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ON A FREE PISTON PROBLEM FOR STOKES AND

NAVIER-STOKES EQUATIONS
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Abstract. Our goal is to model and analyze a stationary fluid flow
through the junction of two pipes in the gravity field. Inside ’vertical’
pipe there is a heavy piston which can freely move along the pipe. We
are interested in the equilibrium position of the piston in dependence on
geometry of junction. Fluid is modeled with the Navier-Stokes equations
and the piston is modeled as a rigid body. We formulate corresponding
boundary value problem and prove an existence result. The problem
is nonlinear even in case of the Stokes equations for fluid flow; we
prove non-uniqueness of solutions and illustrate it with some numerical
examples. Furthermore, derivation and analysis of the linearized problem
are presented.

1. Introduction

The piston problem is well known and studied by mathematicians as well
as by engineers. It is mainly referred to problems where fluid flow is generated
by known motion of the piston. The goal of this paper is to analyze a kind
of free boundary problem related to the piston problem. More precisely, we
consider fluid flow which is on some part of the boundary delimited by a piston
which can move freely along some path. In this paper we restrict ourselves
to the stationary case. This problem is also an example of a fluid-rigid body
interaction problem. Such problems have been studied intensively in the last
decade (see for example [4, 7, 10, 12] and references cited there). However, in
these papers rigid body is fully immersed in the fluid, so there is no contact
between the rigid body and boundary of the domain filled by fluid. In our
case rigid body (the piston) is part of the boundary and therefore different
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techniques are required. We note that time-dependent free piston problem
for gas dynamics have been considered by Takeno ([19]), and D’Acunto and
Rionero ([5]). Authors are not aware of any mathematical paper about the
free piston problem in case of the Navier-Stokes equations.

In second section we give physical background and precise mathematical
formulation of the problem. Furthermore, we give some examples of simple
solutions which will provide better understanding of the problem and outline
some properties of the solution which are used through this paper. In section
three we prove the existence theorems, both for the Stokes and the Navier-
Stokes case. Section four deals with non-uniqueness of solution and we prove
occurrence of bifurcation phenomena. In this section we also derive explicit
linearized equations which we use in identifying type of bifurcation, but which
are also crucial for the numerical analysis of the problem. Main results of the
paper are contained in these two sections. In section five we present few simple
numerical experiments.

2. Formulation of the problem

2.1. Interpretation, geometry and notations. Our goal is to model and
analyze flow of Newtonian fluid through system of two pipes with a piston in
the ”vertical” pipe. More precisely, we consider system of two pipes which
consists of horizontal and ”vertical” pipe. The angle between horizontal and
vertical pipe is measured by α; by definition, α = 0 if the angle between
horizontal and vertical pipe is π/2. Length of horizontal pipe is 2l and its
diameter is d1, diameter of ”vertical” pipe is d2 (see figure 1). We consider
the problem in a gravity field.

In vertical pipe we have heavy piston which can only move along the
”vertical” pipe without rotations. The friction is neglected. In this paper our
goal is to determine stationary state of the system, i.e., stationary fluid flow
and equilibrium of the piston, and its dependence on geometry, especially on
angle α. The piston is modeled as a rigid body, thus its motion is given by
Newton’s second law. Fluid is Newtonian and incompressible so its motion
is given by the Navier-Stokes equations. The fluid flow domain is considered
as a control volume; we have artificial boundaries as inflow and outflow parts
of the boundary on the edges of the horizontal pipe. Coordinate x1 is along
the horizontal pipe and x3 is in the opposite direction of acceleration of the
gravity. We assume that flow is driven by known pressure difference on these
parts; note that other types of boundary conditions can be imposed.

Let us now introduce some notations and precise assumptions on the
geometry. Let h be height of the piston in selected coordinate frame, and
let Ωα

h ⊂ R
3 denote domain occupied by the fluid. More precisely, Ωα

h =
Ω1 ∪ Ω0 ∪ Ωh

2 , where Ω1 and Ωh
2 are pipes, i.e., have the form in different
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coordinate frames, possibly non-orthogonal:

Ωi = {(y1, y2, y3) : 0 ≤ y1 ≤ Li, (y2, y3) ∈ Si}, Si ⊂ R
2, i = 1, 2.

Only the ”vertical” pipe Ωh
2 depends on h and α. The lower basis of the piston

Σh will be considered as a subset of the x3 =const. plane. Origin of the
coordinate frame is chosen in a such way that the lower end of the ”vertical”
pipe Σ0 is a subset of the x3 = 0 plane. We assume that Σ0 is symmetric
w.r.t. x′ = (x2, x3)-plane. Furthermore, we suppose that Ω0 ∪ Ω1 (domain
without ”vertical” pipe) is symmetric w.r.t. the x′-plane; we will show that
this symmetry assumption is not a restriction. Note that Ω0 is extension of the
vertical pipe up to the boundary of Ω1; its shape is complicated in general, in
2D case is an empty set. Inflow and outflow regions are denoted by Σp and Σk

respectively. Γ = ∂Ωα
h \ (Σp ∪Σk ∪Σh) is a rigid boundary. We only consider

3D case, but formulation of problem in 2D case is straightforward and all
results are valid also in this case. Furthermore, all numerical experiments are
done in 2D case because of technical simplicity. We suppose that the domain
is locally Lipschitzian. Nevertheless, if we want to obtain regularity results we
can assume smoothness of the domain by smoothing the angle at the piston
boundary.

