
Old and new ways to combat human influenza virus

Abstract

Influenza viruses have been with mankind for at least 300 years, with
epidemics occurring every few years and pandemics every few decades. They
replicate extremely rapidly in the host therefore demanding a fast and
effective antiviral response. Despite the availability of seasonal trivalent
vaccines and antivirals, which are effective for most recipients, influenza
remains serious disease. The reason for that is a grand capacity of the
influenza virus to adapt to new environmental conditions and evolutionary
pressure. Vaccination remains the main protective measure against influen-
za for general population. The first vaccine was administered in the 1940s
and ever since the influenza vaccine has provided tremendous relief against
influenza infections. However, time has revealed the ultimate limit of the
vaccine and the call for its reinvention has now come. The purpose of this
review is to give a brief but comprehensive overview of the currently used
prophylactic and therapeutic approaches against influenza and the new
most promising developments in this field.

INFECTION, STRUCTURE AND REPLICATION OF
INFLUENZA VIRUS

Influenza viruses have been with mankind for at least 300 years with
epidemics occurring every few years and pandemics every few deca-

des. The name came from Italian expression »influenza di freddo«
meaning »influence of the cold« because influenza typically occurs
during winter months. The identification and first isolation of a causa-
tive agent of influenza was achieved in the laboratory of P.P. Laidlaw (1)
by accidental infection of ferrets by infected laboratory stuff.

Influenza viruses cause disease among all age groups. The rates of
infection are highest among children, but the rates of serious illness and
death are highest among persons aged =65 years, children aged <2
years, and persons of any age who have medical conditions that place
them at risk for complications from influenza (e.g. chronic medical
conditions).

Influenza virus is shed into respiratory secretions, and then coughed
or sneezed into the air, which spreads the virus from person to person.
Typical incubation period for influenza is 1–4 days. Acute infection is
characterized by an abrupt onset of symptoms that include fever, chills,
cough, headache, myalgia, sore throat, malaise, anorexia and many
other non-specific symptoms. However, influenza may exacerbate un-
derlying medical conditions (pulmonary or cardiac disease).

None of the acute features are pathognomonic but the constellation
of respiratory and systemic symptoms at a time when influenza activity
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has already been confirmed in the locality is likely to lead
to accurate diagnosis.

Influenza viruses are a negative-strand RNA viruses
belonging to the family Orthomyxoviridae. There are
three types of influenza viruses according to the struc-
ture of the nucleoprotein gene: A, B and C.

Influenza viruses of type A cause epidemics and pan-
demics. They infect multiple species (humans, pigs, horses,
dogs, cats, various bird species, etc.) and are further
divided into subtypes according to the composition of the
hemagglutinin (HA) and neuraminidase (NA) genes.
There are 16 HA subtypes (H1 to H16) and 9 NA
subtypes (N1 to N9) that probably exist naturally in all
144 possible permutations. The majority of influenza A
virus subtypes exist in various waterfowl, causing subcli-
nical gut infection (2).

Influenza B viruses cause epidemics, but not pande-
mics and infect humans only causing a respiratory in-
fection similar to that caused by type A. The third type is
type C which infects humans only and causes mild res-
piratory infection.

Type A and type B influenza viruses are subjects of
this review.

Both influenza A and B viruses contain eight genome
segments (total of 13,588 nt) of negative single-stranded
RNA. The gene assignment is as follows: segment 1
codes for PB2, segment 2 for PB1, segment 3 for PA,
segment 4 for HA, segment 5 for nucleoprotein (NP),
segment 6 for NA, segment 7 for matrix proteins 1 and 2
(M1 and M2, respectively), and segment 8 for non-struc-
tural proteins 1 and 2 (NS1 and NS2, respectively). PB1,
PB2 and PA proteins form a complex responsible for
RNA synthesis, NP is a major structural protein which
interacts with the genome and together they form a
ribonucleoprotein (RNP), hemagglutinin (HA) is a sur-
face glycoprotein which binds host cell receptor, neura-
minidase (NA) is a second subtype specific transmem-
brane glycoprotein which enzymatically cleaves sialic
acid from glycoproteins, matrix proteins M1 and M2 are
structural proteins, M1 is placed on the inside of the of
the lipid envelope, M2 is the integral membrane protein
which acts as an ion channel protein, NS1 is non-struc-
tural protein which functions as a posttranscriptional
regulator, NS2 is a structural protein which forms an
association with M1.

Influenza virus attacks host epithelial cells of the res-
piratory tract by binding to sialic acid residues present on
cell surface glycoproteins or glycolipids through the re-
ceptor-binding site in the distal tip of HA molecule (3).
Different influenza viruses have different specificities for
sialic acid linked to galactose: á2, 3 linkages are specific
for avian viruses, both á2,3 and á2,6 linkages are specific
for swine viruses and á2, 6 is specific for human viruses.

The virus is then endocytosed and fuses with the
endosomal membrane by conformational change in HA
under low pH conditions. The uncoating of influenza
virions in endosomes is dependent on the acidic pH of

this compartment. M2 ion channel activity is essential for
the uncoating process. The low pH activates ion channel
of the virion associated M2 protein, which permits the
flow of ions from the endosome to the virion interior
disruption protein-protein interaction and frees RNP
from the M1 protein, thereby averting the nucleocapsid
(RNA, NP, PA, PB1 and PB2) into the cytoplasm. The
nucleocapsids pass to the cell nucleus, where transcrip-
tion into viral RNA and mRNA takes place. The trans-
lation of M1, NP, NS, PA, PB1 and PB2 proteins occurs
on free ribosomes, whereas that of HA, NA and M2
proteins occurs on membrane-bound ribosomes.

Several hours after infection the newly synthesized
viruses are released from the infected cells by the action
of another major glycoprotein, neuraminidase (NA).

