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ABSTRACT

We develop a generalized triangle geometry, using an ar-
bitrary bilinear form in an affine plane over a general field.
By introducing standardized coordinates we find canonical
forms for some basic centers and lines. Strong concurren-
cies formed by quadruples of lines from the Incenter hi-
erarchy are investigated, including joins of corresponding
Incenters, Gergonne, Nagel, Spieker points, Mittenpunkts
and the New points we introduce. The diagrams are taken
from relativistic (green) geometry.

Univerzalna afina geometrija  trokuta i
Cetverostruka simetrija srediSta upisane kruZnice

SAZETAK

Razvijamo opcéu geometriju trokuta koristeci proizvoljnu
bilinearnu formu u afinoj ravnini nad opéim poljem.
Uvodedéi standardizirane koordinate pronalazimo kanonske
oblike nekih osnovnih sredista i pravaca. Prouavamo
snaznu konkurentnost Cetvorki pravaca koji pripadaju “hi-
jerarhiji sredi$ta upisane kruznice” uklju¢ujuéi i spojnice
odgovarajuéih sjecista simetrala kutova trokuta, Geor-
gonnovih totaka, Nagelovih totaka, Mittenpunkova (imen-
ovano sa strane autora, op. ur.) te Novih to¢aka koje se

. . . uvode u &lanku. Slike su prikazane u tzv. zelenoj ge-
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1 Introduction formation on Triangle Centers in his Online Encyclopedia

. - . ([5], [6], [7]); and by the explorations and discussions of
This paperrepositions and extends triangle geometry ne Hyacinthos Yahoo group ([4]).

by developing it in the wider framework of Rational , ) o L .
Trigonometry and Universal Geometry ([10], [11]), valid The increased interest in this rich and fascmgtmg subject
over arbitrary fields and with general quadratic forms. Our IS 0 be applauded, but there are also mounting concerns
main focus is on strong concurrency results for quadruples@20ut the consistency and accessibilitypobofs which

of lines associated to the Incenter hierarchy. have not kept up with the greater pacedescoveries An-

Triangle geometry has a long and cyclical history ([1], [3], otherr] difficu!ty is that ttle clurren'i)fraTewk?'rkhis fm0d|e"eg
[16], [17]). The centroidG = X,, circumcenteiC — Xa, on the continuum as “real numbers”, which often leads

orthocenterH = X, and incentell = X, were known to synthetic treatments to finesse number-theoretical issues

the ancient Greeks. Prominent mathematicians like EulerOne of our goals is to provide explicit algebraic formu-
and Gauss contributed to the subject, but it took off mostly las for points, lines and transformations of triangle geom-
in the latter part of the 19th century and the first part of etry which hold in great generality, over the rational num-
the 20th century, when many new centers, lines, conics,bers, finite fields, and even the field of complex rational
and cubics associated to a triangle were discovered anchumbers, and with different bilinear forms determining the
investigated. Then there was a period when the subjectmetrical structure without any recourse to transcendental
languished; and now it flourishes once more—spurred by quantities or “real numbers”. Of course we proceed only
the power of dynamic geometry packages like GSP, C.a.R.,a very small way down this road, but far enough to es-
Cabri, GeoGebra, and Cinderella; by the heroic efforts of tablish some analogs of results that have appeared first in
Clark Kimberling in organizing the massive amount of in- Universal Hyperbolic Geometry ([14]); namely the con-
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currency of someguadruplesof lines associated to the
classical Incenters, Gergonne points, Nagel points, Rttte
punkts, Spieker points as well as tNew pointsvhich we
introduce here. We identify the resulting centers in Kim-
berling’s list.