Figure 1. Ωα
h

2.2. Mathematical model. Since the fluid is modeled by the Navier-Stokes
equations, the stress tensor is given by T = −pI + 2µ sym(∇u), where u is
velocity of the fluid, p pressure and µ viscosity. Let s = sinαe1 + cosαe3 be
direction of the ”vertical” pipe. Total fluid force on the piston in direction s

on height h is given by the formula:

(2.1) Fα(h) = −

∫

Σh

Tn · s,
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where n denotes in general the unit outer normal; here n = e3. Differential
formulation of our problem is: find (u, p, h) ∈ H1(Ωα

h)
3 × L2(Ωα

h) × R+ such
that

(2.2)

−µ△u+ ρ(∇u)u+∇p = −gρe3 in Ωα
h ,

divu = 0 in Ωα
h ,

u = 0 on Γ,

u = 0 on Σh,
u× n = 0, p+ 1

2 |u|
2 = Pj − gρx3 on Σj , j = p, k,

Fα(h) = P0.

Here ρ is density of the fluid, g gravity constant and P0 a constant that
takes into account weight of the piston and atmospheric pressure. First two
equations are just the Navier-Stokes equations for motion of an incompressible
Newtonian fluid. Boundary conditions (2.2)3 and (2.2)4 are no slip boundary
conditions on the rigid boundary. Condition (2.2)6 is balance of forces on the
piston. Fα(h) is well defined because with our choice of function spaces we

have T ∈ L2(Ωα
h)

3×3 and div T ∈ L
3
2 (Ωα

h)
3. Pp and Pk are known constants;

since flow is assumed to be driven by the pressure difference on inflow and
outflow boundary, we can assume that Pp = −Pk with possible redefinition of
the constant P0.

The problem has two non-linearities. One that comes from the Navier-
Stokes equations is classical (see [20]). The second one comes from the fact
that domain is unknown and therefore F is a nonlinear function.

Remark 2.1. Boundary condition (2.2)5 were introduced in [3]. For the
Stokes case instead of dynamic pressure p+ 1

2 |u|
2 we have just pressure p. We

have also different possibilities of boundary conditions on Σp/k. Since we are
interested in effects near the junction and the piston, a natural choice would
be to prescribe boundary conditions at the infinity. Because we also want
to make numerical experiments, we need ”artificial” boundary conditions on
Σp/k. Some of other possible choices are the Dirichlet boundary conditions and
”do nothing” boundary conditions; for more details about artificial boundary
conditions see [2]. In the present choice of boundary conditions (2.2)5 we have
fixed pressure on the boundary and there are known regularity results for this
type of boundary conditions ([1]). All results of this paper are valid for every
choice of ’good’ artificial boundary conditions and for boundary conditions
imposed at the infinity.

2.3. Examples. First we consider few simple examples for the Stokes case
which will illustrate some basic characteristics od problem (2.2).

Example 2.2. This example shows why we need to consider the problem
in the gravity field. Let g = 0 and α = 0, i.e., we consider problem
with no gravity and in symmetric domain w.r.t. x3-axis. Let h be fixed.
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Then by simple calculation we can verify that the symmetry of domain
and boundary data implies the following symmetry of solution of the Stokes
problem (2.2)1−5:

(2.3)
uh
x1
(−x1, x

′) = uh
x1
(x1, x

′), uh
x′(−x1, x

′) = −uh
x′(−x1, x

′),

ph(−x1, x
′) = −ph(x1, x

′), x′ = (x2, x3) ∈ R
2, h ∈ R+.

Further computation gives F (h) = 0, so in this case problem (2.2) has a
solution if and only if P0 = 0, and in this case there are infinitely many
solutions.

Example 2.3. Let us now consider the same symmetric domain, but this
time in the gravity field. Let pH(x, y) = −ρ g x3 be the hydrostatic pressure.
Let h ∈ R+; by (uh, qh) we denote a solution of the Stokes problem in Ω0

h from
the previous example, i.e., with P0 = 0. Then (uh, qh + pH) is a solution of
the non-homogeneous Stokes problem in Ω0

h. By straightforward calculation
we find that F (h) = −ρ g h|Σ0|, h ∈ R+. We conclude that in this case the
whole problem (2.2) has a unique solution (uh, qh + pH , h), where h is given
by the formula h = − P0

gρ|Σ0|
.

Remark 2.4. Let (uh, qh + pH) be the solution of the Stokes problem in
domain Ωα

h . Using transformation (2.3) we get function (uh, qh+ pH) defined

on domain Ω−α
h . Simple calculation shows that (uh, qh+pH) is the solution of

the Stokes problem with the same boundary conditions but in domain Ω−α
h .

Now from identities
∫

Σh
qh = −

∫

Σh
qh and

∫

Σh
∂x3

uh
x1

=
∫

Σh
∂x3

uh
x1

it follows:

(Fα(h) + ρgh) = −(F−α(h) + ρgh).

Thus, for h fixed, Fα(h) is an odd function of the angle α.

3. Existence results

In this section we derive sufficient condition for problem (2.2) to have at
least one solution. In the Navier-Stokes case there will be additional condition
on the smallness of data as it is expected. In the sequel index α will be omitted
since existence results are proved for arbitrary α.

