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Abstract. Using the intrinsic definition of shape we prove an
analogue of well known Borsuks theorem for compact metric spaces.

Suppose X and Y are locally compact metric spaces with compact
spaces of quasicomponents QX and QY . For a shape morphism f : X → Y

there exists a unique continuous map f# : QX → QY , such that for
a quasicomponent Q from X and W a clopen set containing f# (Q) the
restriction f : Q → W , is a shape morphism, also.

1. Introduction

This is the well known theorem of Borsuk about the set of components
�X of a compact metric space X .

Theorem 1.1 (Borsuk). Let X and Y be compact metric spaces. Then
for any approximative map f from X towards Y , there exists an unique map
f∧ : �X → �Y such that for any component C0 of X, the restriction f| to
C0 is an approximative map from C0 to f∧ (C0 ).

Moreover, if f and g define the same shape morphism, then f∧ = g∧.
There are several generalizations of the theorem of Borsuk in non compact

case. For the case of spaces with compact components see [2–4,8,12] and under
conditions �X , �Y to be N-compact spaces and projections p : X → �X ,
p : Y → �Y to be closed, see [9, Corollary 1.5.].

For non compact spaces, it is expected that we have to use quasicompo-
nents instead of components.
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In [11], it is shown that if Sh(X) = Sh(Y ) then N-compactifications of
QX and of QY are homeomorhic. A similar result is given in [10].

Using the intrinsic definition of shape, we give an analogue of the Borsuks
theorem in the case of noncompact spaces under condition QX to be compact.

The most known approach for the intrinsic definition of shape of (metric)
spaces is by use of functions f : X → Y which are near to continuous. The
idea of ε - continuity (continuity up to ε > 0) leads to a continuity up to some
covering V of Y , i.e., V-continuity, and corresponding V-homotopy.

Definition 1.2. Let X, Y , be spaces, and V be a covering of Y . A
function f : X → Y is V-continuous, if for any x ∈ X, there exists a
neighborhood U of x, such that f(U) ⊆ V , for some member V ∈ V.

The family of all U , form a covering U of X . Shortly, we say that f :
X → Y is V-continuous, if there exists U such that f (U) ≺ V .

Definition 1.3. Two V - continuous functions f, g : X → Y are V-
homotopic, if there exists a function F : X × I → Y such that:

1) F : X × I → Y is stV - continuous;
2) There exists a neighborhood N = [0, ε)∪(1−ε, 1] of {0, 1} in [0, 1] such

that F |X×N is V - continuous;
3) F (x, 0) = f(x), F (x, 1) = g(x).

The relation of homotopy between V - continuous functions is an
equivalence relation.

Remark 1.4. The conditions 1) and 2), in the previous definition cannot
be replaced by a requirement F : X × I → Y to be a V - continuous
function, since in this case the juxtaposition of homotopies doesn’t work and
the relation of homotopy wouldn’t be an equivalence relation. This is shown
by [15, Theorem 1.1] and in the example in [1].

We mention that Akaike and Sakai in the paper [1] introduced an intrinsic
definition of proper shape for locally compact separable metric spaces, which
is shown to be equivalent with the usual proper shape theory [14]. Omitting
the word proper in their definitions we obtain a shape theory.

Also, we ommit their additional requirement coverings to consist of open
sets with compact closures, since they needed this requirement only for proper
functions.

We consider the set covX to be the set of all star finite coverings.
The requirement is connected with the requirement of stV-continuity of a
homotopy connecting two V-continuous functions. We mention that in the
case of locally compact spaces any covering has a locally finite refinement iff
any covering has a star finite refinement. So, for paracompact locally compact
spaces any covering has: 1) locally finite refinement 2) star finite refinement
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(i.e both locally finite coverings and star finite coverings are cofinite in the set
of all coverings) [6].

We repeat the main notions for the intrinsic definition of shape for metric
locally compact spaces.

A proximate net (fV) : X → Y is a net of functions fV : X → Y , fV is a
V-continuous function, indexed by all coverings of covY , such that if V ≻ W
then fV and fW are V-homotopic.

Two proximate nets (fV) , (f
′
V) : X → Y are homotopic if fV and f ′

V are
V-homotopic, for all V ∈ covY which we denote by (fV) ∼ (f ′

V).
This is an equivalence relation.
If (fV) : X → Y and (gW) : Y → Z are proximate nets, then for a

covering W ∈ covZ, there exists a covering V ∈ covY such that gW (V) ≺ W .
Then the composition of these two proximate nets is a proximate net (hW)
defined by (hW) = (gWfV) : X → Z.

