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Abstract. Shapeless quasigroups are needed for cryptography
purposes. In this paper, we construct shapeless quasigroups by the diagonal
method from orthomorphisms over abelian groups. We use generalizations
of Feistel networks as orthomorphisms. We introduce parameters into
several types of Extended Feistel networks and Generalized Feistel-non
linear feedback shift registers and, by suitable choice of the parameter
values, different shapeless quasigroup can be used in every application.

1. Introduction

A quasigroup is a groupoid (Q, ∗) with the property that each of the
equations a ∗ x = b and y ∗ a = b has a unique solution for x, respectively y.
When Q is a finite set, the main body of the Cayley table of the quasigroup
(Q, ∗) represents a Latin square, i.e., a matrix with rows and columns that
are permutations of Q.

Today, we can already speak about quasigroup based cryptography,
because the number of new defined cryptographic primitives that use quasi-
groups is growing. There already exist stream ciphers like EDON-80 ([9]),
hash functions like EDON-R ([10]) and NaSHA ([18]), digital signature
scheme like MQQ-SIG ([8]), public key cryptosystem like LQLP-s (for s ∈
{104, 128, 160}) ([19]), etc.

In quasigroup based cryptography one can find that different authors seek
quasigroups with different properties. Some need CI−quasigroups ([14]),
some need multivariate quadratic quasigroups ([8]), other need orthogonal
quasigroups ([24]), etc. There are also cryptosystems build on some particular
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subsets of quasigroups. In general, quasigroups that are suitable for
cryptography need to be with as little structure as possible, like shapeless
quasigroups, defined by Gligoroski et al. ([7]).

Definition 1.1 ([7]). A finite quasigroup (Q, ∗) of order r is said to be
shapeless iff it is non-idempotent, non-commutative, non-associative, it does
not have neither left nor right unit, it does not contain proper sub-quasigroups,
and there is no k < 2r such that identities of the kinds

(1.1) x ∗ (x · · · ∗ (x
︸ ︷︷ ︸

k

∗y)) = y, y = ((y ∗ x) ∗ · · ·x) ∗ x
︸ ︷︷ ︸

k

are satisfied in (Q, ∗).

Quasigroups in cryptography can be applied for quasigroup transforma-
tions, as non-linear building blocks in stream ciphers, block ciphers, and hash
functions. For example, for R quasigroup transformation in Edon-R ([10]) a
family of hash functions, and for MT quasigroup transformation in NaSHA-
(m, k, r) ([18, 21]) a family of hash functions, used quasigroups should be at
least shapeless.

Possible candidates for shapeless quasigroups are simple quasigroups
without subquasigroups, that are studied in [2, 12, 15, 25]. In [2] simple
quasigroups are constructed by fixing several elements in their Cayley
schemes, and then completing the scheme arbitrarily. These constructions
are not effective and hence they are not suitable for obtaining shapeless
quasigroups of higher order. The simple linear quasigroups from [25] satisfy
the identities (1.1) for k ≤ r, so they are not shapeless.

In this paper we consider several ways for obtaining shapeless quasigroups
of different orders. For that purpose, we investigate the constructions of
Extended Fesitel Networks (EFN), that are originally defined for building
block cipher’s round functions. We show how shapeless quasigroups can
be constructed by using EFN. Furthermore, we use parameters in our
constructions, that provide us with a tool for using a set of different
quasigroups, with similar properties, in the designs of cryptographic primiti-
ves.

In the sequel we suppose that all considered quasigroups are finite and
non-trivial.

The paper is organized as follows. Section 2 recalls Sade’s diagonal
method for quasigroup construction and notions of orthomorphisms and
complete mappings. Most important, sufficient conditions a quasigroup to
be shapeless are established. Different generalizations of EFN are given in
Section 3. Constructions of quasigroups by using the EFN of types PFN,
type-1 PEFN and GF-NLFSR are presented in the Sections 4, 5 and 6. Some
conclusions are given in Section 7.
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2. Diagonal method and orthomorphisms

Sade ([23]) proposed the following way of constructing quasigroups, now
known as the diagonal method. Consider the group (Zn,+) and let θ be a
permutation of the set Zn, such that φ(x) = x − θ(x) be also a permutation.
Define an operation ◦ on Zn by:

(2.1) x ◦ y = θ(x− y) + y

where x, y ∈ Zn. Then (Zn, ◦) is a quasigroup (and we say that (Zn, ◦) is
derived by θ).