We begin with a simple lemma which describes function F more precisely.
Similar result can be found in [14]. Let us define the function space

Uh = {u ∈ H1(Ωh)
3 : divu = 0, u = 0 on Γ ∪ Σh, u× n = 0 on Σp ∪ Σk}.

Lemma 3.1. Let (uh, ph) ∈ Uh×L2(Ωh) be a solution of the Navier-Stokes
system in Ωh with boundary conditions as in problem (2.2)1−5. Then

(3.1) F (h) = cosα

∫

Σh

ph − µ sinα

∫

Σh

∂x3
uh
1 , h ≥ 0,

where the integrals are taken in a dual sense.
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Proof. The proof is divided in two steps. First we consider smooth
solutions. Because u = 0 on Σh, simple calculation shows that

∫

Σh

(sym∇u)n · s =

∫

Σh

(
1

2
sinα ∂x3

u1 + cosα∂x3
u3).

Since solution is smooth, divergence of the velocity is zero up to the
boundary, so ∂x3

u3 = −∂x1
u1 − ∂x2

u2. Hence ∂x3
u3 = 0 on Σh and assertion

of lemma follows.
If the solution is not smooth, the trace operator for ph ∈ L2(Ωh) is not

well defined. Thus we consider the space

{(uh, ph) ∈ Uh × L2(Ωh) :T (uh, ph) = −pI + µ sym(∇u) ∈ L2(Ωh),

div T ∈ L3/2(Ωh)}.

Note that choice div T ∈ L3/2(Ωh) covers both, Stokes and Navier-Stokes case.
For such space there exists normal trace operator T 7→ Tn|Σh

. From the first

part of proof we know that for smooth function Tn·s = cosα p−µ sinα∂x3
uh
x1

on Σh in a trace sense. Therefore by extension, formula (3.1) holds.

3.1. Stokes flow. First we consider the Stokes flow, i.e., motion of the
fluid is described by the Stokes equations:
find (u, p, h) ∈ H1(Ωα

h)
3 × L2(Ωα

h)× R+ such that

(3.2)

−µ△u+∇p = −gρe3 in Ωα
h ,

divu = 0 in Ωα
h ,

u = 0 on Γ,

u = 0 on Σh,

u× n = 0, p = Pj − gρx3, on Σj , j = p, k.

F (h) = P0,

Theorem 3.2. There exists P ∈ R such that for every P0 ≤ P problem
(3.2) has at least one solution.

Proof. Restriction on P0 is expected, since fluid can not ’support’ too
heavy piston.

Since for every fixed h existence of corresponding (uh, ph) is well known, it
is enough to prove that there exists h such that F (h) = P0 for P0 small enough.
Furthermore, F is continuous function because of continuous dependence of
solutions of the Stokes equations on change of a domain (see for example [17])
and because of continuity of the trace operator.

We will prove that limh→∞ F (h) = −∞ and the assertion of theorem
follows directly. For fixed h solution can be written in the form (uh, qh+pH),
where (uh, qh) is solution of the homogeneous Stokes equation and pH is
the hydrostatic pressure. Because of limh→∞

∫

Σh
pH = −∞, it is enough to

prove boundedness of
∫

Σh
qh and

∫

Σh
∂x3

uh
x1

in h, see Lemma 3.1 We estimate
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these integrals using Leray’s problem. Let Ω∞ be domain with unbounded
”vertical” pipe, i.e., Ω∞ = ∪h>0Ωh. Now let us consider Leray’s problem
in Ω∞ with prescribed flux zero at infinity; this is equivalent to v(x) → 0,
|x| → ∞.

(3.3)

−µ△v +∇τ = 0 in Ω∞,

div v = 0 in Ω∞,

v = 0 on Γ∞,

v → 0, x ∈ Ω∞, |x| → ∞,

v × n = 0, τ = Pj , on Σj , j = p, k.

Note that in our original problem flux is zero in vertical pipe for each h, so
it is natural to assume flux zero at infinity for the Leray problem. Existence
of solution of this problem and its asymptotic behavior is well known, see [8].
Proof of the theorem will be complete when we prove the following lemma.

Lemma 3.3. Let (v, τ) be the solution of Leray’s problem (3.3) and let
(uh, qh+pH) be the solution of the corresponding Stokes problem in Ωh, h > 0.
Then:

‖uh − v‖H1(Ωh) + ‖qh − τ‖L2(Ωh) → 0 as h → ∞.

Proof. Let us define auxiliary functions wh = uh − v and rh = ph − τ
on Ωh. These functions are solutions of the following problem:

(3.4)

−µ△wh +∇rh = 0 in Ωh,

divwh = 0 in Ωh,

wh = 0 on Γ,

wh = −v on Σh,

wh × n = 0, rh = 0 on Σj , j = p, k.

It is classical that

‖wh‖H1(Ωh) + ‖rh‖L2(Ωh) ≤ Ch‖v‖
H

1
2 (Σh)

.

It is well known that v and all its derivatives decays to 0 uniformly with
exponential speed. Assertion of lemma now follows from the fact that Ch in
fact does not depend on h; this can be proved by homogenization of boundary
condition on Σh which will be done explicitly in the Navier-Stokes case.