Our basic technology is simple but powerful: we propose
to replace the affine study of general triangle under a
particular bilinear formwith the study of gparticular tri-
angle under a general bilinear formanalogous to the
projective situation as in ([14]), and using the framework
of Rational Trigonometry ([10], [11]). By choosing a very
elementary standard Triangle—with vertices the origin and

G = 3C+ iH. The reader might like to check that using
the green notation of perpendicularity, the green altisude
really do meet aH, and the green midlines/perpendicular
bisectors really do meet &t

In the general situation there ai@ur Incenters/Excenters
lo, 11,12 and I3 which algebraically are naturally viewed
symmetrically. Associated to any one Incerlteis aGer-
gonne point G = X7 (not to be confused with the centroid
also labelledG), a Nagel point N = Xg, a Mittenpunkt
D; = X9, aSpieker point §= X109 and most notably &lew
point L. It is not at all obvious that these various points
can be defined for a general affine geometry, but this is the

the two standard basis vectors—we get reasonably pleasantase, as we shall show. The New poibgsL, Lo, L are

and simple formulas for various points, lines and construc-

a particularly novel feature of this paper. They really do

tions. An affine change of coordinates changes any triangleappear to be new, and it seems remarkable that these im-
under any bilinear form to the one we are studying, so our portant points have not been intensively studied, as they
results are in fact very general. fit naturally and simply into the Incenter hierarchy, as we
Our principle results center around the classical four shall see.

points, but a big difference with our treatment is that we ac- The four-fold symmetry between the four Incenters is
knowledge from the start that the very existence ofithe  maintained by all these points: so in fact there fanar
center hierarchyis dependent on number-theoretical con- Gergonne, Nagel, Mittenpunkt, Spieker and New points,
ditions which end up playing an intimate and ultimately each associated to a particular Incenter, as also pointed ou
rather interesting role in the theory. Algebraically it be- in ([8]). Figure 1 shows just one Incenter and its related
comes difficult to separate the classical incenter from the hierarchy: as we proceed in this paper the reader will meet
three closely related excenters, and the quadratic rakatio the other Incenters and hierarchies as well.

that govern the existence of these carry a natural four-fold
symmetry between them. This symmetry becomes crucial
to simplifying formulas and establishing theorems. So in
our frameworkthere are four Incenterglly, 1> and k, not

one

To showcase the generality of our results, we illustrate the
orems not over the Euclidean plane, but in ti@kowski
plane coming fromEinstein’s special theory of relativity

in null coordinateswhere the metrical structure is deter-
mined by the bilinear form

(X1,¥1) - (X2,¥2) = Xay2 + Y1Xe.

In the language of Chromogeometry ([12] , [13]), this
is green geometrywith circles appearing as rectangu-
lar hyperbolas with asymptotes parallel to the coordinate
axes. Green perpendicularity amounts to vectors being Eu-
clidean reflections in these axes, while null vectors are par Figure 1: Aspects of the Incenter hierarchy in green ge-
allel to the axes. It is eye-opening to see that triangle ge- ometry

ometry is just as rich in such a relativistic setting as inis i
the Euclidean one!

The main aims of the paper are to set-up a coordinate sys-
tem for triangle geometry that incorporates the number-
theoretical aspects of the Incenter hierarchy, and respect
the four-fold symmetry inherentin it, and then to use this to
We summarize the main results of this paper using Figure catalogue existing as well as new points and phenomenon.
1 from green geometry. As established in ([13]), the trian- Kimberling’s Triangle Center Encyclopedia ([6]) distin-

1.1 Summary of results

gle A1A2A3 has agreen Euler line CHQust as in the Eu-

clidean setting, wher€ = X3 is the Circumcente; = X;

is the Cent@d, @)(H-I = X4 is the Orthocenter, with the
affine ratioCG: GH = 1 : 2, which we may express as
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triangle geometry; instead of certain distinguished asnte

In particular the various points alluded to here hewasis-

we have rather distinguished quadruples of related points. tent definitions over general fields and with arbitrary bilin
Somewhat surprisingly, this point of view makes visible a ear form$ The New points are the meets of the lines
number of remarkablstrong concurrences-where four
symmetrically-defined lines meet in a center. The proofs of CircumcenteC, and they are the reflections of the Ortho-
these relations are reasonably straight-forward but not au centerH in the Spieker points.

tomatic, as in general certain important quadratic refetio

are needed to S|mpl_|fy expressions for incidence. Here is anveen the triangle centers that appear here: the p@int
summary of our main results.