Quasigroups that are constructed by the diagonal method possess a
decomposition in disjoint transversals and therefore they posses an orthogonal
mate. For these quasigroups, every translation σh : x → x + h is an
automorphism. It can be shown that if θ works for the diagonal method, then
each of the mappings x 7→ θ−1(x), x 7→ x−θ(x), x 7→ −θ(−x), x 7→ x+θ(−x),
x 7→ θ(x)+h and x 7→ θ(x+h), for any h, also works. Kristen ([20]) generalized
this construction method for every group (G,+). She incorrectly named those
permutations as complete mappings. Complete mappings are first defined by
Mann ([16]) and the name orthomorphism was first used by Johnson et al.
([13]).

Definition 2.1 ([3, 5]). A complete mapping of a group (G,+) is a
permutation φ : G → G such that the mapping θ : G → G defined by
θ(x) = x + φ(x) (θ = I + φ, where I is the identity mapping) is again a
permutation of G. The mapping θ is the orthomorphism associated with the
complete mapping φ. A group G is admissible if there is a complete mapping
φ : G → G.

If θ is the orthomorphism associated with the complete mapping φ of a
group (G,+), then −φ is the orthomorphism associated with the complete
mapping −θ. We note that − denotes the bijection x 7→ −x.

A generalization of the diagonal method by using complete mappings and
orthomorphisms is given by the following theorem.

Theorem 2.2. Let φ be a complete mapping of the admissible group
(G,+) and let θ be an orthomorphism associated with φ. Define operations ◦
and • on G by

(2.2) x ◦ y = φ(y − x) + y = θ(y − x) + x,

(2.3) x • y = θ(x − y) + y = φ(x− y) + x,

where x, y ∈ G. Then (G, ◦) and (G, •) are quasigroups, opposite to each
other, i.e., x ◦ y = y • x for every x, y ∈ G.

An orthomorphism θ2 of G is said to be orthogonal to an orthomorphism
θ1 if and only if θ1θ

−1
2 is an orthomorphism of G as well. If G is an
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abelian group and θ2 is orthogonal to θ1, then θ1 is orthogonal to θ2 too.
This follows from the well-known fact that, for an abelian group (G,+), the
inverse of the complete mapping (orthomorphism) is also a complete mapping
(orthomorphism) ([5, 13]). The orthomorphism θ−1 is associated with the
complete mapping −φθ−1 and the orthomorphism θφ−1 is associated with
the complete mapping φ−1. Even more, each orthomorphism is orthogonal to
I, and θ−1 is orthogonal to θ if and only if θ2 is an orthomorphism ([13]).

If a quasigroup (G, •) is derived by an orthomorphism according to
(2.3), then all of its parastrophes /, \, //, \\, · can be also derived by an
orthomorphisms (see [5] and [26]). This fact can be especially useful for
designing cryptographic primitives, like encoding and decoding functions. The
next theorem gives these orthomorphisms explicitly.

Theorem 2.3. Let φ : G → G be a complete mapping of an abelian group
(G,+) with associated orthomorphism θ : G → G. Then all the parastrophies
of the quasigroup (G, •) can be obtained by the equation (2.3) and the following
statements are true.

a) The quasigroup (G, /) is derived by the orthomorphism θ−1 associated
with the complete mapping −φθ−1.

b) The quasigroup (G, \) is derived by the orthomorphism −θ(−φ)−1

associated with the complete mapping −(−φ)−1.
c) The quasigroup (G, //) is derived by the orthomorphism −φ(−θ)−1

associated with the complete mapping (−θ)−1.
d) The quasigroup (G, \\) is derived by the orthomorphism −φ−1 associ-

ated with the complete mapping −θφ−1.
e) (G, ·) = (G, ◦).

Proof. a)

x/y = z ⇐⇒ z • y = x ⇐⇒ θ(z − y) + y = x

⇐⇒ z − y = θ−1(x− y) ⇐⇒ z = θ−1(x− y) + y.

b)

x\y = z ⇐⇒ x • z = y ⇐⇒ θ(x− z) + z = y

⇐⇒ x− z = θ−1(y − z) ⇐⇒ x = θ−1(y − z) + z − y + y

⇐⇒ x− y = θ−1(y − z)− (y − z) ⇐⇒ x− y = −(φθ−1)(y − z)

⇐⇒ z = −(−(φθ−1))−1(x− y) + y = −θ(−φ)−1(x− y) + y.

c)
x//y = z ⇐⇒ z • x = y ⇐⇒ θ(z − x) + x = y

⇐⇒ −θ(z − x) = x− y ⇐⇒ z − x = (−θ)−1(x− y)

⇐⇒ z = (−θ)−1(x− y) + (x− y) + y

⇐⇒ z = −φ(−θ)−1(x− y) + y.
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d)

x\\y = z ⇐⇒ y • z = x ⇐⇒ θ(y − z) + z = x

⇐⇒ θ(y − z)− (y − z) = x− y ⇐⇒ φ(y − z) = x− y

⇐⇒ y − z = φ−1(x − y) ⇐⇒ z = −φ−1(x− y) + y.

e)

x · y = y • x = x ◦ y.