Spaces and homotopy classes of proximate nets form the the category
whose isomorphisms induces classification which coincide with shape classifi-
cation, i.e., isomorphic spaces in this category have the same shape.

2. Quasicomponents

Usually, the quasicomponent of a point is defined as an intersection of all
clopen (=closed and open) sets containing that point. The component of a
point x is contained in the quasicomponent of x.

Here we give another definition of quasicomponents using functional
separation.

Definition 2.1. Subsets A and B of X are said to be functionally
separated in X if there exists a continuous function f : X → {0, 1} such
that f(A) = {0} and f(B) = {1}.

Definition 2.2. Quasicomponent Q of a point x consists of all points y
which cannot be functionally separated from x.

By Q(X) we denote the set of quasicomponents of X . We define a
topology of Q(X) by defining a base for this topology to be the family
QF = {A|A ∈ Q(X), A ⊆ F}, where F is clopen subset of X . The set Q(X)
with this topology is the space of quasicomponents of X . The set QF is clopen
in Q(X).

Theorem 2.3. If W is a covering of Y consisting of disjoint open sets
(shortly disjoint covering) and f : X → Y is a W - continuous function, then
for each quasicomponent Q of X, there exists WQ ∈ W such that fW (Q) ⊆
WQ

Proof. Let x ∈ X , Q is quasicomponent of X and WQ ∈ W such that
f (x) ∈ WQ. We define a continuous map h : Y → {0, 1} by h (WQ) = {0}
and h (Y \WQ) = {1}.
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We will prove that hf : X → {0, 1} is continuous.
For an arbitrary point z ∈ X there exists a neighborhood Uz and there

exists W ∈ W such that f (Uz) ⊆ W .
Now, if W = WQ, then hf (Uz) ⊆ h (WQ) ⊆ {0}, while if W 6= WQ,

hf (Uz) ⊆ h (W ) ⊆ {1}. It follows that the composition hf : X → {0, 1} is
continuous.

If we suppose that there is a point y ∈ Q such that f (y) /∈ WQ, then
x and y will be functionally separated by the map hf : X → {0, 1}. We
conclude that f (Q) ⊆ WQ.

Corollary 2.4. If W is a covering consisting of disjoint open sets and
f : X → Y is a W-continuous function, then for each component Q ∈ �X,
there exists WQ ∈ W such that fW (Q) ⊆ WQ.

Theorem 2.5. If W is a covering consisting of disjoint open sets, and
H : X × I → Y is a W-homotopy connecting W - continuous functions
f : X → Y and g : X → Y , then for each quasicomponent Q of X, there
exists WQ ∈ W such that f (Q) ⊆ WQ and g (Q) ⊆ WQ.

Proof. Since H : X × I → Y is stW continuous and W = stW , it
follows that H : X × I → Y is W - continuous. Similarly as in the previous
theorem, there exists WQ ∈ W such that H (Q× I) ⊆ WQ. Then f (Q) =
H (Q× {0}) ⊆ WQ and g (Q) = H (Q× {1}) ⊆ WQ.

Corollary 2.6. If W is a covering consisting of disjoint open sets, and
H : X × I → Y is a W-homotopy connecting W - continuous functions
f : X → Y and g : X → Y , then for each component Q ∈ �X, there exists
WQ ∈ W such that f (Q) ⊆ WQ and g (Q) ⊆ WQ.

Theorem 2.7. Let (fV) : X → Y be a proximate net, and W be a covering
consisting of disjoint open sets. Then, for each quasicomponent Q of X, there
exists WQ ∈ W such that for every V ≺ W, fV (Q) ⊆ WQ (and specially
fW (Q) ⊆ WQ ).

Proof. By Theorem 2.3, there exists a WQ ∈ W such that fW (Q) ⊆
WQ. If V ≺ W , then there exists a stW-continuous function, HWV : X × I →
Y . Since stW = W , HWW : X × I → Y is also a W-continuous function.
Since HWV (Q× {0}) = fW (Q) ⊆ WQ, it follows that HWV (Q× I) ⊆ WQ,
and that fV (Q) = HWV (Q× {1}) ⊆ WQ.

Remark 2.8. Let V be a disjoint covering. For every proximate net
(fU ) : X → Y we can defne a proximate net (f ′

U ) : X → Y by putting

f ′
U =

{

fU , if U ≺ V
fU∩V , if not U ≺ V .
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Since fU∩V is U ∩ V continuous, it follows that it is U continuous. If
U ′ ≺ U , then U ′ ∩ V ≺ U ∩ V , and since fU = fU∩V and fU ′ = fU ′∩V are
U ∩ V-homotopic, it follows that they are U-homotopic.