IMMUNITY TO INFLUENZA VIRUS

Influenza infection occurs in a seasonal pattern and
leads to an extensive burden of disease. In healthy young
adults, influenza can cause debilitating febrile illness
lasting 1-2 weeks. In patients with pre-existing respira-
tory or cardiovacular disease, and in the frail elderly,
influenza infection can be more serious.

Infection of influenza virus is restricted to respiratory
epithelial cells. Most symptoms and complications there-
fore involve the respiratory tract. However, systemic com-
plications are sometimes observed, and induction of in-
flammatory cytokines has been indicated as a potential ex-
planation for the systemic feature of influenza infection.

Immunity to influenza virus infection has been a
research topic for more than 70 years (4). A rapid innate
cellular immune responses are induced that aim at con-
trolling virus replication. The adaptive immune system
forms the second line of defense against influenza virus
infection. Serum IgA are produced rapidly after influen-
za virus infection and the presence of these antibodies
(Abs) is indicative for a recent influenza virus infection
(5, 6). Serum Abs of the IgG subtype predominantly
transudate into the respiratory tract and provide long-
-lived protection (7). IgM Abs initiate complement-me-
diated neutralization of influenza virus and are a hall-
mark of primary infection (8, 9). Influenza virus
infection induces virus-specific Ab responses (10, 11),
especially for the two surface glycoproteins HA and NA,
which correlates with protective immunity (12). Anti-
-HA Abs bind to the trimeric globular head of the HA
predominantly and inhibit virus attachment and entry in
the host cell. Thus, they neutralize the infectivity of the
virus and are primarily responsible for preventing infec-
tion. Furthermore, these Abs facilitate phagocytosis of
virus particles by Fc receptor expressing cells. Also bind-
ing to HA expressed on infected cells mediates anti-
body-dependant cell cytotoxicity (ADCC). HA-specific
Abs are a solid correlate of protection provided that they
match the virus causing the infection (13). Anti-NA Abs
do not directly neutralize the virus but by inhibiting
enzymatic activity prevent the release of viruses from
infected cells (14) and limit virus spread. The M2 protein
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is the third viral membrane protein. This protein is highly
conserved among influenza viruses of different subtypes
and immunity against M2 was first demonstrated in
mice by using therapeutic monoclonal Abs (15, 16). The
protein itself is present at low concentration in infected
cells and thus M2-specific Abs are raised after natural
infection to a limited extent.

CTLs specific for core proteins (mainly NP, M1 and
PA) are responsible for reducing viral spread and thereby
for accelerating the recovery from influenza (17, 18, 19,
20, 21, 22). These proteins are highly conserved and
therefore CTL responses display a high degree of cross-
-reactivity, even between different subtypes of influenza
A virus.

Abs directed at the HA and NA surface glycoproteins
of the virus mediate protection that is long lived in the
absence of antigenic drift or shift. This was evident in
1977 when an H1N1 virus that had been circulated in
the early 1950s reappeared in human population. Signi-
ficant disease was only seen in persons born after the
H1N1 virus had stopped circulating in 1957. Because
individuals born after 1957 were infected multiple times
with H2N2 and/or H3N2 viruses that share internal
protein antigens (e.g. nucleoprotein) with the H1N1
virus, it was clear that cell-mediated immunity to shared
antigens played relatively small role in resistance (23).

Influenza viruses replicate extremely rapidly in the
host. Peak titers are achieved before a cell-mediated im-
mune response can be generated de novo or form memory
to restrict replication. Therefore the major goal of the
currently licensed influenza vaccines is to induce, prior to
infection, Abs that function to dampen virus replication.
New insights of adaptive immune responses against
influenza virus infection and new correlates of protection
could be the basis for development of novel vaccines.

VACCINES AGAINST INFLUENZA

Vaccination remains the main protective measure
against influenza for general population. The first vaccine
was administered in the 1940s and ever since the in-
fluenza vaccine has provided tremendous relief against
influenza infections. However, time has revealed the ulti-
mate limit of the vaccine and the call for its reinvention
has now come. The purpose of this review is to give a brief
but comprehensive overview of the currently used pro-
phylactic and therapeutic approaches against influenza
and the new most promising developments in this field.

In spite of the availability of influenza virus vaccines,
yearly epidemics occur affecting 10 to 20% of general
population and as much as 30% of school age children.
Gradual changes in the coding sequences of the surface
proteins HA and NA cause changes in these antigens
that accumulate over time and are positively selected by
immune response in vaccinated or infected individuals.
This process, called antigenic drift, gives rise to variants
that can infect individuals immune to the parental strain
and gives rise to periodic epidemics every 2 to 5 years.
Influenza B viruses undergo antigenic drift less rapidly

than influenza A viruses. On several occasions, a mis-
match occurred between the vaccine components and
the prevailing dominant strains, as seen in 1997/1998
and 2003/2004 (24). In such scenarios, the vaccine does
not confer the desired level of protection and the number
of infections increases.

Additionally, different influenza A virus subtypes can
be involved in a process called antigenic shift. Antigenic
shift refers to the reassortment of viral gene segments
between various influenza viruses of human or zoologi-
cal origin. This leads to the emergence of new strains that
have caused most influenza pandemics (25). In the most
recent pandemic, the 2009 H1N1 pandemic, the seaso-
nal vaccine did not contain pandemic strain and a sub-
stantial number of infections and deaths occurred (26).
Antigenic shift is not factored into the design of the
current vaccine because it is too difficult to predict when
and how the shift will occur. Consequently, a mono-
valent vaccine containing only the H1N1 pandemic strain
was rapidly produced for administration along with the
2009/2010 trivalent seasonal vaccine (27).