Remark 3.4. In the case of regular domain, we have regular solution and
also convergence of all derivatives.
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3.2. Navier-Stokes flow. The main idea of the proof of existence of
solution for the Navier-Stokes case is analogous. We just need to prove
Lemma 3.3 for the Navier-Stokes equations. Since we are now dealing with
Navier Stokes equations, we will need to restrict ourselves to small data to get
estimates which are essential for our proof. From now on we assume that the
data are small enough to ensure the uniqueness and existence of solution of
Leray’s problem for the Navier-Stokes equations in Ω∞, see [9] for example.

Let (v, τ) be the solution of nonlinear Leray’s problem in Ω∞ and let
h > 1. Furthermore, let Vh ∈ H1(Ωh) be a function that satisfies:

divVh = 0,

Vh = v on Σh, Vh = 0 on ∂Ωh \ Σh, Vh(x1, x2, x3) = 0, x3 < h− 1.

We know that such function exists because flux is zero in the ”vertical” pipe
(see [18]). Now, vh = v −Vh satisfies the equations:

(3.5)

−µ△vh + ρ(∇vh)vh +∇ph = fh in Ωh,

div vh = 0 in Ωh,

vh = 0 on Γ,

vh = 0 on Σh,

vh × n = 0, ph + 1
2 |vh|2 = Pj on Σj , j = p, k,

where fh = −µ△Vh + (∇v)Vh + (∇Vh)v − (∇Vh)vh. Function Vh has
the support only in some neighborhood of Σh by definition, so fh has the
same property. From the decay property of Leray’s flow it follows that
‖fh‖H−1(Ωh) → 0 as h → ∞.

Let us define wh = uh − vh and rh = ph − τ . Now we can subtract weak
formulation of problem (3.5) (see [3])

µ

∫

Ωh

∇×vh ·∇×v+

∫

Ωh

((∇×vh)×vh))·v = 〈fh,v〉−Pp

∫

Σp

vx1
+Pk

∫

Σk

vx1
,

from analogous weak formulation of problem for uh and take wh for test
function. We get

C‖wh‖
2
H1(Ωh)

≤ −

∫

Ωh

((∇×wh)× vh)) ·wh + 〈fh,wh〉 ;

here 〈·, ·〉 stands for duality pairing. Finally we have:

‖wh‖H1(Ωh) + ‖rh‖L2(Ωh) → 0 as h → ∞.

Notice that this estimate is sufficient for the proof existence theorem. If we
want estimates in Hm norms in the case of smooth domain, we can proceed
in a classical way to obtain them. Therefore we have proved:

Theorem 3.5. For the data small enough, there exists P ∈ R such that
for every P0 ≤ P problem (2.2) has at least one solution.



FREE PISTON PROBLEM 389

Remark 3.6. In the proof of existence theorem we have used only one
geometrical assumption, the one that we have ”vertical” pipe. Completely
analogous proof holds for infinite horizontal pipe. Furthermore, we have not
used symmetry assumption, so theorem holds also for non-symmetric domains.
We even have not used assumption that the lower part of domain is a pipe,
so proof can be adapted for more general geometry and boundary conditions.

4. Non-uniqueness of solution

Now we turn to the question of uniqueness of the solution of problem
(3.2). We first show that one can not expect uniqueness.

Remark 4.1. Non-uniqueness of the solution of problem (3.2).
Let us take α 6= 0 and denote temporarily the total force on Σh by Fα. We
separate the total force on Σh into the part that comes from the hydrostatic
pressure and the part that comes from velocity and pressure, i.e., Fα = Fα

p −
ρgh|Σh|. From Remark 2.4 we know that Fα

p = −F−α
p for the same h. Assume

that function Fα
p is differentiable (this will be proved later on) and let ε > 0 be

such that d
dhF

α
p (ε) 6= 0. We assume d

dhF
α
p (ε) > 0; we can do that because in

the opposite case we just consider −α instead of α. Let (uα
ε , p

α
ε −ρgx3) be the

solution of the Stokes system in Ωα
ε associated to total force Fα(ε). Because

of linearity of the Stokes system, for every λ > 0 the pair (λuα
ε , λp

α
ε −ρgx3) is

also the solution of the Stokes system in Ωα
ε with different boundary conditions

on Σp/k; let us denote the total force associated to this solution by Fα
p,λ. Now

if we take λ large enough, we get that d
dhF

α
p,λ(ε) = λ d

dhF
α
p − ρgh|Σh| > 0.

Since we know that limh→∞
d
dhF

α
p,λ(h) = −ρg|Σh|, we conclude that Fα

p,λ is
not monotone and therefore there exists P0 for which we have at least two
stationary states.

Of course, if data are small enough, force from the hydrostatic pressure
will be dominant and we will have the unique stationary state. However, as
we have seen in example 2.2, non-uniqueness is not only due to the hydrostatic
pressure. Later we will illustrate that with a numerical experiment. Now we
want to prove non-uniqueness in a rigorous way and describe it more precisely.
In order to achieve that, first we need to derive and analyze the linearized
problem. Since the non-linearity is non explicit and hidden in domain Ωα

h , first
we rewrite our problem in such a way that nonlinearity would be expressed
explicitly. We can do that by transforming original problem onto the fixed
domain Ω := Ω0

1 using some change of variables. We use the transformation

βα
h : Ω 7→ Ωα

h , α ∈ (−π/2, π/2), h > 0 :

(4.1) βα
h (x1, x2, x3) =

{

(x1, x2, x3), x3 < 0,
(x1 + hx3 tanα, x2, hx3), x3 > 0.
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This change of variables has W 1,∞ regularity which is enough for the weak
formulation of the Stokes problem in Ωα

h . Nevertheless, one should notice
that βα

h is not a C1 function only on the lower dimensional set Σ0. One
could also work with smooth change of variables, but we prefer this simplest
change of variables which gives us the linearized problem explicitly; an explicit
formulation of the linearized problem is needed for numerical experiments as
well.