Then, (f ′
U ) is a proximate net, and (fU) and (f ′

U) are homotopic.
Since restriction of U-continuous function is U-continuous, and fU(Q) ⊆

WQ for all coverings U , it follows that the restriction (f ′
U) : Q → WQ is a

proximate net.

Corollary 2.9. Let (fV) : X → Y be a proximate net, and W be a
covering consisting of disjoint open sets. Then, for each component Q ∈ �X,
there exists WQ ∈ W such that for every V ≺ W, fV (Q) ⊆ WQ (and specially
fW (Q) ⊆ WQ ).

3. Compact metric case

In the case of compact metric spaces it is enough to consider proximate
sequences ( fn ) : X → Y , indexed by the set of natural numbers, [13].

A sequence of finite coverings, V1 ≻ V2 ≻ ... of a space such that for any
covering V , there exists n ∈ N, such that V ≻ Vn, we call a cofinal sequence
of finite coverings.

Definition 3.1. The sequence (fn) of functions fn : X → Y is a
proximate sequence from X to Y , if there exists a cofinal sequence of finite
coverings, V1 ≻ V2 ≻ ... of Y , such that for each natural number n the function
fn : X → Y is a Vn - continuous function, and if m ≥ n then fn and fm
are homotopic as Vn-continuous functions. In this case we say that (fn) is a
proximate sequence over (Vn).

Two proximate sequences (fn) and (f ′
n) : X → Y are homotopic if fn and

f ′
n are Vn-homotopic, for all n ∈ N.

This is an equivalence relation.
Let (fn) : X → Y be a proximate sequence over (Vn) and (gk) : Y → Z

be a proximate sequence over (Wk). For a covering Wk of Z, there exists
a covering Vnk

of Y such that gk (Vnk
) ≺ Wk. Then, the composition is a

proximate sequence (hk) = (gkfnk
) : X → Z.

Spaces and homotopy classes of proximate sequences form the category
whose isomorphisms induces classification of compact metric spaces which
coincide with shape classification, i.e., isomorphic spaces in this category have
the same shape.

Theorem 3.2. If X and Y are compact metric spaces, then any proximate
sequence ( fn ) : X → Y induces a function

( fn)# : �X → �Y.

Proof. Let ( fn ) : X → Y be a proximate sequences over covering (Vn)
and let C be a component of connectedness of the point x ∈ X . There exists
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a point of accumulation y ∈ Y , of the sequence (fn (x)), i.e. there exists a
subsequence ( fni

) such that fni
(x ) → y.

Suppose y ∈ D, where D is the component of connectedness of Y .
We will show that D does not depend on the choice of the accumulation

point.
Suppose the contrary, there exists another point of accumulation z ∈ E 6=

D, E a component of Y , such that fnj
(x ) → z.

Then there exist an open disjoint sets V and W such that D ⊆ V, E ⊆
W , and W = {V,W} is a covering of Y .

There exists n0 such that fn0
is W-continuous functions and for n ≥

n0, fn and fn0
are homotopic as Vn0

-continuous functions, and it follows as
W-continuous functions. Then if fn0

(x) ∈ V it follows that fn (x) ∈ V for
all n ≥ n0. And this is a contradiction. (the same contradiction is obtained
if we suppose fn0

(x) ∈ W ).
We will show that D does not depend on the choice of x ∈ C.
If x′ ∈ C and the component E of Y is chosen, in the same way like

the component D is chosen for x, then there exist two open disjoint sets V
and W such that V ∪ W = Y , and D ⊆ V,E ⊆ W . Put W = {V,W}. By
Theorem 2.3, there exists n such that fn (C) ⊆ V and fn (C) ⊆ W which is a
contradiction.

It follows that the function (fn)# : �X → �Y defined by ( fn)# (C ) =
D is well defined.

We omit the proof of the following theorem since is similar to the
corresponding theorem of the next section.

Theorem 3.3. Let ( fn) , ( gn ) : X → Y be two proximate sequences. If
( fn ) ∼ ( gn ), then the induced functions are equal, i.e.,

(fn)# = ( gn)# : �X → �Y

.

4. Non compact case

Let X and Y be locally compact metric spaces with compact space of
quasicomponents.