Yearly vaccination is required because each seasonal
vaccine elicits neutralizing Abs that are specific only for
the vaccine strains and closely related isolates, but rarely
for divergent strains.

LICENSED (SEASONAL) VACCINES

Composition of seasonal influenza
vaccine

The time required to implement any changes in vac-
cine production and ensure the timely delivery of in-
fluenza vaccine is a major constraint on the choice of
virus strains to be included in vaccine recommendations;
hence the recommendations are based on an assessment
of the future impact of circulating viruses and in parti-
cular of any emerging antigenic variants, before their full
epidemiologic significance is known. The scientific evi-
dence that forms the basis for a vaccine recommendation
thus includes not only the antigenic and genetic charac-
teristics of the viruses but also their prevalence, geogra-
phical distribution and the rate of spread.

The World Health Organization (WHO) reviews the
world epidemiological situation annually. The need for
global surveillance of influenza viruses was recognized
as early as in 1947 and led to the establishment of the
WHO Global Influenza Surveillance Network (GISN).
Since its inception the GISN has developed and now
comprises 125 National Influenza Centers (NIC) in 96
countries together with 5 WHO Collaborating centers
(CC), 4 Essential Regulatory Laboratories (ERL) in USA,
UK, Japan and Australia and other ad-hoc groups. Toge-
ther these laboratories process around 500 000 respira-
tory specimens per year to monitor influenza activity
around the globe. Approximately 8000 of the viruses
isolated by the NIC are shared with the CC for more
extensive antigenic and genetic characterization (28).
The resulting information is collected and used on an
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annual basis in recommending influenza seasonal vac-
cine candidate viruses, once for the northern hemisphere
(in February) and once for the southern hemisphere (in
October).

Over the past several years (from 1998-99 season to
2012-13 season, Table 1), the formulation had to be
changed due to antigenic drift of the strains circulating
in the human population. Only in some of the seasons
(presented in Table 1) the epidemiological surveillance
indicated that the composition should be identical to the
previous season.

Only egg-isolated viruses are used as potential vaccine
candidates. It was understood that the egg will »filter

out« many potential human viral contaminants from the
clinical specimen and would not introduce any further
mammalian viral contaminants.

Any virus that has a »cell» (e.g., MDCK) passage
history is deemed unsuitable as a candidate vaccine virus
because the cells used by surveillance laboratories are not
qualified for human vaccine manufacture and there is a
precedent that all viruses used in vaccine production,
including cell-based production, have been passaged only
in eggs.

It is now a common practice to use reassorted strains
giving high yields of the recommended surface antigens.
Upon identification of suitable egg-derived candidate
vaccine viruses, high growth reassortants are developed
by co-infection of eggs with the recommended egg-de-
rived vaccine strain and the high growth parental strain
A/Puerto Rico/8/1934 (sometimes referred as A/PR/8/34
or PR8).

Such reassorted viruses are then given free of charge
to vaccine manufacturers which then produce a vaccine
for an upcoming season.

The current seasonal influenza vaccine is produced
both as an inactivated and a live attenuated virus vaccine.
Major similarities and differences between these two
types of influenza vaccine are depicted in Table 2.

Inactivated influenza vaccine (IIV)

By definition, inactivated influenza vaccine is a steri-
le, aqueous suspension of a strain or strains of influenza
virus, type A or B, or a mixture of strains of the two types
grown individually in fertilized hen’s eggs, inactivated
and treated so that the integrity of the virus particles has
been disrupted without diminishing the antigenic pro-
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TABLE 1

Changing formulation of influenza virus vaccines.

Influenza season H1N1 H3N2 B type

1998-99 A/Beijing/262/95 A/Sydney/5/97 B/Beijing/184/93

1999-00 A/Beijing/262/95 A/Sydney/5/97 B/Beijing/184/93

2000-01 A/New Caledonia/20/99 A/Moscow/10/99 B/Beijing/184/93

2001-02 A/New Caledonia/20/99 A/Moscow/10/99 B/Sichuan/379/99

2002-03 A/New Caledonia/20/99 A/Moscow/10/99 B/Hong Kong/330/2001

2003-04 A/New Caledonia/20/99 A/Moscow/10/99 B/Hong Kong/330/2001

2004-05 A/New Caledonia/20/99 A/Fujian/411/2002 B/Shanghai/361/2002

2005-06 A/New Caledonia/20/99 A/California/7/2004 B/Shanghai/361/2002

2006-07 A/New Caledonia/20/99 A/Wisconsin/67/2005 B/Malaysia/2506/2004

2007-08 A/Solomon Islands/3/2006 A/Wisconsin/67/2005 B/Malaysia/2506/2004

2008-09 A/Brisbane/59/2007 A/Brisbane/10/2007 B/Florida/4/2006

2009-10 A/Brisbane/59/2007 A/Brisbane/10/2007 B/Brisbane/60/2008

2010-11 A/California/7/2009 A/Perth/16/2009 B/Brisbane/60/2008

2011-12 A/California/7/2009 A/Perth/16/2009 B/Brisbane/60/2008

2012-13 A/California/7/2009 A/Victoria/361/2011 B/Wisconsin/1/2010

TABLE 2

Major similarities and differences between inactivated

and live attenuated influenza vaccines.

Characteristic Inactivated
vaccine

Live attenuated
vaccine

Si
m

il
ar

it
ie

s

composition H1N1

H2N2

B type

H1N1

H2N2

B type

substrate for virus
growth

eggs eggs

composition redesign annually annually

D
if

fe
re

nc
es

virus inactivated live attenuated

side effects rare occasional

route of
administration

s.c. (injection) i.n. (sprayer)

age of vaccinees �6 months 2–59 years



perties of the hemagglutinin and neuraminidase anti-
gens. The stated amount of hemagglutinin antigen for
each strain present in the vaccine is 15 µg per dose, unless
clinical evidence supports the use of different amount
(29). There are several forms of inactivated vaccines de-
pending on the integrity of the virion: whole virion, split
virion, surface antigen or surface antigen presented in
virosomes.