We introduce notations: Ω+ = Ω∩ {x3 > 0} and Ω− = Ω∩ {x3 < 0} and
the function space:

U = {u ∈ H1(Ω)3 : u = 0 on Γ ∪ Σ, u× n = 0 on Σp/k},

where Γ = Γ0
1 and Σ = Σ1. We introduce new unknowns u(h, α) and p(h, α)

by u(h, α) = uα
h ◦ βα

h and p(h, α) = pαh ◦ βα
h . Then by change of variables βα

h

problem (3.2) is transformed to: find (u(h, α), p(h, α), h) ∈ U × L2(Ω) × R+

such that

(4.2)

h
(

µ

∫

Ω+

∇h,αu(h, α) · ∇h,αv −

∫

Ω+

p(h, α) divh,α v + ρg

∫

Ω+

vx3

)

+ µ

∫

Ω−

∇u(h, α) · ∇v −

∫

Ω−

p(h, α) div v + ρg

∫

Ω−

vx3

= 〈G(Pp, Pk),v〉, v ∈ U ,

h

∫

Ω+

q divh,α u(h, α) +

∫

Ω−

q divu(h, α) = 0, q ∈ L2(Ω),

cosα

∫

Σ

p(h, α)− µ sinα

∫

Σ

1

h
∂x3

u1(h, α)− P0 = 0,

where 〈G(Pp, Pk),v〉 =
∫

Σp
Ppvx1

−
∫

Σk
Pkvx1

and

∇h,α =















∇ x3 < 0,




∂x1

∂x2

− tanα∂x1
+ 1

h ∂x3



 x3 > 0,
and divh,α = ∇h,α · .

Now we need to specify function spaces on which we consider our non-linear
operator. More than L2 regularity for pressure is needed for (4.2)3 to make
sense. On the other hand, due to the lack of regularity of change of variables
one can not expect the global regularity. In Lemma 3.1 we have overcome
this difficulty by considering div T which was is some Lr space, so trace
operator was well defined. Now we can not proceed in analogous way because
operator div is transformed into divh,α and h is also unknown of the problem.
Therefore in this section we use regularity results for polyhedral domains
proved by Maz’ya and Rossmann ([15]) and introduce some non-standard
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function spaces:

V = {v ∈ U : v χ|Ω+
∈ W 2,8/7(Ω+),vχ|Ω−

∈ W 2,8/7(Ω−)},

Q = {q ∈ L2(Ω) : q χ|Ω+
∈ W 1,8/7(Ω+), q χ|Ω+

∈ W 1,8/7(Ω−)},

where W s,p is the standard Sobolev space and χ|A is the characteristic

function of set A. Let us define J : R
2 × W 1/8,8/7(Σ0) → U ′ (U ′ is the

dual space of U) by

〈J(Pp, Pk, b),v〉 = 〈G(Pp, Pk),v〉 +

∫

Σ0

bv · n, v ∈ U .

We have supp(J(Pp, Pk, b)) ⊂ Σp ∪ Σk ∪ Σ0. We also need function space:

W = {F ∈ U ′ : F = f + J(Pp, Pk, b), f ∈ L8/7(Ω) ∩ U ′,

Pp, Pk ∈ R, b ∈ W 1/8,8/7(Σ0)}.

V , Q and W are Banach spaces with norms

‖.‖V = ‖.‖H1(Ω) + ‖.‖W 2,8/7(Ω+) + ‖.‖W 2,8/7(Ω−),

‖.‖Q = ‖.‖L2(Ω) + ‖.‖W 1,8/7(Ω+) + ‖.‖W 1,8/7(Ω−),

‖f + J(Pp, Pk, b)‖W

= ‖f‖L8/7(Ω) + |Pp|+ |Pk|+ ‖b‖W 1/8,8/7(Σ0) + ‖f + J(Pp, Pk, b)‖H−1(Ω).

Let S : V × Q × R+ → W × Q × R be operator defined by the left hand
side of (4.2); P0 and α are considered as parameters and in this subsection
will be omitted. Notice that function spaces are chosen in a such way that
contain all solutions of the problem (4.2) and that trace operator (4.2)3 is well
defined. Furthermore we can see that space W is chosen to be the range of
the Stokes-like operator on V and Q. Since S is linear in first two arguments,
we define operator S : R+ → L(V ×Q,W ×Q× R) with

S(h)(v, q) = S(v, q, h).

Now we formally calculate the Frechet derivative of S:

S(u0 + εu, p0 + εp, h0 + εh) = S(h0 + εh)(u0 + εu, p0 + εp)

= (S(h0) + εhS ′(h0) + o(ε2))(u0 + εu, p0 + εp)

= S(h0)(u0, p0) + ε(S(h0)(u, p) + hS ′(h0)(u0, p0)) + o(ε2).

