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Matija Cencelj, Jerzy Dydak and Aleš Vavpetič
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Abstract. The purpose of this note is to characterize the asymptotic
dimension asdim(X) of metric spaces X in terms similar to Property A
of Guoliang Yu. We prove that for a metric space (X, d) and n ≥ 0 the
following conditions are equivalent:

a. asdim(X, d) ≤ n.
b. For each R, ǫ > 0 there is S > 0 and finite non-empty subsets

Ax ⊂ B(x, S) × N, x ∈ X, such that
|Ax∆Ay |

|Ax∩Ay |
< ǫ if d(x, y) < R

and the projection of Ax onto X contains at most n+ 1 elements
for all x ∈ X.

c. For each R > 0 there is S > 0 and finite non-empty subsets Ax ⊂

B(x, S)× N, x ∈ X, such that
|Ax∆Ay|

|Ax∩Ay|
< 1

n+1
if d(x, y) < R and

the projection of Ax onto X contains at most n + 1 elements for
all x ∈ X.

1. Introduction

Property A was introduced by G.Yu in [6]. We adopt the following
definition from [3] (see also [5]):

Definition 1.1. A discrete metric space (X, d) has property A if for all
R, ǫ > 0, there exists a family {Ax}x∈X of finite, non-empty subsets of X×N

such that:

• for all x, y ∈ X with d(x, y) ≤ R we have
|Ax∆Ay|
|Ax∩Ay|

< ǫ, where Ax∆Ay =

(Ax ∪ Ay)− (Ax ∩ Ay) is the simetric difference of the sets,
• there exists S > 0 such that for each x ∈ X, if (y, n) ∈ Ax, then
d(x, y) ≤ S.
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Asymptotic dimension was introduced by M. Gromov in [1] (see section
1.E) as a large-scale analogue of the classical notion of topological covering
dimension. It is a coarse invariant that has been extensively investigated (see
chapter 9 of [4] for some results and further references).

Definition 1.2. A metric space (X, d) is said to have finite asymptotic
dimension if there exists k ≥ 0 such that for all L > 0 there exists a uniformly
bounded cover of X (i.e., there exists S > 0 such that all elements of the cover
are of diameter at most S) of Lebesgue number at least L (i.e., every L-ball
B(x, L) is contained in some element of the cover) and multiplicity at most
k + 1 (i.e., each point of X belongs to at most k + 1 elements of the cover).
The least possible such k is the asymptotic dimension of X.

One of the basic results is that spaces of finite asymptotic dimension
have property A and known proofs of it use Higson-Roe characterization of
Property A (see [2] and [5]). The purpose of this note is to provide a simple
proof of that result and prove the following connection between Property A
and asymptotic dimension.

2. The main theorem

Theorem 2.1. If (X, d) is a metric space and n ≥ 0, then the following
conditions are equivalent:

a. asdim(X, d) ≤ n.
b. For each R, ǫ > 0 there is S > 0 and finite non-empty subsets Ax ⊂

B(x, S) × N, x ∈ X, such that
|Ax∆Ay|
|Ax∩Ay|

< ǫ if d(x, y) < R and the

projection of Ax onto X contains at most n+1 elements for all x ∈ X.
c. For each R > 0 there is S > 0 and finite non-empty subsets Ax ⊂

B(x, S) × N, x ∈ X, such that
|Ax∆Ay|
|Ax∩Ay|

< 1
n+1 if d(x, y) < R and the

projection of Ax onto X contains at most n+1 elements for all x ∈ X.

Proof. a) =⇒ b). Suppose asdim(X, d) ≤ n and R, ǫ > 0. Pick a
uniformly bounded cover U of X of multiplicity at most n + 1 and Lebegue

number at least L = 2R+ (2n+1)R
ǫ

. Let S be a number such that diam(U) < S
for each U ∈ U . For every U ∈ U pick an element aU ∈ U . We call a finite
sequence x0, . . . , xn of points in X an R-chain from x0 to xn if d(xi, xi−1) < R
for i = 1, . . . , n. For x ∈ X and U ∈ U let lU (x) denote the length of the
shortest R-chain joining x and a point outside of U , if there is no such chain,
we put lU (x) equal to the integer part of L

R
. Then let Ax be the following

union over all elements from U containing x.

Ax =
⋃

U∋x

{aU} × {1, . . . , lU (x)}

These sets are either empty (and we ignore them) or they are finite non-empty
sets and Ax ⊂ B(x, S) × N. If d(x, y) < R, then |lU (x) − lU (y)| ≤ 1, and
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because U is a cover of Lebesque number greather than R and of multiplicity
at most n+ 1 the total number of elements of U containing at least one of x
or y is at most 2n + 1. Therefore |Ax∆Ay | ≤ 2n + 1. There exists U0 ∈ U
such that B(x, L) ⊂ U0. Every R-chain joining x or y to X \ U must have at
least L−R

R
elements. If there is no R-chain from x to X \ U , there is also no

R-chain from y to X \U , hence {aU}×{1, . . . , [L
R
]} ⊂ Ax, Ay. In any case we

have |Ax ∩ Ay| >
L−R
R

− 1. Consequently

|Ax∆Ay|

|Ax ∩Ay |
<

(2n+ 1) ·R

L− 2R
= ǫ.

c) =⇒ a). Given R > 0 pick S > 0 and finite subsets Ax ⊂ B(x, S)× N,
x ∈ X , such that

|Ax∆Ay |

|Ax ∩ Ay|
<

1

n+ 1

if d(x, y) < R and the projection of Ax onto X contains at most n+1 elements
for all x ∈ X . Define sets Ux as consisting precisely of y ∈ X such that
({x} × N) ∩ Ay 6= ∅. The multiplicity of the cover {Ux}x∈X of X is at most

n+ 1 as z ∈
k⋂

i=1

Uxi
implies xi belongs to the projection of Az , so k ≤ n+ 1.

Let us show that {Ux}x∈X has Lebesgue number at least R. Given x ∈ X
choose z ∈ X so that |({z} × N) ∩ Ax| maximizes all |({y} × N) ∩ Ax|. In
particular

|({z} × N) ∩ Ax| ≥
|Ax|

n+ 1
.

Let d(x, y) < R then y /∈ Uz implies |Ax∆Ay| ≥
|Ax|
n+1 , so

|Ax∆Ay|
|Ax|

≥ 1
n+1 , a

contradiction. Therefore y ∈ Uz, hence B(x,R) ⊂ Uz.
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