Hsu and Keedwell ([11]) have introduced the notion of a strong complete
mapping as a complete mapping that is also an orthomorphism. Every
complete mapping of the abelian group (Zn

2 ,⊕) is a strong complete mapping,
too.

Next we consider the algebraic properties of the quasigroup (G, •) derived
by the orthomorphism θ as in the equation (2.3). Also, up to the end of this
section, we suppose that G is an abelian group.

If θ(0) = 0, (G, •) is idempotent and (θ, θ(−x)+x) is a pair of orthogonal
permutations [4].

Proposition 2.4. If θ(0) 6= 0, then the quasigroup (G, •) has no
idempotent elements, i.e., x • x 6= x for each x ∈ G.

Proof. Let x ∈ G be an idempotent element. Then we have

x • x = x ⇐⇒ θ(x− x) + x = x ⇐⇒ θ(0) = 0.

Proposition 2.5. The quasigroup (G, •) does not have a left unit and
if θ is not the identity mapping it does not have a right unit either.

Proof. Let e be a left unit of (G, •). Then, for all x ∈ G, we have

e • x = x =⇒ θ(e − x) + x = x =⇒ θ(e− x) = 0.

This contradicts the fact that θ is a bijection.
Let e be a right unit of (G, •). Then, for all x ∈ G, we have

x • e = x =⇒ θ(x− e) + e = x =⇒ θ(x − e) = x− e.

This means that θ = I is the identity mapping.

Proposition 2.6. The quasigroup (G, •) is non-associative.

Proof. Let (G, •) be associative. Then (G, •) is a group and it possess
a unit, a contradiction to Proposition 2.5.

Proposition 2.7. Two elements x, y of a quasigroup (G, •) commute iff
θ(x− y) = φ(y − x).
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Proof. We have

x • y = y • x ⇐⇒ θ(x− y) + y = θ(y − x) + x

⇐⇒ θ(x− y) = θ(y − x)− (y − x) ⇐⇒ θ(x− y) = φ(y − x).

Corollary 2.8. The quasigroup (G, •) is non-commutative iff θ(z) −
θ(−z) 6= z for some z ∈ G.

Corollary 2.9. If θ is an orthomorphism of the abelian group (Zn
2 ,⊕),

the quasigroup (Zn
2 , •) is anti-commutative.

Next, we have
y • x = θ(y − x) + x

(y • x) • x = θ(θ(y − x) + x− x) + x = θ2(y − x) + x

and, by induction,

(2.4) ((y • x) • . . . ) • x
︸ ︷︷ ︸

l

= θl(y − x) + x.

We have also
x • y = θ(x − y) + y = φ(x− y) + x,

x • (x • y) = φ(x − φ(x− y)− x) + x = −(−φ(−φ(x − y))) + x

and, by induction,

(2.5) x • (· · · • (x
︸ ︷︷ ︸

l

•y)) = −(−φ(−φ(· · · − φ(x− y) . . .)))
︸ ︷︷ ︸

l

+x.

These equations prove the following proposition.

Proposition 2.10. a) The identity

y = ((y • x) • . . . ) • x
︸ ︷︷ ︸

l

holds true in (G, •) iff θl = I.
b) The identity

x • (· · · • (x
︸ ︷︷ ︸

l

•y)) = y

holds true in (G, •) iff (−φ)l = I = (I − θ)l.

Since we are interested in shapeless quasigroups, we have also to consider
the existence of subquasigroups of a quasigroup (G, •). Our first partial result
is obtained by an exhaustive checking, and it is interesting only for small order
quasigroups.

Proposition 2.11. Let θ be an orthomorphism of an abelian group (G,+)
and let (G, •) be a quasigroup obtained by the equation (2.3). The following
statements are true.
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(a) If θ(0) 6= 0, then the order of any subquasigroup of (G, •) is larger than
2.

(b) If θ2(0) 6= 0, then the order of any subquasigroup of (G, •) is larger
than 3.

(c) If θ2(0) 6= 0 and θ3(0) 6= 0, then the order of any subquasigroup of
(G, •) is larger than 4.

Using identities (2.4) and (2.5) we have for any x ∈ G the following
equations, where φ is a complete mapping with an associated orthomorphism
θ.