So S is differentiable if and only if S is differentiable and then we have:

(4.3) S′(u0, p0, h0)(u, p, h) = S(h0)(u, p) + hS ′(h0)(u0, p0).

Therefore for formulating the linearized problem it is enough to calculate
S ′(h0). Let us consider a stationary state (u0, p0, h0), i.e., S(u0, p0, h0) = 0,
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and insert u0 + εu, p0 + εp in equation (4.2). By using equalities

1

h0 + εh
=

1

h0
−

1

h2
0

εh+ o(ε2),

∇h0+εh,α = ∇h0,α − ε
h

h2
0

(

0

∂x3

)

+ o(ε2), x3 > 0,

and collecting members of order o(ε2), we get
(4.4)

〈S ′
1(h0)(u0, p0),v〉 =

∫

Ω+

(

µ∇h0,αu0 · ∇
h0,αv −

µ

h0

(

0

∂x3

)

u0 · ∇
h0,αv

−
µ

h0
∇h0,αu0 ·

(

0

∂x3

)

v − p0∇
h0,α · v +

1

h0
p0

(

0

∂x3

)

· v + h0gvx3

)

,

S ′
2(h0)(u0, p0) = −

1

h2
0

∂x3
(u0)x3

,

S ′
3(h0)(u0, p0) = µ

sinα

h2
0

∫

Σ

∂x3
(u0)x1

.

By iterating this procedure we can prove:

Proposition 4.2. S ∈ C∞(R+;L(V × Q,W ×Q × R)) and S ′ is given
by (4.4). S ∈ C∞(V ×Q× R+;W ×Q× R) and S′ is given by (4.3).

4.1. Bifurcations. With our new notations we may rewrite problem (3.2)
(or equivalent problem (4.2)) in the following way:

find (u, p, h) ∈ V ×Q × R such that S(u, p, h;P0, α) = 0.

As we have seen in Remark 4.1, one can not expect unique stationary state
for some boundary data, α and P0. Our goal is to identify exact type of
non-uniqueness (bifurcation) in dependence of P0. Necessary condition for
bifurcation point is non-regularity of S’ because in opposite case we would
have local uniqueness by the implicit function theorem ([13]). Therefore we
must consider the linearized problem. Let (u0, p0, h0) be some stationary
state. We prove some properties of the operator S′(u0, p0, h0).

Lemma 4.3. Operator S(h) = (S1(h),S2(h)) = (Sx1
(h),Sx′(h),S2(h)) ∈

L(V ×Q,W ×Q) is a regular linear operator with bounded inverse.

Proof. Notice that S(h) is just a Stokes-like operator in new coordinates.
By using inverse transformation we can transform equations back to original
domain and solve the Stokes problem with new right-hand side. Then the only
nontrivial part is to prove that operator is surjective. Existence of H1 × L2

solution verifying given boundary conditions is proved in [3], let us denote
it with (u, p). It remains to prove suitable regularity. We can divide this
problem into two Stokes problems in Ωh

+ and Ω− which are coupled on Σ0.
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More precisely, let (u+, p+) and (u−, p−) be restrictions of (u, p) on Ωh
+ and

Ω− respectively. Then these functions satisfy equations

−µ△u+ +∇p+ = f+ in Ωh
+, −µ△u− +∇p− = f− in Ω−

divu+ = g+ in Ωh
+, divu− = g− in Ω−,

with coupling conditions

u+ = u−,
∂

∂x3
u+ −

∂

∂x3
u− = b on Σ0,

and unchanged boundary conditions on the remaining part of the boundary.
Here f , g, b are given. Regularity on each subdomain follows from [15] by
using technics for regularity of the transmission problems (see [6], proposition
II.8.9).

Finally we can give rigorous justification of Remark 4.1

Corollary 4.4. F ∈ C1(R+), where function F is defined by (2.1).

Proof. This corollary is direct consequence of Lemma 4.3 and the
implicit function theorem.

Now we turn to proof of the following theorem:

Theorem 4.5. S′ is either regular operator or the Fredholm operator with
index 0.

Proof. We give the proof of this theorem in the series of lemmas.

Lemma 4.6. For every solution (u0, p0, h0) of problem (4.2) there exists

unique (UJ , PJ ) such that S
′
(u0, p0, h0)(UJ , PJ , 1) = 0, where S = (S1, S2).

Furthermore, for every f ∈ W × Q there exists unique (Uf , Pf ) such that

S
′
(u0, p0, h0)(Uf , Pf , 0) = f .

Proof. Proof follows directly from (4.3) and Lemma 4.3.

Let (u0, p0, h0) be a solution of problem (4.2) and f ∈ W ×Q. We define
functions

uf,h = hUJ +Uf and pf,h = hPJ + Pf , f ∈ W ×Q, h ∈ R+.

Here (UJ , PJ ) and (Uf , Pf ) are as in the above lemma. Notice that for every
h ∈ R+ the following equalities hold

S
′
(u0, p0, h0)(uf,h, pf,h, h) =S

′
(u0, p0, h0)(Uf , pf , 0)

+ hS
′
(u0, p0, h0)(UJ , PJ , 1) = f .



