LINEAR INDEPENDENCE AND SETS OF UNIQUENESS

Hrvoje Šikić and Ivana Slamić

University of Zagreb and University of Rijeka, Croatia

ABSTRACT. Consider the Bessel system of integer translates $\{\psi_k\}$ of a square integrable function ψ . We show that ℓ^p -linear independence of $\{\psi_k\}$ is equivalent to periodization function $p_{\psi}(\xi) = \sum_{k \in \mathbb{Z}} |\widehat{\psi}(\xi + k)|^2$ vanishing almost everywhere on a set which is an ℓ^p -set of uniqueness, where $1 \leq p \leq 2$. General result, concerning no restriction on Bessel systems is then proved for the case p = 1.

Integer translates of a single function $\psi \in L^2(\mathbb{R})$ exhibit several interesting connections with deep results and notions of Fourier analysis. For example, consider the Schauder basis property vs. the Muckenhoupt A_p condition (see [11]) or the use of the Carleson theorem in the recent proof of the ℓ^2 -linear independence characterization by S. Saliani ([12]). For the systematic treatment of such properties see [5] and for the extension to the general, LCA groups, case see [4]. In this paper we would like to establish yet another connection, as far as we know not yet observed, between the ℓ^p -linear independence of the system of translates and the ℓ^p -sets of uniqueness, where $1 \leq p \leq 2$.

Integer translates $\psi_k(x) = \psi(x-k), x \in \mathbb{R}, k \in \mathbb{Z}$, of a given function $\psi \in L^2(\mathbb{R})$, form a generating set $\mathcal{B}_{\psi} := \{\psi_k : k \in \mathbb{Z}\}$ for the principal shift-invariant space

(1)
$$\langle \psi \rangle := \overline{\operatorname{span}} \mathcal{B}_{\psi},$$

generated by ψ . The study of the properties of \mathcal{B}_{ψ} within $\langle \psi \rangle$ is interesting by itself. However, we would like to add that $\langle \psi \rangle$ forms also the main resolution level for various reproducing function systems generated by

415

²⁰¹⁰ Mathematics Subject Classification. 42C15, 46E30.

Key words and phrases. Integer translates, ℓ^p -linear independence, sets of uniqueness. The research of both authors on this paper was supported by the MZOŠ grant 037-0372790-2799 of the Republic of Croatia.

 ψ , like wavelets and Gabor systems (see, for example, [6] for details). In particular, the systematic study of Parseval frame wavelets relies heavily on the properties of \mathcal{B}_{ψ} within $\langle \psi \rangle$ (see [14] for details and further references). An important feature of frames is that in principle they allow for redundancy (see the discussion in I. Daubechies [3]). In the case of Parseval frame wavelets, however, the redundancy of the system is not possible via finite sums, since the system is linearly independent; as proved recently in M. Bownik and D. Speegle ([1]). If we add to this that \mathcal{B}_{ψ} is obviously (see [13] or [1]) linearly independent whenever $\psi \neq 0$, then it is natural to study various levels of linear independence for infinite sums (see [15] for numerous such notions in the Banach space basis theory).

The first attempt was to study ℓ^2 -linear independence of \mathcal{B}_{ψ} . The characterization (in the case of Parseval frame wavelets or, essentially, Bessel systems) was established in [13] (see also the discussion in [5]), but the general case remained open for several years. Most recently, S. Saliani ([12]) solved the problem using a very interesting idea. She established the connection with the Menšov type results (see [17] for the introduction to the subject), using theorems of S. V. Kislyakov (see [10]) and S. A. Vinogradov (see [16]).

We show in this article that the connection with the Menšov result is not "by accident". We characterize the ℓ^p -linear independence, for $1 \leq p \leq 2$, in the case of Bessel systems, in terms of the sets of uniqueness. Among others, this also provides an additional perspective to the ℓ^2 result. The proof for the general case still eludes us (except in the cases p = 1 and p = 2) and we leave it for the future research.

Let us introduce the notation. The following notion can be introduced in a much more abstract setting, but such a level of abstraction is not needed in this paper.