(2.6) ((x • x) • . . . ) • x
︸ ︷︷ ︸

l

= θl(0) + x, x • (· · · • (x
︸ ︷︷ ︸

l

•x)) = −(−φ)l(0) + x.

Having in mind Theorem 2.3, we have the following equations for the
parastrophies as well.

(2.7) ((x/ x)/ . . . )/x
︸ ︷︷ ︸

l

= (θ−1)l(0) + x, x/(. . . (x
︸ ︷︷ ︸

l

/x)) = −(φθ−1)l(0) + x,

(2.8)

((x\x) \ . . . ) \ x
︸ ︷︷ ︸

l

= (−θ(−φ)−1)l(0)+x, x \ (· · · \ (x
︸ ︷︷ ︸

l

\x)) = −((−φ)−1)l(0)+x,

(2.9)

((x//x)// . . . )//x
︸ ︷︷ ︸

l

= (−φ(−θ)−1)l(0)+x, x//(. . . //(x
︸ ︷︷ ︸

l

//x)) = −(−(−θ)−1)l(0)+x,

(2.10)
((x \\ x) \\ . . . ) \\x

︸ ︷︷ ︸

l

= (−φ−1)l(0)+ x, x \\(· · · \\(x
︸ ︷︷ ︸

l

\\ x)) = −(θφ−1)l(0)+ x.

Let (S, •) be a subquasigroup of the quasigroup (G, •). Then for each
operation ∗ ∈ {•, /, \, //, \\} and for every x, y ∈ S we have x ∗ y ∈ S. Let
denote by <x> the subquasigroup of (G, •) generated by an element x ∈ G.
According to equations (2.6) – (2.10) we have that all of the elements

(2.11)

x, θl(0) + x, −(−φ)l(0) + x, (θ−1)l(0) + x, −(φθ−1)l(0) + x,

(−θ(−φ)−1)l(0) + x, −((−φ)−1)l(0) + x, (−φ(−θ)−1)l(0) + x,

− (−(−θ)−1)l(0) + x, (−φ−1)l(0) + x, −(θφ−1)l(0) + x

belong to <x> for each l = 1, 2, 3, . . .
Let us denote by

π = {θl, −(−φ)l, (θ−1)l, −(φθ−1)l, (−θ(−φ)−1)l,−((−φ)−1)l,

(−φ(−θ)−1)l, −(−(−θ)−1)l, (−φ−1)l, −(θφ−1)l | l = 1, 2, 3, . . .}.
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The permutations from the set π are defined on a finite set G, so they are
product of disjoint cycles. We conclude that the cardinality of <x> depends
on the length of the cycles containing the element 0 of the permutations from
the set π.

A finite quasigroup (G, •) cannot have a subquasigroup of order greater
than |G|/2, so we have the following.

Proposition 2.12. If some of the permutations from the set π have a
cycle containing 0 of length greater than |G|/2, then the quasigroup (G, •)
cannot have a proper subquasigroup.

We have from (2.11) that

y = θl(0) + x ∈<x> =⇒ θk(0) + y = θk(0) + θl(0) + x ∈<x>

=⇒ θm(0) + . . .+ θk(0) + θl(0) + x ∈<x>

for any positive integersm, . . . , k, l. In the same manner, for any λ1, λ2, . . . , λr

∈ π, we have that λ1(0)+λ2(0)+ · · ·+λr(0)+x ∈<x>, where r is any positive
integer. Let

S = {θl(0), −(−φ)l(0), (θ−1)l(0), −(φθ−1)l(0), (−θ(−φ)−1)l(0),

− ((−φ)−1)l(0), (−φ(−θ)−1)l(0), −(−(−θ)−1)l(0), (−φ−1)l(0),

− (θφ−1)l(0) | l = 1, 2, 3, . . .},

and let denote by LCS the set of all linear combinations of the elements in
S. Then we have |LCS| ≤ | <x> |, for each x ∈ G. Hence, the following
property is true.

Proposition 2.13. The quasigroup (G, •) is without a proper subquasi-
group if |LCS| > |G|/2.

The next theorem, that gives sufficient conditions a quasigroup to be
shapeless, follows from the Propositions 2.4-2.13.

Theorem 2.14. Let θ be an orthomorphism of the abelian group (G,+),
and let (G, •) be a quasigroup derived by θ by the equation (2.3). Then (G, •)
is a shapeless quasigroup if the following conditions are satisfied:

i) θ(0) 6= 0,
ii) θk 6= I for all k < 2|G|,
iii) (I − θ)k 6= I for all k < 2|G|,
iv) θ(z)− θ(−z) 6= z for some z ∈ G,
v) |LCS| > |G|/2.