Main Results

)

The four linesljGj, j = 0,1,2,3, meet in the De
Longchamps poinKyo (orthocenter of the Double
triangle) — these are the Soddy lines ([9]).

The four linesljN; meet in the Centroi® = X, and
in fact G = 31; + 3N; — these are the Nagel lines.
The Spieker point§; also lie on the Nagel lines, and
; 1 1N

infactS; = 51+ 5N;.

iii) The four lines1;Dj meet in the Symmedian point

iv)

Vi)

K = Xg (isogonal conjugate of the Centro@) —
the standard such line is labellegg in [6].

The four linesljL; meet in the Circumcent&, and
in factC = 11 + 1L; — the standard such line is
labelledLy 3.

The four linesGjN; meet in the poinKeg (isotomic
conjugate of the Orthocentét) — these lines are
IabelledL7,8.

The four linesGjD;j meet in the Centroids = X,
and in factG = 2D; + $G; — the standard such line
is labelledLy 7.

vii) The four linesD;Sj meet in the Orthocentét = X4

— the standard such line is labellegl;.

viii) The four linesNjL; meet in the poiniXyo (ortho-

iX)

center of the Double triangle), and in fac{ =
%20+ 3N; — the standard such line is labellegs.

The New pointL; lies on the lineD;S; which also
passes through the Orthocent&rand in factS; =
1 1.
IH +1L;.

andL47, they are the reflections of the Incentéysn the

It is also worth pointing out a few additional relations be-

defined as the Isogonal conjugate of the Orthoceadtas
also the central dilation in the Centroid of the Symmedian
pointK; in our notationXgg = 8_1 > (K) . This implies that
G= %K + %Xeg. In addition the De Longchamps poidi,
defined as the orthocenter of the Double (or anti-medial)
triangle is also the reflection of the Orthoceniteiin the
CircumcentelC. These relations continue to hold in the
general situation.

Table 1 summarizes the various strong concurrences we
have found. Note however that not all pairings yield con-
current quadruples: for example the lines joining corre-
sponding Nagel points and Mittenpunkts ain general
concurrent.

In the final section of the paper, we give some further re-
sults and directions involving chromogeometry.

1.2 Affine structure and vectors

We begin with some terminology and concepts for elemen-
tary affine geometry in a linear algebra setting, follow-
ing [10]. Fix a fieldF, of characteristic not two, whose
elements will be callechumbers. We work in a two-
dimensional affine spac®’ overF, with V2 the associated
two-dimensional vector space. goint is then an ordered
pair A= [x,y] of numbers enclosed in square brackets, typ-
ically denoted by capital letters, suchAa®,C etc. Avec-

tor of V2 is an ordered paiv = (x,y) of numbers enclosed

in round brackets, typically,v,w etc. Any pair of points

A and B determines a vector = NB); so for example if
A=[2,—1] andB = [5,1], thenv = AB = (3,2), and this

is the same vector = CD determined byC = [4,1] and
D=17,3.

| | Incenterl | Gergonnes | NagelN | MittenpunktD | SpiekerS | NewlL |

Incenter — X20 G=X K=Xs G=X C=X3

Gergonnés Xo0 — Xe9 G=Xo — —

NagelN G=Xo Xe9 — — G=X2 X20

MittenpunktD K=Xs G=X - — H=X, |[H=X4

SpiekerS G=Xy — G=Xo H=X, — H=X,

New L C=X3 — X20 H=2X4 H=X4 —
Table 1
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The non-zero vectors; = (x1,y1) and vy = (Xp,y2) are

Three pointsA; = [x1,y1],A2 = [X2,¥2],Az = [X3,y3] are

parallel precisely when one is a non-zero multiple of the collinear precisely when they lie on a common line, which

other, this happens precisely when

X1y2 — X2y1 = 0.

amounts to the condition

X1Y2 — X1Y3 + Xoy3 — X3Y2 + X3y1 — X2y1 = 0.