DEFINITION 1. Let $1 \leq p \leq 2$. A sequence $(x_n)_{n \in \mathbb{N}}$ in a Hilbert space $(\mathbb{H}, \| \|)$ is ℓ^p -linearly independent if

$$((c_n)_{n\in\mathbb{N}}\in\ell^p(\mathbb{N}),\lim_{n\to\infty}\|\sum_{k=1}^n c_k x_k\|=0\Rightarrow c_n=0, \text{ for every } n\in\mathbb{N}).$$

Observe that in this definition the order of vectors (x_n) matters. Our set \mathcal{B}_{ψ} is indexed by \mathbb{Z} . Having Fourier analysis background in mind we order \mathbb{Z} as $\{0, 1, -1, 2, -2, \ldots\}$. Since all vectors in \mathcal{B}_{ψ} are of the same norm, the convergence of partial sums of ψ_k 's (in this, just introduced ordering of \mathbb{Z}) is equivalent to the convergence of symmetric partial sums (see also [11])

(2)
$$\sum_{|k| \le n} c_k \psi_k.$$

In the study of $\langle \psi \rangle$, the fundamental role is played by the periodization function (see [4, 5, 14] and the numerous references within) $p_{\psi} : \mathbb{R} \to [0, +\infty)$

defined by

(3)
$$p_{\psi}(\xi) := \sum_{k \in \mathbb{Z}} |\widehat{\psi}(\xi+k)|^2, \xi \in \mathbb{R}$$

where $\hat{\psi}$ denotes the Fourier transform of ψ . In particular, of interest for us here is the set of zeroes of p_{ψ}

(4)
$$Z_{\psi} := \{\xi \in \mathbb{R} : p_{\psi}(\xi) = 0\}.$$

Observe that p_{ψ} is 1-periodic (hence, so is Z_{ψ}), so p_{ψ} can be considered as a function on the torus $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ and Z_{ψ} could be considered also in the sense $Z_{\psi} \subseteq \mathbb{T}$; and we shall do so here most of the time. It is known, see [12], that

(5)
$$\mathcal{B}_{\psi}$$
 is ℓ^2 – linearly independent $\Leftrightarrow |Z_{\psi}| = 0$,

where |A| denotes the Lebesgue measure of A. Since, for $1 \leq p \leq 2$, $\ell^p \subseteq \ell^2$, it is obvious that $|Z_{\psi}| = 0$ implies the ℓ^p -linear independence of \mathcal{B}_{ψ} . However, since $\ell^p \neq \ell^2$ for p < 2, one could expect that ℓ^p -linear independence allows also $|Z_{\psi}| > 0$. As we shall see, this is indeed so. Let us also remind our reader that (see [5])

(6)
$$\mathcal{B}_{\psi}$$
 is a Bessel system for $\langle \psi \rangle \Leftrightarrow (\exists B > 0) \quad p_{\psi} \leq B \quad a.e.$

Before stating the following definition, let us remind our reader that for every $1 \leq p \leq 2$ and for every $(c_k)_{k \in \mathbb{Z}} \in \ell^p(\mathbb{Z})$ there exists a function $f \in L^2(\mathbb{T})$ such that $\hat{f}(k) = c_k$, for every $k \in \mathbb{Z}$; where $\hat{f}(k)$ denotes the k-th Fourier coefficient of f.

DEFINITION 2. Let $1 \leq p \leq 2$. A measurable subset $E \subseteq \mathbb{T}$ is an ℓ^p -set of uniqueness if there is no $0 \neq f \in L^2(\mathbb{T})$ such that $f|_{\mathbb{T}\setminus E} = 0$ a.e. and $(\widehat{f}(k))_{k\in\mathbb{Z}} \in \ell^p(\mathbb{Z}).$

The early period of the theory of uniqueness sets is closely connected with the standard result of Menšov (see, for example, [17] for details). Obviously, if |E| = 0, then E is an ℓ^p -set of uniqueness, for all $1 \leq p \leq 2$. If p = 2, then the only sets of ℓ^2 -uniqueness are the sets of measure zero. For p < 2, however, there are ℓ^p -sets of uniqueness which have a strictly positive measure; see paragraph IV.2.5. in Y. Katznelson [8] for a construction of such a set (observe that only closed sets are considered by the author). In fact, Y. Katznelson proved in [9] that there exist sets of Lebesgue measure arbitrarily close to 1, which are ℓ^p -sets of uniqueness for all p < 2. Observe that it follows from definition (as well as from our result and the implications holding between different levels of ℓ^p -linear independence) that ℓ^p -sets of uniqueness are also $\ell^{p'}$ -sets of uniqueness for all p' < p. I. I. Hirschman and Y. Katznelson showed in [7] that for any $1 < q < p \leq 2$ there exists a set which is an ℓ^q -set of uniqueness, but is not an ℓ^p -set of uniqueness. Therefore, for any $1 < q < p \leq 2$ there exists a Bessel system \mathcal{B}_{ψ} which is ℓ^{q} -linearly independent but is not ℓ^{p} -linearly independent.