We can use Theorem 2.14 for practical generation of orthomorphisms that
produce shapeless quasigroups and/or examination does given permutation is
an orthomorphism that produce a shapeless quasigroup.
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Example 2.15. Let us examine the orthomorphism θ of the abelian group
(Z4

2 ,⊕) given on the Table 1. This orthomorphism satisfies all conditions from
Theorem 2.14, so the quasigroup derived by θ is a shapeless quasigroup. It is
presented on Table 2.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

θ(x) 3 9 15 2 13 7 1 11 14 6 4 0 12 8 10 5

x⊕ θ(x) 3 8 13 1 9 2 7 12 6 15 14 11 0 5 4 10

Table 1. An integer representation of an orthomorphism
θ(x) of the group (Z4

2 ,⊕)

f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 3 8 13 1 9 2 7 12 6 15 14 11 0 5 4 10
1 9 2 0 12 3 8 13 6 14 7 10 15 4 1 11 5
2 15 3 1 10 5 14 11 0 12 9 4 13 6 8 2 7
3 2 14 11 0 15 4 1 10 8 13 12 5 9 7 6 3
4 13 6 3 8 7 12 9 5 4 1 0 14 2 11 10 15
5 7 12 9 2 13 6 4 8 0 5 15 1 10 3 14 11
6 1 10 15 4 11 7 5 14 2 12 6 3 8 13 0 9
7 11 0 5 14 6 10 15 4 13 3 2 7 12 9 8 1
8 14 7 6 3 8 13 12 2 11 0 5 9 1 10 15 4
9 6 15 2 7 12 9 3 13 1 10 8 4 11 0 5 14
10 4 1 12 5 14 0 10 15 7 11 9 2 13 6 3 8
11 0 5 4 13 1 15 14 11 10 6 3 8 7 12 9 2
1212 9 8 6 10 3 2 7 5 14 11 0 15 4 1 13
13 8 13 7 9 2 11 6 3 15 4 1 10 5 14 12 0
1410 4 14 11 0 5 8 1 9 2 7 12 3 15 13 6
15 5 11 10 15 4 1 0 9 3 8 13 6 14 2 7 12

Table 2. The quasigroup derived by the orthomorphism θ

At the end of this section, we note that shapeless quasigroups produced
by this method have some undesirable properties - they are diagonally cyclic
quasigroups based on an abelian group (G,+) (i.e., (x + 1) • (y + 1) = x •
y + 1 for every x, y ∈ G) and if the group (Zn

2 ,⊕) is used, then Shroeder
quasigroups are obtained [17] (i.e., (x•y)•(y•x) = x for every x, y ∈ Z

n
2 ). This

means that certain shapeless quasigroups have some structure undesirable for
cryptographic applications, therefore a user has to be careful of the kind on
shapeless quasigroup under consideration. The property of being a shapeless
quasigroup is not a sufficient, but only a necessary condition, in order for a
quasigroup to be good for cryptographic purposes. Still, we can use these
particular constructions of the shapeless quasigroups in the cases when the
diagonally cyclic property is not important.
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3. Several generalizations of Feistel networks as

orthomorphisms

H. Feistel ([6]) defined a special function, now known as Feistel network,
that can be used for building cryptographic primitives (the block cipher DES,
for example). In order to construct shapeless quasigroups, we consider several
orthomorphisms obtained by generalizations of Feistel networks. We call these
orthomorphisms, Feistel orthomorphisms.

We defined Extended Feistel network (EFN) in an earlier paper of ours
[17]. Later, we understood that the same name has already been used by
several authors for denoting the so called type-1, type-2 and type-3 Extended
Feistel networks. Now we redefine EFN from [17] as Parameterized Feistel
network (PFN).

Definition 3.1 ([17, 21]). Let (G,+) be an abelian group, let f : G → G
be a mapping and let A,B,C ∈ G be constants. The Parameterized Feistel
network FA,B,C : G2 → G2 created by f is defined for every l, r ∈ G by

FA,B,C(l, r) = (r +A, l +B + f(r + C)).

Figure 1. Parameterized Feistel network FA,B,C

It was shown in [17, 21] that if the starting mapping f is a bijection,
then the PFN FA,B,C and its square F 2

A,B,C are orthomorphisms of the group

(G2,+). Moreover, they are orthogonal orthomorphisms.
Type-1, type-2 and type-3 Extended Feistel networks, introduced by

Zheng et al. ([27]), split the input blocks into n > 2 sub-blocks. We have
redefined them with parameters and over abelian groups. We could prove
that only type-1 EFN is an orthomorphism.