Vectors may be scalar-multiplied and added component-Threelinesa; : by : c1), (a2 : bz : cz) and(az : bz : c3) are

wise, so that ifv andw are vectors and, 3 are numbers,
the linear combination av+ PBw is defined. For pointé
andB and a numbek, we may define thaffine combina-
tion C = (1—A)A+ AB either by coordinates or by inter-
preting it as the surA+ AAB. An important special case is
whenA = 1/2; in that case the poil@t = A/2+B/2 is the
midpoint of AB, a purely affine notion independent of any
metrical framework.

Once we fix an origirO = [0,0], the affine spacé&? and
the associated vector spa¥8 are naturally identified: to

concurrent precisely when they pass through the same
point, which amounts to the condition

a1bycs — aghsCy + aghscy — aghacy +aghico — aghicz = 0.

1.3 Metrical structure: quadrance and spread

We now introduce a metrical structure, which is deter-
mined by a non-degenerate symmetric 2 matrixC, with
entries in the fixed field over which we work. This ma-
trix defines a symmetric bilinear form on vectors, regarded

every pointA = [x,y] there is an associated position vector as row matrices, by the formula

a=OA= (x,y). So points and vectors are almost the same
thing, but not quite. The choice of distinguished point also v

u=vu=vCu .

allows us a useful notational shortcut: we agree that for a o non-degenerate means@et 0, and implies that if

pointA = [x,y] and a numbek we write

APY] = (1—=AN)O+ANA= [AX,AY]. 1)
A line is a proportionl = (a:b:c) wherea andb are
not both zero. The poinA = [x,y] lies on the linel =
(a:b:c), or equivalently the lind passes throughthe
pointA, precisely when

ax+by+c=0.

For any two distinct pointdy = [x1,y1] andAz = [X2,Y2],
there is a unique line= A1 A which passes through them
both; namely thgoin

(2)

In vector form, this line has parametric equatiod\; +Av,
wherev = AiA; = (o — X1,Y» — y1) is adirection vector
for the line, andA is a parameter. The direction vector
of a line is unique up to a non-zero multiple. The line
| = (a:b:c) has adirection vectar= (—b, a).

Two lines areparallel precisely when they have parallel
direction vectors. For every poift and linel, there is
then precisely one linen throughP parallel tol, namely
m: P+ Av, wherev is any direction vector fof. For any
two linesl; = (ag : by : ¢1) andl; = (a2 : by : ¢2) which are
not parallel, there is a unique poiAt= |1l which lies on
them both; using (1) we can write thiseetas

ArAr = (Y1 — Yo I Xo— X1 1 X1Y2 — XoY1) .

blcz — szl Ciap — Coasg
aiby —aghy " ajhy —anhy

A= |1|2=

= (albz — azbl)_l [b1C2 — b201, Ciap — Czal] .

3)
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v-u= 0 for all vectorsu thenv= 0.

Note our introduction of the simpler notation u = vu,
so that also/- v = v2. There should be no confusion with
matrix multiplication, even iz andu are viewed as % 2
matrices. Sinc€ is symmetricy-u=vu=uv=u-V.

Two vectorsv and u are perpendicular precisely when
v-u = 0. Since the matrixC is non-degenerate, for any
vectorv there is, up to a scalar, exactly one veaiavhich

is perpendicular ta.

The bilinear form determines the main metrical quantity:
thequadranceof a vectorv is the number

Qu=Vv-v=\2.

A vectorv is null precisely wherQ, =v-v=Vv> =0, in
other words precisely whenis perpendicular to itself.
Thequadrancebetween the pointd andB is

Q(AB) = Qg

In the Euclidean case, this is of course the square of the
usual distance. But quadrance is a more elementary and
fundamental notion than distance, and its algebraic nature
makes it ideal for metrical geometry using other bilinear
forms (as Einstein and Minkowski tried to teach us a cen-
tury ago!)

Two linesl andm areperpendicular precisely when they
have perpendicular direction vectors. A linensll pre-
cisely when it has a null direction vector (in which case all
direction vectors are null).