We are now ready to state and prove our main result. Observe that in the case p = 2 we obtain the condition given in (5).

THEOREM 3. Let $1 \leq p \leq 2$ and $0 \neq \psi \in L^2(\mathbb{R})$ such that \mathcal{B}_{ψ} is a Bessel system for $\langle \psi \rangle$. Then \mathcal{B}_{ψ} is ℓ^p -linearly independent if and only if Z_{ψ} is an ℓ^p -set of uniqueness.

PROOF. Let us recall first that $\langle \psi \rangle$ is isometrically isomorphic to $L^2(\mathbb{T}; p_{\psi})$; the L^2 space on \mathbb{T} with measure $p(\xi)d\xi$; see [5] and the references therein for more details. Furthermore, the role of \mathcal{B}_{ψ} is in $L^2(\mathbb{T}; p_{\psi})$ played by the family of exponentials

$$\{e_k(\xi) = \exp(2\pi i\xi k); k \in \mathbb{Z}\}.$$

Hence, the partial sum $\sum_{|k| \le n} c_k \psi_k$ corresponds to the sum $\sum_{|k| \le n} c_k e_k$. Therefore,

 \mathcal{B}_{ψ} is ℓ^p -linearly independent if and only if

(7)
$$\left((c_k)_{k \in \mathbb{Z}} \in \ell^p(\mathbb{Z}), \lim_{n \to \infty} \| \sum_{|k| \leq n} c_k e_k \|_{L^2(\mathbb{T}, p_{\psi})} = 0 \\ \Rightarrow c_k = 0, \text{ for every } k \in \mathbb{Z} \right).$$

Let us also introduce the following imbedding operator: $I_{\psi} : L^2(\mathbb{T}) \to L^2(\mathbb{T}; p_{\psi})$ given by

(8)
$$I_{\psi}(m) := m, \quad m \in L^2(\mathbb{T}).$$

Observe that, since \mathcal{B}_{ψ} is a Bessel system for $\langle \psi \rangle$, then p_{ψ} is bounded above (see (6)), and therefore, I_{ψ} is a well-defined bounded linear operator. Furthermore, the kernel $\operatorname{Ker}(I_{\psi})$ consists precisely of $m \in L^2(\mathbb{T})$ such that the set support (considered up to a.e.)

(9)
$$\operatorname{supp} m := \{\xi \in \mathbb{T} : m(\xi) \neq 0\} \subseteq Z_{\psi}.$$

Assume first that \mathcal{B}_{ψ} is ℓ^{p} -linearly independent. We want to prove then that Z_{ψ} is an ℓ^{p} -set of uniqueness. Suppose to the contrary that there exists $0 \neq f \in L^{2}(\mathbb{T})$ such that $f|_{\mathbb{T}\setminus Z_{\psi}} = 0$ (i.e., $\operatorname{supp} f \subseteq Z_{\psi}$) and $(\widehat{f}(k))_{k\in\mathbb{Z}} \in \ell^{p}(\mathbb{Z})$. Since $f \neq 0$, the sequence $(\widehat{f}(k))_{k\in\mathbb{Z}}$ is non-trivial. Furthermore

$$\|\sum_{|k|\leq n}\widehat{f}(k)e_k - f\|_{L^2(\mathbb{T})} \to 0, \text{ as } n \to \infty.$$

Since I_{ψ} is continuous and $f \in \operatorname{Ker}(I_{\psi})$ we obtain

(10)
$$\|\sum_{|k|\leq n}\widehat{f}(k)e_k\|_{L^2(\mathbb{T};p_{\psi})}\to 0, \text{ as } n\to\infty.$$

Since $(\widehat{f}(k))_{k\in\mathbb{Z}}$ is non-trivial, then (10) contradicts (7), and therefore, the ℓ^p -linear independence of \mathcal{B}_{ψ} .