The prevailing inactivation method used today for the
preparation of influenza vaccines is treatment with che-
micals like formalin or beta-propiolactone, optionally fol-
lowed by a detergent disruption process called splitting.

Whole inactivated viruses that are not split have con-
sistently proved to be better immunogens and confer a
more efficient protective response (30).

The vaccine is administered by subcutaneous injec-
tion, and vaccine protection is mediated largely through
the stimulation of HA-specific neutralizing Abs. This
immunity is short-lived and antigen specific, but lacks
any mucosal or T cell component.

Clinical studies have established that two doses of
currently formulated inactivated vaccine are required to
elicit protective Ab titers in immunologically naïve indi-
viduals. In practical terms, it means that each winter
previously unimmunized children should receive two
doses of vaccine one month apart, whereas single vaccine
dose can protect previously primed children and adults.

Live attenuated influenza vaccine
(LAIV)

There are two types of LAIVs licensed for human use:
one is produced in Russia, the second is produced in the
USA.

In Russia, live cold-adapted influenza virus vaccine
based on master strain for influenza live reassortant vac-
cine A/Leningrad/134/17/57 (H2N2) (31) has been used
for more than 30 years and administered to tens of mil-
lions of children with protective efficacy and without
evidence of deleterious side effects. In addition, there is
no sign of the spread of virulent revertants, either within
Russia or globally (32).

A cold-adapted LAIV produced in USA was licensed
in 2003 and is approved for persons aged from 2 to 59
years (33). Its basic concept is the attenuation of two
master strains A/Ann Arbor/6/60 and B/Ann Arbor/1/66
by repeated passage on chicken eggs under decreasing
temperature conditions. The final cold-adapted variants
replicate only in the mucus membrane of the upper
respiratory tract where temperature does not exceed
32–33 °C. The genetic basis of cold-adaptation are muta-
tions in a number of the viral genes that code for the
internal parts of the virus particle (34, 35).

Both LAIVs are adminstered intranasally by sprayer,
thus having the advantage of inducing a mucosal im-
mune response that closely mimics the response induced
by natural influenza virus infection.

In 2005, WHO stated that live, attenuated vaccines
based on genetic reassortment and formulated for nasal
spray delivery appear to be safe and efficacious and re-
present a substantial technical development, particularly
in view of possible future mass vaccination campaigns
(36).

How to choose: IIV or LAIV?

Overall comparison of similarities and differences be-
tween IIV and LAIV are presented in Table 2. A meta-
-analysis was performed on eighteen randomized com-
parative clinical trials involving a total of 5000 vaccinees
of all ages (37). LAIV (cold-adapted) induced signifi-
cantly lower levels of serum hemagglutination inhibiting
antibody and significantly greater levels of local IgA anti-
body than IIV. Yet, although they predominantly stimu-
late different antibody compartments, the two vaccines
were similarly efficacious in preventing culture-positive
influenza illness. Safety concerns about the use of LAIV
in humans have been expressed because: (a) of a close
anatomical connection between the respiratory epithelium
and CNS and the risk of vaccine-induced neurological
complications; (b) spontaneous genetic changes with
unpredictable consequences; (c) gene reassortment with
non-human influenza virus to yield a virus with pande-
mic potential (37). The choice between the two vaccine
types should be based on weighing the advantage of the
attractive non-invasive mode of administration of LAIV,
against serious concerns about the biological risks inhe-
rent to large scale use of infectious influenza virus, in
particular the hazard of gene reassortment with non-
-human influenza virus strains.

Alternative substrates for
the production of influenza vaccine

An idea to use substrates other than eggs for the
production of influenza vaccine has arisen from two
major reasons: (i) genetic modification of the virus grow-
ing in eggs compared to the originally isolated virus and
(ii) shortage of egg supply.

Influenza vaccine production is dependent on the
availability of embryonated eggs for virus growth. This is
an extremely cumbersome system with many disadvan-
tages with respect to selection of virus variants and the
presence of adventitious viruses.

To address the limitations of egg-based vaccines, re-
search has focused on the development of cell-culture
vaccine production technology using mammalian cells.

The use of mammalian cells was proposed for the
propagation of influenza virus either in MDCK (Madine
Darby canine kidney cells) (38, 39), Vero (African green
monkey kidney cells) (40) or PER.C6 (fetal retinoblast
immortalized upon transfection with E1 of adenovirus
type 5) (41) cells. Research over many decades indicates
that when a human influenza virus is adapted to grow in
eggs, it undergoes phenotypic changes that might inclu-
de changes to its antigenicity/immunogenicity. A virus
isolated on cells does not undergo the type of selection
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that occurs during initial passage in eggs and typically
the HA of a cell isolated virus is structurally and anti-
genically identical to the virus found in clinical material.
Primary isolation of type A (H3N2) virus in MDCK cells
resulted in the virus with HA identical to that of the virus
replicating in the infected individual, whereas similar
isolation of virus in the embryonated eggs resulted in the
selection of variants with amino acid substitutions in the
globular head region of HA molecule (42, 43). The same
was shown for human diploid cells MRC-5, money kid-
ney cells LLC-MK2 and guinea pig kidney primary cul-
ture (44, 45).

Many studies showed that influenza vaccine produc-
ed on the MDCK (46, 47) or Vero (40, 48-50) cell culture
is comparable with respect to immunogenicity and safety
to a conventional egg-derived vaccine.

However, none of the seasonal vaccines (inactivated
or live) has already been approved for use in humans.

