PROPERTY A AND ASYMPTOTIC DIMENSION

Matija Cencelj, Jerzy Dydak and Aleš Vavpetič
University of Ljubljana, Slovenia and University of Tennessee, USA

Abstract. The purpose of this note is to characterize the asymptotic dimension \(\text{asdim}(X) \) of metric spaces \(X \) in terms similar to Property A of Guoliang Yu. We prove that for a metric space \((X, d)\) and \(n \geq 0\) the following conditions are equivalent:

a. \(\text{asdim}(X, d) \leq n \).

b. For each \(R, \varepsilon > 0 \) there exists a family \(\{A_x\}_{x \in X} \) of finite, non-empty subsets \(A_x \subset B(x, S) \times \mathbb{N}, x \in X \), such that \(\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \varepsilon \) if \(d(x, y) < R \) and the projection of \(A_x \) onto \(X \) contains at most \(n + 1 \) elements for all \(x \in X \).

c. For each \(R > 0 \) there is \(S > 0 \) and finite non-empty subsets \(A_x \subset B(x, S) \times \mathbb{N}, x \in X \), such that \(\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \frac{1}{n+1} \) if \(d(x, y) < R \) and the projection of \(A_x \) onto \(X \) contains at most \(n + 1 \) elements for all \(x \in X \).

1. Introduction

Property A was introduced by G.Yu in [6]. We adopt the following definition from [3] (see also [5]):

Definition 1.1. A discrete metric space \((X, d)\) has property A if for all \(R, \varepsilon > 0 \), there exists a family \(\{A_x\}_{x \in X} \) of finite, non-empty subsets of \(X \times \mathbb{N} \) such that:

- for all \(x, y \in X \) with \(d(x, y) \leq R \) we have \(\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \varepsilon \), where \(A_x \Delta A_y = (A_x \cup A_y) - (A_x \cap A_y) \) is the symmetric difference of the sets,
- there exists \(S > 0 \) such that for each \(x \in X \), if \((y, n) \in A_x \), then \(d(x, y) \leq S \).

2010 Mathematics Subject Classification. 54F45, 55M10, 54C65.
Key words and phrases. Asymptotic dimension, Property A.
Asymptotic dimension was introduced by M. Gromov in [1] (see section 1.E) as a large-scale analogue of the classical notion of topological covering dimension. It is a coarse invariant that has been extensively investigated (see chapter 9 of [4] for some results and further references).

Definition 1.2. A metric space \((X, d)\) is said to have finite asymptotic dimension if there exists \(k \geq 0\) such that for all \(L > 0\) there exists a uniformly bounded cover of \(X\) (i.e., there exists \(S > 0\) such that all elements of the cover are of diameter at most \(S\)) of Lebesgue number at least \(L\) (i.e., every \(L\)-ball \(B(x, L)\) is contained in some element of the cover) and multiplicity at most \(k + 1\) (i.e., each point of \(X\) belongs to at most \(k + 1\) elements of the cover). The least possible such \(k\) is the asymptotic dimension of \(X\).

One of the basic results is that spaces of finite asymptotic dimension have property A and known proofs of it use Higson-Roe characterization of Property A (see [2] and [5]). The purpose of this note is to provide a simple proof of that result and prove the following connection between Property A and asymptotic dimension.

2. The main theorem

Theorem 2.1. If \((X, d)\) is a metric space and \(n \geq 0\), then the following conditions are equivalent:

a. \(\text{asdim}(X, d) \leq n\).

b. For each \(R, \epsilon > 0\) there is \(S > 0\) and finite non-empty subsets \(A_x \subset B(x, S) \times \mathbb{N}\), \(x \in X\), such that \(\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \epsilon\) if \(d(x, y) < R\) and the projection of \(A_x\) onto \(X\) contains at most \(n + 1\) elements for all \(x \in X\).

c. For each \(R > 0\) there is \(S > 0\) and finite non-empty subsets \(A_x \subset B(x, S) \times \mathbb{N}\), \(x \in X\), such that \(\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \frac{1}{n+1}\) if \(d(x, y) < R\) and the projection of \(A_x\) onto \(X\) contains at most \(n + 1\) elements for all \(x \in X\).