Definition 3.2. Let an abelian group (G,+), a mapping f : G → G,
constants A1, A2, . . . , An+1 ∈ G and an integer n > 1 be given. The type-1
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Parameterized Extended Feistel network (PEFN) FA1,A2,...,An+1
: Gn → Gn

created by f is defined for every (x1, x2, . . . , xn) ∈ Gn by

FA1,A2,...,An+1
(x1, x2, . . . , xn)

= (x2 + f(x1 +A1) +A2, x3 +A3, . . . , xn +An, x1 +An+1).

Figure 2. Type-1 Parameterized Extended Feistel network
(PEFN) FA1,A2,...,An+1

The type-1 PEFN FA1,A2,...,An+1
is a bijection with inverse

F−1
A1,A2,...,An+1

(y1, y2, . . . , yn)

= (yn −An+1, y1 − f(yn −An+1 +A1)−A2, y2 −A3, y3 −A4,

. . . , yn−1 −An).

Theorem 3.3. If FA1,A2,...,An+1
: Gn → Gn is a type-1 PEFN created by

a bijection f : G → G, then it is an orthomorphism of the group (Gn,+).

Proof. Let Φ = FA1,A2,...,An+1
− I, i.e., Φ(x1, x2, . . . , xn) = (x2 − x1 +

f(x1 + A1) + A2, x3 − x2 + A3, . . . , xn − xn−1 + An, x1 − xn + An+1) =
(y1, y2, . . . , yn) for every (x1, x2, . . . , xn) ∈ Gn.

Define the function Ω : Gn → Gn by Ω(y1, y2, . . . , yn) = (z, z − yn −
yn−1− . . .− y2+An+1+An+ . . .+A3−A1, z− yn− yn−1− . . .− y3+An+1+
An+ . . .+A4−A1, . . . , z− yn− yn−1+An+1+An−A1, z− yn+An+1−A1),
where z = f−1(y1 + y2 + . . .+ yn −A2 −A3 − . . .−An+1)−A1.

We have Ω ◦ Φ = Φ ◦ Ω = I, i.e., Φ and Ω = Φ−1 are bijections.

We have defined type-2 PEFN and type-3 PEFN respectively, by the
functions GA1,A2,...,A2n

(x1, x2, . . . , xn) = (x2 + f(x1+A1)+A2, x3 +A3, x4 +
f(x3 +A4) +A5, x5 +A6, . . . , xn + f(xn−1 +A2n−2) +A2n−1, x1 +A2n) and
HA1,A2,...,A2n−1

(x1, x2, . . . , xn) = (x2 + f(x1 + A1) + A2, x3 + f(x2 + A3) +
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A4, . . . , xn + f(xn−1 + A2n−3) + A2n−2, x1 + A2n−1). These functions are
bijections, but they are not orthomorphisms in general. Thus, they are not
subject of our interest.

Choy et al. ([1]) proposed a new structure called GF-NLFSR (Generalized
Feistel-non linear feedback shift register). We will redefine it with parameters
and over abelian groups.

Definition 3.4. Let an abelian group (G,+), a mapping f : G → G,
constants A1, A2, . . . , An+1 ∈ G and an integer n > 1 be given. The PGF-
NLFSR (Parameterized Generalized Feistel-non linear feedback
shift register) FA1,A2,...,An+1

: Gn → Gn created by f is defined for every
(x1, x2, . . . , xn) ∈ Gn by

FA1,A2,...,An+1
(x1, x2, . . . , xn)

= (x2 +A1, x3 +A2, . . . , xn +An−1, x2 + . . .+ xn +An + f(x1 +An+1)).

Figure 3. PGF-NLFSR FA1,A2,...,An+1

If f is a bijection, then PGF-NLFSR FA1,A2,...,An+1
is a bijection with

inverse F−1
A1,A2,...,An+1

(y1, y2, . . . , yn) = (f−1(yn − y1 − y2 − . . .− yn−1 −An +

A1 +A2 + . . .+An−1)−An+1, y1 −A1, y2 −A2, . . . , yn−1 − An−1).
We note that when the group (Zm

2 ,⊕) is used and A1 = A2 = . . . =
An+1 = 0, then we obtain the GF-NLFSR according to Choy et al. ([1]).