PANDEMIC INFLUENZA AND MOCK
VACCINE

In recent years, global pandemic preparedness initia-
tives have stimulated the research and development of
new influenza vaccines for the control of epidemic and
pandemic influenza outbreaks.

In the last century pandemics took place three times:
a »Spanish flu« from 1918 to 1919 caused by the H1N1
virus resulted in 20–50 million death cases, an »Asian
flu« from 1957 to 1958 caused by the H2N2 virus result-
ed in 2 million deaths and a »Hong Kong flu« from 1968
to 1969 caused by the H3N2 virus resulted in 500 000
deaths.

As each pandemic virus became established, it rapidly
replaced the previous subtype. However, in 1977, an
H1N1 virus last seen in 1950 reappeared and its drifted
descendents have co-circulated with H3N2 virus to this
day. Increased worldwide surveillance has also noted the
introduction into the human population of novel strains
that did not become pandemic, probably because they
were unable to spread person-to-person. These include
the 1997 Hong Kong H5N1 virus and the 1999 H9N2
virus. Once the pandemic is over, viruses accumulate
mutations in the HA under the positive selection pres-
sure of neutralizing Abs and within 4 years a virus can
evade previously acquired immunity, and cause new epi-
demics (51).

H5N1 viruses

Influenza infection in waterfowl tends to be asympto-
matic, and the viruses are in ecologic stasis with the hosts
(2). In contrast, influenza virus A infections in humans
elicit an immune response that provides selective press-
ure and drives the virus to evolve. In 1997, a highly
pathogenic avian H5N1 influenza virus was isolated
from 18 humans of whom 6 died, demonstrating direct
transmission of avian influenza viruses to humans (52–55).
A cumulative number of confirmed human cases for

avian influenza A(H5N1) reported to WHO in the
2003–2012 period (by May, 2012) is 603 cases and 356
deaths (59%) (56).

Since then, a new pandemic threat has arisen due to
avian influenza viruses, such as H5N1 strains, which are
widespread in poultry and migratory birds and occa-
sionally infect men.

2009 »Swine flu«

Swine influenza was first recognized as a disease enti-
ty during the 1918 »Spanish flu« pandemic. Data (57)
support the hypothesis that the 1918 pandemic influenza
virus was able to infect and replicate in swine, causing a
mild respiratory disease, and that the virus was likely
introduced into the pig population during the 1918 pan-
demic resulting in the current lineage of the classical
H1N1 swine influenza viruses. Due to a strong resem-
blance of the clinical signs to the human influenza
disease, a clinical name of »hog flu« was given by J.S.
Koen to this new disease of pigs (58).

In March 2009, a swine origin influenza A (2009
H1N1) virus was introduced in the human population
and quickly spread from North America to multiple
continents.

Interestingly, the 1918 swine influenza virus may still
be circulating in swine (59).

Swine has been proposed as an intermediate host (a
»mixing vessel«) in the indirect transmission of in-
fluenza A viruses from an avian reservoir to humans,
based on the unique distribution in pigs of a2,3- and
a2,6-linked sialic acid moieties that are considered to be
avian- and human-specific receptors for influenza A
viruses, respectively. The HA gene of the 2009 H1N1
strain has been present in classical swine H1N1 viruses
that have circulated in pigs at least since their discovery
by Shope (58) in the 1930s. In contrast, the HA of human
H1N1 influenza viruses circulating from 1918 to 1957
and from 1977 to the present drifted progressively away
from the 1918 virus HA (60, 61). The 2009 pandemic
H1N1 virus caused greater morbidity and mortality in
children and young adults while people over 60 years of
age showed a higher prevalence of cross-reactive H1N1
antibodies, suggesting that they were previously exposed
to an influenza virus or vaccine that was antigenically
related to the pandemic H1N1 virus. There are several
studies which provide a mechanistic understanding of
the nature of serological cross-protection in people over
60 years of age during the 2009 H1N1 pandemic. Krause
et al. (62) showed that naturally occurring human mono-
clonal antibodies raised to 1918 influenza virus are able
to bind and inhibit the 2009 H1N1 virus in vitro.
O’Donnell CD et al. (63) studied in ferrets cross-pro-
tection H1N1 viruses from 1934, 1947 and 1950 against
pandemic H1N1 2009 virus. They concluded that the
loss of protective efficacy occurred between 1947 and
1950 and is associated with the additional glycosylation
site.
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The efficacy of seasonal live attenuated influenza vac-
cine (2008-2009 season) against virus replication and
transmission of a 2009 H1N1 virus in ferrets was studied
in (64). Results showed that immunization with seasonal
LAIV or H1N1 virus infection provides some cross-
-protection against the 2009 H1N1 virus, but had no
significant effect on the transmission efficiency of the
2009 H1N1 virus.

Development of anti-pandemic
vaccines

The match between vaccine virus strains and epide-
mic virus strains is generally good because the evolution
of human influenza viruses is continuously monitored
through careful, global virological surveillance, and vac-
cine strains are updated based on these data. For pan-
demic influenza there is no such basis upon which to
predict the antigenic characteristics of the virus which
will cross the species barrier and cause the pandemic.

The high case-fatality rates caused by outbreaks of
H5N1 in 2004 highlighted the huge shortfall in global
influenza vaccine production capacity in the event of a
pandemic. Initiatives have been undertaken to raise the
preparedness to the level which will decrease morbidity
and mortality in the case of pandemic. A major initiative
launched by the WHO to meet the Global Pandemic
Influenza Action Plan objective to increase vaccine
supply involved the transfer of influenza vaccine
production technology to developing countries (65).