We now make the important observation that the affine no-
tion of parallelism may also be recaptured via the bilinear
form. (This result also appears with the same title in [15].)
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Theorem 1 (Parallel vectors) Vectors v and u are paral-  Proof. We may that assume at least two of the vectors are

lel precisely when linear independent, as otherwise all spreads are zero and
5 the relation is trivial. So suppose thatandv, linearly in-
QuQu = (Vu)*. dependent, ands = kvi + Iv,. Suppose the bilinear form
a b is given by the matrix
Proof. If C = (b o) V= (x,y) andu = (z,w), then an
explicit computation shows that C= (g 2)

(xw—y2)* (ac— b?) 2

QQu— (Vu)> = — 5 5. with respect to the ordered basigsv.. Then in this basis
(ax2 + 2bxy+ cy?)“ (a2 + 2bzw+ cw?) v1 = (1,0),v2 = (0,1) andvs = (k,I) and we may compute

Since the quadratic form is non-degeneraie- b? # 0, that

so we see that the left hand side is zero precisely when ac—b? 12 (ac—b?)

Xw—yz= 0, in other words precisely whemandu are 8~ ~ ¢ 2= a(akZ + 2bki + cl?)

parallel. 0O

: , . k? (ac—b?)

This motivates the following measure of the non- g — .

parallelism of two vectors; thepread between non-null b (ak? + 2bkl+cl?)

vectorsv andu is the number Then (4) is an identity, satisfied for @lb,c.kandl. O

_ (vu)2 We now mention three consequences of the Triple spread
s(hu)=1- QQu formula, taken from [10]. Th&qual spreads theoreis-

serts that ifsy = s = s, thensg = 0 orsz3 = 4s(1—s). This

This is the replacement in rational trigpnometry for the follows from the identity(s-+s-+ 53)2— 2(824_824_%) B

transcendental notion of anddeand in the Euclidean case
it has the value sfrB. Spread is a more algebraic, log- 4;253 =S (s _f]'s+.4322' lThheComplenleztaflyhgp;e?ds
ical, general and powerful notion than that of angle, andt eo"f)masse.”?‘ aht's?l_._l t ensid+fsQ N I. . 'ﬁ ?C'

together quadrance and spread provide the foundation fmJOWS y rewriting the Triple spread formula in the form

2

: : - —s51— %) =459 (1- ).
Rational Trigonometrya new approach to trigopnometry (S — 51— %) ; .
developed in [10]. The current pre-occupation with dis- And the Perpendicular spreads theoremwsserts that if

tance and angle as the basis for Euclidean geometry is & andu are non-null planar vectors with perpendicular

historical aberration contrary to the explicit orientatiof vectorsv andu™, thens(vu) = S(Vl’ul)' This fql- .
Euclid himself, and is a key obstacle to appreciating and lows Irom the CLompIementarylsprleads theoreim, since if
understanding the relativistic geometry introduced by Ein s(wVv) =s(uut) =1, thens(v:,ut) = 1—s(v',u) =
stein and Minkowski. 1-(1-s(vu)=s(vwu).

The spread(v,u) is unchanged if eithev or u are multi-
plied by a non-zero number, and so we definespeead
between any non-null lindsandmwith direction vectors Given a linel and a pointP, there is a unique line
anduto bes(I,m) = s(v,u). From the Parallel vectors the-  throughP which is perpendicular to the lirgit is the line

1.5 Altitudes and orthocenters

orem, the spread between parallel lines.id®o non-null n:P+Aw, wherew is a perpendicular vector to the direc-
lines| andm are perpendicular precisely when the spread tion vectorv of . We calln the altitude to | through P.
between themis.1 Note that this holds true evenliis a null line; in this case

a direction vectow of | is null, so the altitude tb through
1.4 Triple spread formula P agrees with the parallel tothroughP.

We use the following conventions: a &, B} of two dis-
tinct points is aside and is denoted\B, and a sef{l,m}
of two distinct lines is avertex and is denotedim. A set
{A1,A2,Az} of three distinct non-collinear points ista-

angle and is denoted\1A2Az. The triangleA1A2Az has

We now derive one of the basic formulas in the subject: the
relation between the three spreads made by three (copla
nar) vectors, and give a linear algebra proof, following the

same lines as the papers [11] and [15].