394 B. MUHA AND Z. TUTEK

Using (4.4)3 we have:

S′
3(u0, p0, h0)(uf,h, pf,h, h)

= h

∫

Σ

(

cosαPJ − µ sinα(
1

h0
∂x3

(UJ)x1
−

1

h2
0

∂x3
(u0)x1

)
)

+ cosα

∫

Σ

Pf − µ sinα

∫

Σ

1

h0
∂x3

(Uf )x1
.

Lemma 4.7. Operator S′(u0, p0, h0) is regular if and only if the following
condition is satisfied:

(4.5)

∫

Σ

(

cosαPJ − µ sinα(
1

h0
∂x3

(UJ)x1
−

1

h2
0

∂x3
(u0)x1

)
)

6= 0,

Proof. First, we denote expression on the left-hand side of (4.5) by DJ .
Let us take (f , s) ∈ W ×Q× R and take

h =
1

DJ

(

s−
(

cosα

∫

Σ

Pf − µ sinα

∫

Σ

1

h0
∂x3

(Uf )x1

)

)

.

Then we have

S′(u0, p0, h0)(uf,h, pf,h, h) = (f , s),

and therefore we have proved surjectivity. For fixed h we know from (4.3) and

Lemma 4.3 that S
′
(u0, p0, h0) is regular and therefore all solutions of the the

linearized problem are of the form (uf,h, pf,h). Since we can calculate h by
formula for given s, we have proved injectivity also. If condition (4.5) is not
satisfied we do not have surjectivity because (f , s) is not in the image of S′ if

s 6= cosα

∫

Σ

Pf − µ sinα

∫

Σ

1

h0
∂x3

(Uf )x1
.

Now it only remains to prove the last lemma:

Lemma 4.8. If condition (4.5) does not hold, then S′(u0, p0, h0) is a
Fredholm operator with index 0.

Proof. The triple (UJ, PJ , 1) is obviously in kernel of S′(u0, p0, h0). The
fact that U0 = 0 and P0 = 0 ensures that the basis of the kernel consists of
this element only, where U0 and P0 are functions introduced in Lemma 4.6
for f = 0.

Let us now consider image of S′(u0, p0, h0). In this case we can also

conclude that all solutions of equation S
′
(u0, p0, h0)(u, p, h) = f are of the

form (uf,h, pf,h, h). From condition (4.5) we have S′
3(u0, p0, h0)(uf,h, pf,h, h)

= C(f). Hence, the image of S′ is {(f, C(f)), f ∈ W ×Q}. Therefore we can
conclude that co-kernel is {0} × {0} × R.

Now everything is set for stating and proving the main theorem of this
section.
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Theorem 4.9. There exists α and P0 with corresponding stationary state
(u0, p0, h0) ∈ V × Q × R+ in which we have a turning point. More precisely,
(u0, p0, h0) is a solution of problem (3.2) and all solutions of this problem in
some neighborhood belong to some curve (X(s), P (s)) in (V×Q×R+)×(−a, a)
with X(0) = (u0, p0, h0) and P (0) = P0, a ∈ R+. Furthermore, tangent at
(X(0), P (0)) is (V, 0) and P does not have a saddle point at 0.

Proof. Let us consider the operator S as a function of parameter P0;
taking its derivative we get

(4.6) DP0
S(u0, p0, h0;P0, α) = (0, 0,−1) /∈ ImS′(u0, p0, h0;P0, α).

Now because of Theorem I.4.1 and Corollary I.4.2 from [13], we conclude
that the point (u0, p0, h0) is saddle nod bifurcation or turning point. It only
remains to prove that there exists a stationary state (u0, p0, h0) such that
condition (4.5) is not true, i.e., the Frechet derivative of S is not regular.
From previous considerations we know that this is equivalent to solving a
problem:
find (u, p) ∈ V ×Q such that

(4.7)

S(h0)(u, p) = −S
′
(h0)(u0, p0),

∫

Σ

(

cosαp− µ sinα(
1

h0
∂x3

ux1
−

1

h2
0

∂x3
(u0)x1

)
)

= 0.

We solve this problem by using similar techniques as in solving the original
problem (3.2). First using a change of variables we can return to the original
domain Ωα

h0
and get an original-like problem, but this time with the right hand

side dominated by hydrostatic pressure (which is included in p0) as h0 → ∞.
Therefore we have

∫

Σ

(

cosαp− µ sinα(
1

h0
∂x3

ux1
−

1

h2
0

∂x3
(u0)x1

)
)

< 0

for h0 large enough, so is enough to find some point at which
∫

Σ

(

cosαp− µ sinα(
1

h0
∂x3

ux1
−

1

h2
0

∂x3
(u0)x1

)
)

> 0

holds. Furthermore, we notice that solution depends continuously on

parameter α. Now it only remains to check the symmetry properties of S
′
(h0):

S
′

x1
(h0;α)(u

α
0x1

, uα
0x′ , qα0 ) = S

′

x1
(h0;−α)(u−α

0x1
,−u−α

0x′ ,−q−α
0 ),

S
′

x′(h0;α)(u
α
0x1

, uα
0x′ , qα0 ) = −S

′

x′(h0;−α)(u−α
0x1

,−u−α
0x′ ,−q−α

0 ),

S
′

2(h0;α)(u
α
0x1

, uα
0x′ , qα0 ) = −S

′

2(h0;−α)(u−α
0x1

,−u−α
0x′ ,−q−α

0 );

here f stands for a function defined by f(x1, x
′) = f(−x1, x

′) for a function
f defined on Ω. We can use analogous argument as in Remark 4.1 to prove
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existence of a point with desired property. From the same Remark 4.1 it
follows also that we do not have saddle point.