Since pandemic influenza can occur at any time of
year and may spread rapidly through the world, vaccines
will form the main prophylactic measure against pan-
demic influenza. Speed in vaccine development is vital
and there are guidelines which provide the basis for a fast
track licensing procedure for pandemic vaccines within
the EU and USA (66, 67).

In order to ensure that, when the time comes, a vacci-
ne can be produced, tested and shown to be safe, im-
munogenic and protective, WHO has asked vaccine
manufacturers to start making vaccine based on strains
that may be related to an eventual pandemic strain,
naming such vaccines as »mock vaccines«.

The investigational H5 and H9 inactivated »mock«
vaccines have been shown to be less immunogenic than
interpandemic influenza vaccines. The amount of HA
required in pandemic vaccines to elicit a serum Ab res-
ponse of a magnitude similar to that of the licensed
interpandemic influenza vaccine is likely to exceed the
15 µg present in the current inactivated virus vaccine (68,
69). Such a low Ab response is explained by the naïve
immune system to avian influenza viruses which has not
been circulated in human population so far. Two-dose
regimen or the addition of an effective adjuvant have
been proposed in order to improve the response to such
vaccines (70–73).

In contrast, clinical trials of pandemic A/H1N1 vacci-
nes have shown a single vaccine dose to be sufficient to
induce adequate levels of seroprotection (74–77).

ALTERNATIVE INFLUENZA VACCINES
STILL IN DEVELOPMENT

Despite the global use of the seasonal vaccine (either
IIV or LAIV), these vaccines have major restraints: (i)
they must be administered yearly to population due to
the high variability of HA and NA, (ii) they cannot be
manufactured until the circulating viral strains have
been identified and (iii) the efficacy rate goes as low as
59% in 18–64 year-old population, while falling to 35 %
in those over 65 years of age (78). Therefore the need is
highlighted for novel vaccination forms (in particular
universal, pan-influenza vaccine) and formulations to
circumvent these limitations.

PAN-INFLUENZA VACCINE BASED ON
CONSERVED HA EPITOPE(S)

New strategies to design the influenza vaccine rely on
selective inducing of broadly neutralizing antibodies that
are specific for highly conserved viral epitopes – a pan-
-influenza vaccine – providing universal strain coverage.

Using whole virus or large viral proteins in the vac-
cine provides B cells with a wide variety of binding sites.
This dilutes the desired broadly protective antibody res-
ponse with non-neutralizing specificities, as well as spe-
cificities that are confined to strains within the same
subtype. However, routine vaccination can produce power-
ful, heterosubtypic antibodies that provide protection
against novel strains of influenza virus (reviewed in 79).
Manipulating the vaccination regimen or prime/boost
combination can further enhance the quality and quan-
tity of the antibody response (79).

The humoral response to influenza comprises both
newly activated naïve cells and recalled memory B cells.
Many influenza epitopes shift each year, therefore newly
activated cells will be specific for influenza antigens uni-
que to the latest variant, whereas recalled memory cells
would be specific for epitopes that have not changed. In
2008 it was demonstrated that individuals born in 1915
or earlier still had circulating memory B cells to the 1918
influenza pandemic strain (80) indicating that the B cell
memory compartment is extremely long lived. The very
same antibodies isolated against the 1918 pandemic strain
cross react to a conserved epitope on the 2009 pandemic
H1N1 strain (62).

Furthermore, mAbs from human IgM+ memory B
cells from the library constructed from B cells of patients
immunized with the seasonal vaccine were heterosub-
typic in that they had neutralizing activity against anti-
genically diverse H1, H2, H5, H6, H8 and H9 influenza
subtype (group 1) and the Ab CR6261 was able to confer
prophylactic protection and therapeutic efficacy in mice
challenged with H5N1 or H1N1 viruses (81).

The latest and most exciting discovery was of a neu-
tralizing Ab that recognizes a stalk epitope conserved by
virtually all influenza A strains that are infectious to
humans (82). Corti et al. (82) screened 104 000 peri-
pheral blood plasma cells from eight donors infected
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and/or vaccinated for Abs that recognize all HA sub-
types. They were able to isolate four plasma cells which
produce the same Ab named FI6 and bind to all 16 HA
subtypes, neutralize infection and protect mice and
ferrets from lethal infection. Crystal structure of FI6 Ab
bound to H1 or H3 HA proteins revealed that it binds to
a stalk domain which connects the head to the viral
membrane and is important for the fusion of the viral
and host cell membranes so that the pathogen can invade
human cell. The immune system usually does not have a
strong immune response to the partially hidden stalk
domain. A globular head domain that binds to cellular
receptors during viral entry contains the major antigenic
sites targeted by the immune system. However, there are
other modes of Ab action as mentioned above.

The key to a universal vaccine is to induce these Abs
in a more dominant fashion (reviewed in 79).

Besides the conserved HA stalk region, other studies
have emerged to show that the conserved extracellular
domain of the viral M2 protein (M2e) is able to elicit
cross-reactive Abs that can confer protection in mice
challenged with H5N1 or H1N1 viruses (83, 84).

TARGETED DESIGN OF A LAIV

The advent of techniques to engineer site-specific
changes in the genomes of negative-strand RNA viruses
(85-89) has made it possible to consider new vaccine
approaches. Specifically, it is now possible to tailor-make
strains with unique properties that lead to attenuation.

Research has been focused on: (i) modification of the
promoter regions of a specific viral gene, (ii) modifica-
tion of the amino acid composition of a specific protein
or (iii) modification of the nucleotide composition of a
specific gene creating non-optimal triplet codon compo-
sition.