Theorem 2 (Triple spread formula) Suppose that linesls = A1Ay, 12 = AjAz andl1 = AxAz (by assumption
v1,V2,v3 are (planar) non-null vectors with respective no two of these are parallel), sidésAz, AiAz and AzAg,
spreads s= s(V2,V3), S = S(v1,v3) and § = s(v1,V2). and vertice$il,, 1113 andlals.
Then The triangle A1A2A3 also has threaltitudes ni,ny, n3

9 passing througl;, A2, Az and perpendicular to the oppo-
(st +52+53)" = 2(Sf + 5+ 3) +4s15p5s. (4) site linesAxAz, A1Az, A1A; respectively. The following
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holds both for affine and projective geometries: we give by multiplication by M is to send the original triangle to
a short and novel proof here for the general affine case.  thestandard triangle with points|0,0], [1,0] and [0, 1].

) _ The bilinear form in these new standard coordinates is
Theorem 3 (Orthocenter) For any triangle Al_AzAg the given by the matrix NQNT which is, up to a multiple,
three altitudes g, n», n3 are concurrent at a point H

Proof. Suppose thad;,az,as are the associated position - _ (711 614> _ (a b) )
vectors toAg, Az, Az respectively. Since no two of the 1 % b ¢

lines of the trianglé\1A2Az are parallel, the Perpendicular

spreads corollary implies that no two of the three altitude \yg \jl| shortly see that the Orthocenter in standard coor-
Iir_les are paralle_l. Definb! _to be the meet o_ﬁl an_d ny, dinates is@ac— b?)~1 [b(c—b),,b(a— b)]. In our example
with h the associated position vector. In the identity this would be the poinﬂ—%, 1_3} and to convert that back
into the original coordinates, we would multiply by N to
get

the left hand side equals 0 by assumption, so the right hand

is also equal to Oimplying thath— az is perpendicularto [~ 23]N=[9 -3]

the lineaias. Therefore, the three altitude lin@s,nz, n3

are concurrent at the poiht. | and translate by(3,1) to get the original orthocenter

We callH theorthocenter of the triangleA;AzAg. H = [12,—2]. This is shown in Figure 2, along with the
Centroid G= [82/15,18/5] and the Circumcenter G

1.6 Change of coordinates and an explicit example [11/5,32/5]—we will meet these points shortly.

If we change coordinates via either an affine transforma-
tion in the original affine spac&?, or equivalently a linear
transformation in the associated vector spséethen the
matrix for the form changes in the familiar fashion. Sup-
poseg:V — V is a linear transformation given by an in-
vertible 2x 2 matrix M, so thatg(v) = vM = w, with in-
verse matriXN, so thatvN = v. Define a new bilinear form

o by

(h—a1)(az—az) +(h—az) (a1 —ag) = (h—a3) (1w — @)

wiows = (WiN) - (WoN) = (wiN)C (waN)T
=wi (NCN")WJ . (5)

So the matrixC for the original bilinear form becomes the

. . T “ge
matrixD = NCN' for the new bilinear forne. Figure 2: Euler line in green geometry

Example 1 We illustrate these abstractions in a concrete

example that will be used throughout in our diagrams. 1.7 Bilines

Our basic Triangle shown in Figure 2 has pointg & A biline of the non-null verteXq[; is a lineb which passes
3,1, Ao = [4,4] and A = [47/5,29/5], and lines AA, = throughlsl, and satisfies(l1,b) = s(I2,b). The existence
(=3:1:8, AlA3=(-3:4:5 and AA3=(1:-3:8). of bilines depends on number-theoretical consideratiéns o

The bilinear form we will consider is that of green ge- g particularly simple kind.
ometry in the language of chromogeometry ([12], [13]),

determined by the symmetric matriy € 2 é and Theorem 4 (Vertex bilines) If v and u are linearly inde-

corresponding quadrance @, = 2xy. After translation \F/)ve\l;]v(ijtin;(r\]/ovr\]/)- n—LJ”s\(/SC\/t/())r;'retZiesgl;hs\/rﬁ(alrsﬂ a 10(35)(922 \;ector

by (~3,-1) we obtainAy = [0,0], A2 =[L.3], As=  gqiare. In this case we may renormalize v and u so that