Proof. a) \(\implies\) b). Suppose \(\text{asdim}(X, d) \leq n\) and \(R, \epsilon > 0\). Pick a uniformly bounded cover \(U\) of \(X\) of multiplicity at most \(n + 1\) and Lebesgue number at least \(L = 2R + \frac{(2n + 1)R}{2}\). Let \(S\) be a number such that \(\text{diam}(U) < S\) for each \(U \in U\). For every \(U \in U\) pick an element \(a_U \in U\). We call a finite sequence \(x_0, \ldots, x_n\) of points in \(X\) an \(R\)-chain from \(x_0\) to \(x_n\) if \(d(x_i, x_{i-1}) < R\) for \(i = 1, \ldots, n\). For \(x \in X\) and \(U \in U\) let \(l_U(x)\) denote the length of the shortest \(R\)-chain joining \(x\) and a point outside of \(U\), if there is no such chain, we put \(l_U(x)\) equal to the integer part of \(\frac{S}{R}\). Then let \(A_x\) be the following union over all elements from \(U\) containing \(x\).

\[
A_x = \bigcup_{U \ni x} \{a_U\} \times \{1, \ldots, l_U(x)\}
\]

These sets are either empty (and we ignore them) or they are finite non-empty sets and \(A_x \subset B(x, S) \times \mathbb{N}\). If \(d(x, y) < R\), then \(|l_U(x) - l_U(y)| \leq 1\), and
because \(\mathcal{U} \) is a cover of Lebesque number greater than \(R \) and of multiplicity at most \(n + 1 \) the total number of elements of \(\mathcal{U} \) containing at least one of \(x \) or \(y \) is at most \(2n + 1 \). Therefore \(|A_x \Delta A_y| \leq 2n + 1 \). There exists \(U_0 \in \mathcal{U} \) such that \(B(x, L) \subset U_0 \). Every \(R \)-chain joining \(x \) or \(y \) to \(X \setminus U \) must have at least \(\frac{L-2R}{L} \) elements. If there is no \(R \)-chain from \(x \) to \(X \setminus U \), there is also no \(R \)-chain from \(y \) to \(X \setminus U \), hence \(\{U \} \times \{1, \ldots, \lfloor \frac{R}{L} \rfloor \} \subset A_x, A_y \). In any case we have \(|A_x \cap A_y| > \frac{L-2R}{L} - 1 \). Consequently

\[
\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \frac{(2n + 1) \cdot R}{L - 2R} = \epsilon.
\]

c) \(\Rightarrow \) a). Given \(R > 0 \) pick \(S > 0 \) and finite subsets \(A_x \subset B(x, S) \times N \), \(x \in X \), such that

\[
|A_x \Delta A_y| \leq \frac{1}{n+1}
\]

if \(d(x, y) < R \) and the projection of \(A_x \) onto \(X \) contains at most \(n + 1 \) elements for all \(x \in X \). Define sets \(U_x \) as consisting precisely of \(y \in X \) such that \(\{x\} \times N \cap A_y \neq \emptyset \). The multiplicity of the cover \(\{U_x\}_{x \in X} \) of \(X \) is at most \(n + 1 \) as \(z \in \bigcap_{i=1}^{k} U_{x_i} \) implies \(x_i \) belongs to the projection of \(A_z \), so \(k \leq n + 1 \).

Let us show that \(\{U_x\}_{x \in X} \) has Lebesgue number at least \(R \). Given \(x \in X \) choose \(z \in X \) so that \(|\{(z) \times N \cap A_x| \) maximizes all \(|\{y \times N \cap A_x| \). In particular

\[
|\{(z) \times N \cap A_x| \geq \frac{|A_x|}{n+1}.
\]

Let \(d(x, y) < R \) then \(y \notin U_z \) implies \(|A_x \Delta A_y| \geq \frac{|A_y|}{n+1} \), so \(\frac{|A_x \Delta A_y|}{|A_y|} \geq \frac{1}{n+1} \), a contradiction. Therefore \(y \in U_z \), hence \(B(x, R) \subset U_z \).

Acknowledgements.

Supported in part by the Slovenian-USA research grant BI-US/05-06/002 and the ARRS research project No. J1–6128–0101–04. The second-named author was partially supported by MEC, MTM2006-0825.

References

M. Cencelj
Pedagoška fakulteta
Univerza v Ljubljani
Kardeljeva pl. 16, SI-1111 Ljubljana
Slovenija
E-mail: matija.cencelj@guest.arnes.si

J. Dydak
University of Tennessee
Knoxville
TN 37996
USA
E-mail: dydak@math.utk.edu

A. Vavpetič
Fakulteta za Matematiko in Fiziko
Univerza v Ljubljani
Jadranska ulica 19, SI-1111 Ljubljana
Slovenija
E-mail: ales.vavpetic@fmf.uni-lj.si

Received: 18.11.2011.