Garcia-Sastre A et al. (90) showed that the NS1 pro-
tein of influenza viruses has IFN-antagonist activity.
Changing the NS1 protein can result in an altered viru-
lence characteristic. Truncated NS1 proteins are respon-
sible for increased attenuation of both influenza A and
influenza B viruses in mice (91). Genetically modified
viruses expressing N-terminal 99 to 126 aa of the NS1
protein possess intermediate IFN-antagonist activity in
mice. Such genetically engineered viruses may have opti-
mal phenotypic characteristics for stimulating a robust
immune response in humans, while at the same time
being safely attenuated because they cannot completely
overcome the IFN response of the host (91–93). It was
later shown that specific viral protein expression by NS1-
-truncated viruses is known to be decreased in infected
cells. Since the HA protein is the major immunogenic
component in influenza virus vaccine, Maamary J et al.
(94) created the influenza virus carrying G3A C8U »su-
perpromoter« mutations in the HA genomic RNA seg-
ment. This strategy retained the attenuation properties
of the recombinant virus but enhanced the expression
level of the HA protein in infected cells, and the mice
immunized with such virus demonstrated enhanced

protection from wild-type virus challenge compared to
the mice vaccinated with the virus without the »super-
promoter« (94).

Other authors have been working on different in-
fluenza genes, modifying either non-translated or trans-
lated regions. Introduction of silent mutations in con-
served regions of the NP protein was proven to be a
promising strategy, allowing attenuation of the master
strain but leaving the antigenicity of the gene product
unaltered (95).

Mutations in putative zinc finger (CCHH) of the M1
protein reduce virulence and such mutated attenuated
virus protected mice from lethal challenge with wt in-
fluenza virus (96). The M1 protein was also a target of
the study of Liu T et al. (97) who made a double muta-
tion in the nuclear signal (98, 99) of the M1 protein
(R101S – R105S), which resulted in attenuated proper-
ties of this virus and suggested its potential in develop-
ment of live attenuated influenza virus vaccines.

Polymerase complex has been shown to be a potential
target to develop a novel attenuation strategy either by
introducing mutations in a highly conserved protein-
-protein interaction of the viral polymerase subunits PA
and PB1 (100) or by mutating the promoter region (101).

A VACCINE BASED ON M2 PEPTIDE

The M2 protein of influenza viruses forms a proton
channel in the virion and intracellular membrane and
functions to release influenza virus genes from endo-
somes. The M2 protein Abs protect mice from subse-
quent challenge (102, 103). This viral protein is highly
conserved and Abs to M2 protein are cross-protective
between different subtype virus infections, although the
level of production is low (104). A recombinant protein
comprising the TLR5 ligand flagellin fused to four tan-
dem copies of the ectodomain of the conserved influenza
matrix protein M2 was expressed in E.coli and purified
(105). Mice immunized with 4xM2e in aqueous buffer,
without adjuvants or other formulation additives, de-
veloped potent M2-specific Ab response that was quanti-
tatively and qualitatively superior to those observed with
M2 peptide delivered in alum. Also, 4xM2e protected
mice from a lethal challenge with influenza A virus.

A COMBINED VACCINE TO NP, M1
AND M2

A broad CTL repertoire was detected in the human
memory CTL specific for the NP, NA, HA, M1, NS1,
and M2 viral proteins, the NP being the strongest inter-
nal antigen and a major target for CD8+ cells (106).

Based on this fact together with the knowledge that
the NP and M proteins are the most conserved influenza
virus proteins, Pleguezuelos et al. (107) designed a vac-
cine that consisted of equimolar mixture of four synthe-
tic polypeptides for NP (two polypeptides), M1 and M2.
These polypeptides represent potentially immunoreactive
conserved regions identified in silico and immunological
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analyses in ferrets (108). The Phase I clinical study show-
ed that the potential vaccine formulation is safe and CD8+

T-cell response was induced compared to pre-vaccina-
tion level. However, no significant Ab response was de-
veloped. The authors of this vaccine suggest that cellular
immune response may control and mitigate infection
and illness during natural infection.

AN INTERFERING VACCINE

Preventive and therapeutic measures have improved
since the time of the 1918 pandemic, but new approaches
are needed. An interfering vaccine is one of them. The
interfering vaccine comprises non-infectious, defective
interfering (DI) influenza A virus.

In the course of replication, most viruses make de-
fective interfering (DI) viruses, which are virus particles
composed of a normal set of viral proteins encapsidating
a deleted version of the viral genome. Because they lack
essential genetic information, DI viruses are replication
deficient. Replication of the defective genome is achieved
by the presence in the same cell of genetically compatible
infectious genome (helper virus), usually from the virus
that has generated the DI genome and which provides
the missing function(s) in trans. DI RNAs can arise from
deletions in any segment, but originate most often from
the three largest genomic RNAs (109).

Noble S et al. (110) used a vaccine which was UV-ir-
radiated to render it non-infectious but the vaccine re-
tained its interfering activity. Such interfering vaccine
was able to act prophylactically, preventing influenza in
mice and also converting an otherwise lethal infection
into one that is avirulent and immunizing if interfering
vaccine was applied shortly before, during or shortly after
the infection took place. Similar results were obtained
from studies in ferrets by (111).

Dimmock N J et al. (112) went further and showed
that the particular defective influenza virus RNA of 244
nt incorporated into virion which, although non-in-
fectious, delivers the RNA to those cells of the respiratory
tract that are naturally targeted by infectious influenza
virus. Those DI viruses protected mice against strong
challenge of homotype virus H1N1 but also against
other subtypes which were tested, H2N2, H3N2 and
H3N8, when administered up to 1 week before infection.
There was also a clear therapeutical benefit when the 244
virus was administered 24 to 48 h after a lethal challenge.
The mechanism by which DI viruses prevent disease in
treated animals is not fully understood. However, it
seems that the mechanism is far more complex than
solely a competition for replication with the challenge
virus (113).

