) and (2), we may set vb = zǫ1z2, where in case (1) we
have ǫ = 1 and in case (2) we have ǫ = 0. Thus, if ǫ = 0, then H = Φ(G)〈ab〉
and if ǫ = 1, we have H = Φ(G)〈b〉.

Also, we may set

a2
m

= zα1 z
β
2 , b2

n

= zγ1 z
δ
2 ,

where α, β, γ, δ ∈ {0, 1} since we know that a2
m

, b2
n

∈ H ′ = 〈z1, z2〉.
Conversely, by inspection of groups given in parts (i) and (ii) of our

theorem, we see that all these groups have the title property. Our theorem is
proved.
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