Theorem 4.1. If X and Y are topological spaces with compact space
of quasicomponents QY , then any proximate net (fV) : X → Y induces a
continuous function

(fV)# : QX → QY.

Proof. If (fV) : X → Y is a proximate net, and Q is a quasicomponent
of X , then for a disjoint covering W of Y , there exists WQ ∈ W such that
fW (Q) ⊆ WQ. Moreover if W ′ is another disjoint covering of Y such that
W ≻ W ′, and if fW′ (Q) ⊆ W ′

Q then W ′
Q ⊆ WQ.
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To prove the last statement we denote by FWW′ the homotopy connecting
fW and fW′ . Since FWW′ is stW-continuous there exists W1 ∈ W such that
FWW′(Q× I) ⊆ stW1.

SinceW is disjoint stW1 = W1, and since FWW′(Q×{0}) = fW(Q) ⊆ WQ

we obtain W1 = WQ. Then from fW′(Q) = FWW′(Q × {1}) ⊆ W ′
Q it follows

that W ′
Q ⊆ WQ.

Notice that there always exists a covering which is finer than a finite
number of coverings. From the previous statement it follows that for a fixed
Q, the intersections of a finite number of sets QWQ = {A|A ∈ QY,A ⊆ WQ}
is not empty.

The set QWQ = {A |A ∈ QY, A ⊆ WQ } is closed in QY . Since QY is
compact it follows that the intersection of all QWQ, where WQ is taken from
a disjoint covering W , is not empty and consists of one quasicomponent T .
We put (fW)# (Q) = T .

To prove the continuity of f#, let

f#(S) = T, (fV) : X → Y

be a proximate net and G, G ⊇ T , be a clopen subset of Y . Then QG =
{A|A ∈ QY,A ⊆ G} is a basis neighborhood of T in QY . There exists a
V ∈ covY that refines the covering {G, Y \G} of Y . Since the function fV is
V-continuous, it is {G, Y \G}-continuous, also.

Now, we will show that the set

F = {x |x ∈ X, fV (x) ∈ G}

is clopen in X . Suppose x ∈ F . Since the function fV is {G, Y \G}-continuous
and fV (x) ∈ G, it follows that there exists a neighborhood U of x such that
fV (U) ⊆ G. We obtained that U ⊆ F , so F is open. Similarly, X\F =
{x |x ∈ X, fV (x) ∈ Y \G} is open, i.e., F is closed.

Since S ⊆ F , QF is a neighborhood of S in QX . If S′ ∈ QF , then
f{G,Y \G} (S

′) ⊆ G, and from the construction of f# it follows that f# (S′) ∈
QG. We obtained f# (QF ) ⊆ QG, i.e., f# is continuous.

Theorem 4.2. Let (fV) , (gV) : X → Y are homotopic proximate nets
(fV) ∼ (gV). Then, for the induced maps holds:

(fV)# = (gV)# .

Proof. Let (HV) : X × I → Y be a proximate net, i.e., HV : X × I → Y
is a homotopy connecting Vcontinuous functions fV , gV : X → Y .

Let Q be a quasicomponent ofX such that (fV)# (Q) = T , (gV)# (Q) = R
and T 6= R. Then there exist an open disjoint sets V and W such that
T ⊆ V, R ⊆ W , and W = {V,W} is a covering of Y . HW : X × I → Y is a
stW-continuous, and since stW = W , (HW) : X × I → Y is W-continuous.

Let x be an arbitrary point from the quasicomponent Q. Then
HW ((x, 0)) = fW (x) ∈ V , while HW ((x, 1)) = gW (x) ∈ W . This is a
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contradiction, since by Theorem 2.3, HW (Q× I) ⊆ V or HW (Q× I) ⊆ W .
So, T = R, i.e., for the induced maps holds: (fV)# = (gV)#.

The last theorem is the main result, an analogue of Borsuks theorem, in
the case of non compact spaces. It is a consequence of Theorems 4.1, 4.2 and
2.7.

Theorem 4.3. Suppose X and Y are locally compact metric spaces with
compact spaces of quasicomponents QX and QY .

If a shape morphism f : X → Y is presented by a proximate net (fV) :
X → Y , then there exists a unique mapping (fV)# : QX → QY , such that,

if (fV) , (gv) : X → Y are homotopic proximate nets such that (fV) ∼ (gv),
i.e., they define the same shape morphism, then (fV)# = (gV)#.

Moreover, the restriction of f to any clopen set W containing (fV)# (Q),

presented by the restriction of proximate net (fV) : Q → W is also a shape
morphism.
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