DNA VACCINE

DNA vaccine has many advantages over current in-
activated and live attenuated influenza vaccines: high
surge capacity, stability and safety. Influenza DNA vac-
cine is based upon the use of a direct inoculation of

purified plasmid DNA encoding various influenza viral
genes which are constantly expressed and presented to
the immune system via intracytosolic antigen presen-
tation pathways and activate both cell-mediated and
antibody responses.

Several studies have demonstrated that inoculation of
plasmid DNA encoding HA of the influenza virus, via
gene gun or intramuscular injection, elicited specific
immune responses and provided protection against the
influenza virus in mice, ferrets and chickens (114–119).
The findings of (120) demonstrate comparable localiza-
tion of antibody forming cells in response to challenge in
mice vaccinated with either HA DNA or live virus.

However, to achieve such a good response they had to
administer the vaccine twice in amounts of as much as
100 mg per animal.

Additionally, some authors have shown that the im-
munostimulatory sequence within the plasmid back-
bone may stimulate the innate immune system which
creates a cytokine milieu that favors the generation of a
Th1-biased immune response.

A plasmid construct carrying M2e-HSP70c sequence
was shown to be immunogenic in mice and was able
both to confer protection against lethal challenge of
H1N1 virus and reduce viral load in lungs of infected
mice (121).

Co-expression of HA and either RIG-I, IL-6 or IFNá6
demonstrated that DNA vaccine potency may be aug-
mented by the incorporation of the immunoregulatory
proteins (122-124, respectively). Influenza B type virus
DNA vaccination is consistent with those obtained from
the influenza A vaccination (125).

While HA and NA-expressing DNA induced a high
level of specific antibody response, M1-, NP-, or
NS1-expressing DNA given to mice failed to provide
protection against lethal viral challenge, although M1-
and NP-DNA did induce detectable antibody response
(126). This was also shown earlier by Murphy and Cle-
mens (127) by passive transfer of anti-M1 and anti-NP
mAbs which failed to protect mice from challenge by a
wild-type influenza virus.

Although progress has been impressive, with pro-
tection shown against influenza challenge following
DNA vaccination, using DNA will be more appropriate
for prophylaxis of animal influenza, at least until the
light is shed on some of the unknowns.

ANTIVIRAL AGENTS (ANTIVIRALS)
FOR THE TREATMENT OF INFLUENZA
INFECTIONS

Although annual vaccination is the primary strategy
for preventing complications of influenza virus infec-
tions, antiviral medications with activity against influen-
za viruses can be effective for the chemoprophylaxis and
treatment of influenza. Four influenza antiviral agents
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are available: amantadine, rimantadine, zanamivir and
oseltamivir.

Amantadine and rimantadine are related adaman-
tanes which inhibit virus replication during the early
stage of infection by blocking the ion channel formed by
the M2 protein (128). These drugs are active only against
influenza viruses of type A and the resistance level is
extremely high. Viral resistance to adamantanes can
emerge rapidly during treatment because a single point
mutation at positions 26, 27, 30 31 or 34 of the M2
protein can confer cross resistance to both amantadine
and rimantadine (129, 130). By the year 2006, resistant
H3N2 viruses predominated in all regions of the world
(131–133). Center for Disease Control (CDC) also re-
ported in 2006 that 193 (92 %) of 209 influenza A
(H3N2) viruses isolated from patients in 26 states of the
USA demonstrated a change at amino acid 31 in the M2
gene that confers resistance to adamantanes (134).

Zanamivir and oseltamivir are chemically related
antiviral drugs. They are analogues of the viral N-acetyl
neuraminidase and act as neuraminidase inhibitors (135).
They have activity against both influenza A and B
viruses shortening clinical disease by 1.5–2.5 days but
have to be administered within 2 days of infection (136).

It was shown earlier that resistance to zanamivir and
oseltamivir can be induced in influenza A and B viruses
in vitro (137–144), but induction of resistance required
multiple passages in cell culture. By contrast, resistance
to amantadine and rimantadine in vitro could be induc-
ed with fewer passages in cell culture (145, 146).

Despite low levels of oseltamivir use in most countries,
the resistance of virus to oseltamivir emerged in the
2007–2008 season in Europe (147) and has now spread
from Europe to the rest of the world (148). The resistan-
ce is caused by an amino acid substitution H275Y in the
NA and is also associated with the D354G substitution
(28).

During the December 2008-January 2009 period, a
total of 30 countries from all WHO regions reported
oseltamivir resistance for 1291 of 1362 (=94 %) A(H1N1)
viruses analyzed (149).

CONCLUSION

Influenza remains serious disease despite the avail-
ability of seasonal trivalent vaccines and antivirals which
are effective for most recipients. Although these modali-
ties of medical intervention are helpful, new approaches
are being developed (Figure 1). Major improvements, bas-
ed on recombinant DNA techniques, promise to change
the landscape of vaccinology against influenza and many
other infectious diseases. However, it is unlikely that a
universal vaccine protecting against all influenza viru-
ses, and yet devoid of all unwanted characteristics, will be
invented in spite of so many potentially new vaccine
forms. The major reason for that is an enormous poten-
tial of this virus to mutate and evolve under selective
pressure such as immune response. Only a very few of
the new prophylactic and therapeutic approaches will
reach the goal of being approved and licensed for use in
human population. Others will be held somewhere along
that way.
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Even if a more perfect way to combat human influen-
za will be found, each one of us should be aware of the
simple influenza paradox saying that even a highly ef-
fective vaccine for a widespread disease will only provide
limited benefits at population level if the vaccine is gross-
ly underutilized. On the other hand, modest effective
vaccine might still provide considerable benefits at popu-
lation level if widely used for the target population (150).
This concept, which was developed for influenza, is
widely applicable to other infectious diseases preventable
by vaccination.
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