Theorem 3.5. For the abelian group (Zm
2 ,⊕) and for every positive even

integer n, any PGF-NLFSR FA1,A2,...,An+1
: (Zm

2 )n → (Zm
2 )n created by a

bijection f : Zm
2 → Z

m
2 is an orthomorphism of the group ((Zm

2 )n,⊕).
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Proof. Let Φ = FA1,A2,...,An+1
−I, i.e., Φ(x1, x2, . . . , xn)= FA1,A2,...,An+1

(x1, x2, . . . , xn) ⊕ (x1, x2, . . . , xn) = (x2 ⊕ A1 ⊕ x1, x3 ⊕ A2 ⊕ x2, . . . , xn ⊕
An−1⊕xn−1, x2⊕ . . .⊕xn−1⊕An⊕f(x1⊕An+1)) = (y1, y2, . . . , yn) for every
(x1, x2, . . . , xn) ∈ (Zm

2 )n.
First we observe that

y1 = x2 ⊕ x1 ⊕A1,

y1 ⊕ y2 = x3 ⊕ x1 ⊕A1 ⊕A2,

...

y1 ⊕ y2 ⊕ . . .⊕ yn−2 = xn−1 ⊕ x1 ⊕A1 ⊕A2 ⊕ . . .⊕An−2.

The sum of the right-hand sides of the previous equality, when n = 2k, is
x2 ⊕ x3 ⊕ . . .⊕ xn−1 ⊕A2 ⊕A4 ⊕ . . .⊕An−2.

Define the function Ω : (Zm
2 )n → (Zm

2 )n by

Ω(y1, y2, . . . , yn) = (z, z ⊕ y1 ⊕A1, z ⊕ y1 ⊕ y2 ⊕A1 ⊕A2, . . . ,

z ⊕ y1 ⊕ . . .⊕ yn−1 ⊕A1 ⊕ . . .⊕An−1).

where z = f−1(yn ⊕ y1 ⊕ (y1 ⊕ y2) ⊕ . . . ⊕ (y1 ⊕ y2 . . . ⊕ yn−2) ⊕ A2 ⊕ A4 ⊕
. . .⊕An−2 ⊕An)⊕An+1.

We have Ω ◦ Φ = Φ ◦ Ω = I, i.e., Φ and Ω = Φ−1 are bijections.

Additionally orthomorphisms, by themselves can have applications in
cryptography ([22]).

4. Quasigroups derived by Feistel orthomorphisms

We use the results from Section 2 in order to construct shapeless
quasigroups derived by Feistel orthomorphisms F , where F is a PFN
orthomorpism, a type-1 PEFN orthomorphism or a GF-NLFSR orthomor-
phism. Given an orthomorphism F over an abelian group G, the quasigroup
(G, •) derived by F is defined according to (4), i.e.,

x • y = F (x− y) + y,

where x, y ∈ G2. Theorem 2.14 gives sufficient conditions needed for a given
quasigroup (G, •) to be shapeless.

For our effective constructions of shapeless quasigroups we used a personal
computer with Intel Core 2 Duo Processor, 2, 33GHz clock speed, 2GB RAM,
running Windows 7 Enterprise (32-bit) with SP1.

4.1. PFN orthomorphisms. Given an abelian group (G,+), a PFN
orthomorphism FA,B,C is defined over the group (G2,+), and the quasigroup
(G2, •) is derived by FA,B,C as x • y = FA,B,C(x− y) + y, where x, y ∈ G2.

It is trivial to check that the condition i) of Theorem 2.14 (i.e.,
FA,B,C(0) 6= 0) is satisfied iff A 6= 0 or B 6= −f(C).

Proposition 4.1. FA,B,C satisfies the condition iv) of Theorem 2.14.
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Proof. Let x 6= 0 ∈ G. We have

FA,B,C(x, x) − FA,B,C(−(x, x)) = FA,B,C(x, x) − FA,B,C(−x,−x)

= (2x, 2x+ f(x+ C)− f(−x+ C)) 6= (x, x).

We have made an m-file in MatLab that produces a starting bijection f :
Z
b
2 → Z

b
2 and parameters A,B and C for obtaining an orthomorphism FA,B,C

over the group (Z2b
2 ,⊕) that satisfies all conditions of Theorem 2.14. The

execution time is less than half a second for b ∈ {3, 4, 5}, less than 5 seconds for
b = 6, less than two minutes for b = 7, about 45 minutes for b = 8 and less than
10 hours for b = 9. Thus, we could effectively construct shapeless quasigroups
of order 26, 28, 210, 212, 214, 216 and 218. As an example, you can obtain a
shapeless quasigroup of order 212 by taking parameters A = 49, B = 54 and
C = 59 and a bijection f = (0 9 11 41 20 15 36 16 28 2 53 37 18 8 34 41 46 27 19
24 62 17 39 54 6 57 14 10 23 60 42 55 22 38 52 48 7 47 59 31 56)(1 58 51 63 5 49 61
4 25)(3 30 29)(12 32 26)(13 45 44 35 21 50 33 40), given by its cycles. Even
more, FA,B,C and F 2

A,B,C are orthogonal orthomorphisms.