Corollary 4.10. With notations of the preceding theorems we have

(Fα)′(h) =

∫

Σ

(

cosαPJ − µ sinα(
1

h0
∂x3

(UJ )x1
−

1

h2
0

∂x3
(u0)x1

)
)

, h > 0.

Remark 4.11. This theorem also gives effective way of verifying whether
some point is turning point or not as well as for the numerical search of that
point. We could also use smooth change of variables to avoid non-standard
function spaces, but then we would get more complicated formula for the
linearized problem. Finally, in the proof of theorem 4.9 we need the symmetry
properties:

(βα
h )x1

(x1, x
′) = −(β−α

h )x1
(−x1, x

′),

(βα
h )x′(x1, x

′) = (β−α
h )x′(−x1, x

′).

Remark 4.12. If the horizontal pipe is long enough, then the symmetry
conditions can be omitted. Namely, we can symmetrize it by extending
shorter end of the pipe and prescribe suitable boundary conditions on the
new artificial boundary. From asymptotic analysis (see for example [14]) we
know which pressure we have to prescribe. Solution of our new problem is
close to the solution of original problem. Similar analysis can be done for
infinite horizontal pipe and other artificial boundary conditions.

4.2. Comments on the Navier-Stokes case. In the preceding section we
have proved existence of a stationary state (u0, p0, h0) (in case of small data)
of our problem in the Navier-Stokes case (Theorem 3.5). By using regularity
results in polyhedral domains due to Maz’ya and Rossmann ([15]) and using
linearization technique we have proved non-uniqueness of solution and the
bifurcation result (Theorem 4.9).

One should notice that three facts were essential in the proof. First,
regularity result for the Stokes equation in polyhedral domains. In the recent
paper by Maz’ya and Rossmann ([16]) the analogous result is proved for the
Navier-Stokes equation.

Second fact is calculation of the Frechet derivative S′ and regularity of
S(h) for every fixed h (Lemma 4.3). In the Navier-Stokes case formula (4.3)
is not valid any more because we have additional non-linearity in u, but only
in the first component S1. In that case we have the following formula for the
Frechet derivative of that component:

S′
1(u0, p0, h0)(u, p, h) = S(h0)(u, p) + SL(u0, p0, h0)(u, p)

+ h
(

S ′(h0)(u0, p0) +N (h0)(u0, p0)
)

,
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where S is the same as before and

〈SL(u0, p0, h0)(u, p),v〉

= h0

∫

Ω+

(

(∇h0,αu0)u+ (∇h0,αu)u0

)

· v +

∫

Ω−

(

(∇u0)u+ (∇u)u0

)

· v,

〈N (h0)(u0, p0),v〉 =

∫

Ω+

(

(∇h0,αu0)u0 −
1

h0
(

(

0

∂x3

)

u0)u0

)

· v.

However, this linearization is known since by transforming equations back
to original domain we get linearized Navier-Stokes equation around (u0, p0).
Then we can prove analogue of Lemma 4.3 in the Navier-Stokes case by using
well known for the linearized Navier-Stokes equation (see [11]) and the same
function spaces as in the Stokes case.

Third essential fact in the proof of Theorem 4.9 was symmetry properties
of solution. In the Navier-Stokes case we do not have these symmetry
properties, so we can not prove existence of a turning point. However, if
a turning point exists, we know that it is of the same form as the one from
the Stokes case which is described in Theorem 4.9 Furthermore, if we take
data sufficiently small such that solution is dominated by the linear part, we
can get existence of a turning point by approximating solution of the Navier-
Stokes problem by solution of the Stokes problem.

5. Numerical experiments

All numerical experiments are done in 2D Stokes case using FreeFem++.

Example 5.1. In this example we compute numerical values of function

F
π
4 with g = 0. For every fixed h we solve Stokes system in Ω

π
4

h and

then compute F
π
4 (h). We take h between 0 and 4.2 with step 0.14. Other

parameters are: l = 5, Pp/k = ±5, d1 = 1.6, d = 1.6 and µ = 1, where d is
diameter of the piston. For velocity P2 elements are used and for pressure
P1.

In figure 2 graph of F
π
4 is given. On this example we can see the non-

uniqueness of the stationary state since function F
π
4 is clearly non-monotone.

Furthermore, we can see that function F
π
4 is asymptotically approaching some

constant as we have proved earlier. We can also notice that this constant
is greater than 0 which means that in this case piston rises higher then in
symmetric case which is physically expected since ”vertical” pipe is along the
flow.

Example 5.2. In this example we compute F ′(h) with same parameters
as in the previous example.

Example 5.3. As we have proven for every given geometry and data
there exists constant Cα such that limh→∞Fα(h) = cosαCα. The goal of
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Figure 2. Graph of function F
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Figure 3. Graph of F ′

this example is to analyze dependence of constants Cα on parameter α. We
take all parameters the same as in previous example, h = 5 (which is large
enough) and vary parameter α between −3

8 π and 3
8π with step π

24 and compute
Fα(5).
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Figure 4. Dependence of Cα on α

Acknowledgements.

We are grateful to Prof. I. Aganović for valuable discussions regarding
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