Assume now that Z_{ψ} is an ℓ^p -set of uniqueness. We want to prove that then (7) is valid. Suppose to the contrary that there is a non-trivial sequence $(c_k)_{k\in\mathbb{Z}} \in \ell^p(\mathbb{Z})$ such that

(11)
$$\lim_{n \to \infty} \|\sum_{|k| \leq n} c_k e_k\|_{L^2(\mathbb{T}; p_{\psi})} = 0.$$

Since $\ell^p(\mathbb{Z}) \subseteq \ell^2(\mathbb{Z})$, there exists $f \in L^2(\mathbb{T})$ such that $\widehat{f}(k) = c_k$, for every $k \in \mathbb{Z}$. Since (c_k) is non-trivial, we have $f \neq 0$. Therefore also

$$\|\sum_{|k|\leqslant n} c_k e_k - f\|_{L^2(\mathbb{T})} \to 0, \text{ as } n \to \infty.$$

Since I_{ψ} is continuous, using (11), we obtain $I_{\psi}(f) = 0 \in L^2(\mathbb{T}; p_{\psi})$, i.e., supp $f \subseteq Z_{\psi}$. Hence, we have $0 \neq f \in L^2(\mathbb{T})$ such that $f|_{\mathbb{T}\setminus Z_{\psi}} = 0$ a.e., and $(\widehat{f}(k))_{k\in\mathbb{Z}} \in \ell^p(\mathbb{Z})$. This is in contradiction with the assumption that Z_{ψ} is an ℓ^p -set of uniqueness.

If one examines the proof above carefully, then one sees that the key consequence of the Bessel system assumption is that, given $(c_k) \in \ell^p$, we obtain the convergence of the sum $\sum_{k \in \mathbb{Z}} c_k e_k$ in $L^2(\mathbb{T}; p_{\psi})$. Observe that in the case p = 1, i.e., when $(c_k) \in \ell^1$, this is always true. Hence, we also have the following corollary.

COROLLARY 4. \mathcal{B}_{ψ} is ℓ^1 -linearly independent if and only if Z_{ψ} is an ℓ^1 -set of uniqueness.

We expect that our main theorem is also valid without the restriction on Bessel systems, but this would require some additional technique (perhaps like in the case p = 2). We leave this, as well as the issue of p > 2, to future research.

References

- M. Bownik and D. Speegle, Linear independence of Parseval wavelets, Illinois J. Math. 54 (2010), 771–785.
- [2] L. Colzani, Existence of sets of uniqueness of ℓ^p for general orthonormal systems, Proc. Amer. Math. Soc. 83 (1981), 569–572.
- [3] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 39 (1990), 961–1005.
- [4] E. Hernández, H. Šikić, G. Weiss and E. N. Wilson, Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform, Colloq. Math. 118 (2010), 313–332.
- [5] E. Hernández, H. Šikić, G. Weiss and E. N. Wilson, On the properties of the integer translates of a square integrable function, Contemp. Math. 505 (2010), 233–249.

- [6] E. Hernández and G. Weiss, A first course on wavelets, CRC Press, Boca Raton, 1996.
- [7] I. I. Hirschman and Y. Katznelson, Sets of uniqueness and multiplicity for l^{p,α}, Israel J. Math. 3 (1965), 221–231.
- [8] Y. Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge University Press, Cambridge, 2004.
- Y. Katznelson, Sets of uniqueness for some classes of trigonometrical series, Bull. Amer. Math. Soc. 70 (1964), 722–723.
- [10] S. V. Kislyakov, A sharp correction theorem, Studia Math. 113 (1995), 177-196.
- [11] M. Nielsen and H. Šikić, Schauder bases of integer translates, Appl. Comput. Harmon. Anal. 23 (2007), 259–262.
- [12] S. Saliani, ℓ^2 -linear independence for the system of integer translates of a square integrable function, to appear in Proc. Amer. Math. Soc.
- [13] H. Šikić and D. Speegle, Dyadic PFW's and W_o-bases, Functional Analysis IX, Various Publ. Ser. (Aarhus), 48, Univ. Aarhus, Aarhus, 2007, 85–90.
- [14] H. Šikić, D. Speegle and G. Weiss, Structure of the set of dyadic PFW's, Contemp. Math. 451 (2008), 263–291.
- [15] I. Singer, Bases in Banach Spaces I, Springer-Verlag, New-York, 1970.
- [16] S. A. Vinogradov, A strengthening of Kolmogorov's theorem on the conjugate function and interpolational properties of uniformly converging power series, Trudy Mat. Inst. Steklov. 155 (1981), 7–40 (in Russian); Engl.transl.: Proc.Stecklov Inst. Math. 155 (1981) 3–37.
- [17] A. Zygmund, Trigonometric series, 2nd ed., Cambridge University Press, Cambridge, 1959.

H. Šikić Department of Mathematics University of Zagreb Bijenička 30, 10 000 Zagreb Croatia *E-mail*: hsikic@math.hr

I. Slamić Department of Mathematics University of Rijeka Omladinska 14, 51000 Rijeka Croatia *E-mail*: islamic@math.uniri.hr

Received: 9.4.2011. Revised: 3.9.2011.