4.2. Type-1 PEFN orthomorphisms. Let (G,+) be an abelian group. A
type-1 PEFN orthomorphism FA1,A2,...,An+1

is defined over the group (Gn,+),
and the quasigroup (Gn, •) is defined by x • y = FA1,A2,...,An+1

(x − y) + y,
where x, y ∈ Gn.

It is trivial to check that the condition i) of Theorem 2.14 is satisfied iff
Ai 6= 0 for some i ∈ {3, 4, . . . , n+ 1} or A2 6= −f(A1).

Proposition 4.2. The orthomorphism FA1,A2,...,An+1
satisfies the condi-

tion iv) of Theorem 2.14.

Proof. Let x 6= 0 ∈ G. We have

FA1,...,An+1
(x, x, . . . , x)− FA1,...,An+1

(−(x, x, . . . , x))

= FA1,...,An+1
(x, x, . . . , x)− FA1,...,An+1

(−x−, x, . . . ,−x)

= (2x+ f(x+A1)− f(−x+A1), 2x, . . . , 2x) 6= (x, x, . . . , x).

We have made an m-file in MatLab that produces a starting bijection f :
Z
b
2 → Z

b
2 and parameters A1, A2, . . . , An+1 for obtaining an orthomorphism

FA1,...,An+1
over the group (Znb

2 ,⊕), which produces a shapeless quasigroup.
When we use b = 3, the execution time is about two seconds for n = 3, less
than 5 seconds for n = 4, less than 7 minutes for n = 5 and less than 11
hours for n = 6. These results correspond to shapeless quasigroups of orders
29, 212, 215 and 218. For b = 4, the execution time in the best case is less
than 5 seconds for n = 3 and less than half an hour for n = 4. These results
correspond to shapeless quasigroups of orders 212 and 216. For b = 5, the
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execution time is about 5 minutes for n = 3 and corresponding shapeless
quasigroup is of order 215. For example, a shapeless quasigroup of order
216 is obtained when the bijection f and the parameters A1, A2, A3, A4, A5

are taken as follows: f = (0 7 9 14 3)(1 6 4 10 8 5 15 12)(2 13 11) and
(A1, A2, A3, A4, A5) = (3, 12, 10, 14, 6).

4.3. GF-NLFSR orthomorphisms. Here we use the abelian group (Zb
2,⊕)

and we take that n is an even integer and A1, A2, . . . , An+1 ∈ Z
b
2. A GF-

NLFSR orthomorphism FA1,A2,...,An+1
is defined over the group ((Zb

2)
n,⊕)

and by x • y = FA1,A2,...,An+1
(x − y) + y the derived quasigroup (Zb

2, •) is

obtained, where x, y ∈ (Zb
2)

n.
Again, it is trivial to check that the condition i) of Theorem 2.14 is

satisfied iff Ai 6= 0 for some i ∈ {1, 2, . . . , n − 1} or An 6= −f(An+1).
By Corollary 2.9 we have that FA1,A2,...,An+1

satisfies the condition iv) of
Theorem 2.14.

We have made an m-file in MatLab that produces a starting bijection f :
Z
b
2 → Z

b
2 and parameters A1, A2, . . . , An+1 for obtaining an orthomorphism

FA1,...,An+1
over the group (Znb

2 ,⊕). When we use b = 3 and n = 4, the

execution time for producing a shapeless quasigroup of order 212 is less than
5 seconds. For b = 4 and n = 4, the execution time for producing a shapeless
quasigroup of order 216 is less than two hours. As an example of a shapeless
quasigroup of order 216, produced as in this subsection, one can take the
bijection f = (0 2 9 3 13 8 11 7 14 4 15 6 1 10)(5)(12) and parameters
(A1, A2, A3, A4, A5) = (13, 9, 0, 11, 15).

5. Conclusions

The shapeless quasigroups are important because of their applications for
building cryptographic primitives. We are using Feistel orthomorphisms in
order to effectively construct shapeless quasigroups of order up to 218. The
constructions are based on the sufficient conditions we have examined. For
practical implementations, quasigroups of order 216 would be more useful. It
is an open problem whether more efficient algorithms for obtaining shapeless
quasigroups of higher order, like 232 or even 264, can be defined. If so, more
efficient cryptographic primitives based on shapeless quasigroups could also
be designed.
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