[32/5,24/5]. The matrix N and its inverse M Q. = Qu, and then there are exactly two possibilities for
( 1 3) L <_% 5 > w up to a multiple, namely¥ u and v— u, and these are

N - M = N_ =

32 24 perpendicular.
5 5

send[1,0] and [0,1] to A, and Az, andA; andAs to [1,0]  Proof. Sincev andu are linearly independent, any vector
and[0, 1] respectively. So the effect of translation followed can be written uniquely as = kv+ lu for some numbers

68



KoG+16-2012 N. Le, N. J. Wildberger: Universal Affine Triangle GeometndaFour-fold Incenter Symmetry

k andl. The conditiors(v,w) = s(u,w) amounts to they are mutually concurrent). Naturally this triangle has
) ) been chosen carefully to ensure that Incenters do exist. In

W (w2 (K 1 Ivu)? = V2 (kvut 1u2)° green geometry, a vertex formed from a light-like line and
QQw  QuQw a time-like line will not have bislines, not even approxi-

— 2 (k2 (V2)2+ DAk (VU + 12 (vu)z) _ mately over the rational numbers.

2 . .
=2 (I (vu)? + 2lke (vu) + 12 (7)) 2 Standard coordinates and triangle
— k2u2(v2)2+l 212 (vu)? = K22 (vu) >4 122 (12)? geometry
— (v2u2 -~ (vu)z) (k2v2 -~ |2u2) —o. Our principle strategy to study triangle geometry is to ap-

ply an affine transformation to move a general triangle to
Sincev andu are by assumption not parallel, the first term standard position
is non-zero by the Parallel vectors theorem, and so the con-
dition s(v,w) = s(u,w) is equivalent t&®2 = 122 Since A1 =1[0.0]  A2=[1,00 and  As=[0,1]. ()
v,u are non-nully? andu? are non-zero, skandl are also,
since by assumptiow = kv+ lu is non-zero.
So if s(v,w) = s(u,w) then we may renormalize andu
so thatv® = u? (by for example setting = kvandt = lu,
andzthen rezplacingf,ﬁbyv,uagain),and then 1 s(v,u) = ly=AxAg=(1:1:-1) l,=AAs=(1:0:0)
(vu)*/(v?)° is a square. There are then two solutions:
w = Vv+uandw = v —u, corresponding tb = +k. Since l3=AA1=(0:1:0.
(v+u)(v—u) = V2 —Uu? = 0, these vectors are perpendic-
ular. The converse is straightforward along the same lines.

With this conventionA; A>Az will be called the (standard)
Triangle, with Points A1, A, As. ThelLines of the Trian-
gle are then

All further objects that we define with capital letters
refer to this standard Triangle, and coordinates in this
framework are calledstandard coordinates In general

Examp|e 2 ln our examp|e triang|e of Figure 2,1v= the standard coordinates of pOintS and lines in the plane
ATA;:, = (27/5,9/5), Vo = m) — (32/5,24/5) and v = of the original triangle depend on the choice of affine

transformation—we are in principle free to permute the

—
A1A2 =(1,3), so : . . .
1h2=(1,3), vertices—but triangle centers and central lines will have

(szgvg)z 25 well-defined standard coordinates independent of such per-

s(vp,v3) =1— = ™ = 16 mutations.
(v2Cv3 ) (VaCqV3) Since we have performed an affine transformation, what-
is a square, so the vertex ay Aas bilines. Since = ever metrical structure we started with has changed as in

vzcgvg = 1536/25and Q, = V3Cgv§ = 6, we can renor- (5). So we will assume that the new metrical structure, in
malize y by scaling it by5/16t0 get b = A—lB’ =(2,3/2) standard coordinates, is determined by a bilinear form with

so that now Q, = Qy,. This means thataH vz = A1Cy generic symmetric matrix
and i — vz = A1C; are the direction vectors for the bilines _fa b 7
of the vertex at A ~\b ¢’ (7)

We assume that the form is non-degenerate, so thakthe
terminant

A= detC = ac—b?
is non-zero. Another important number is théed trace

d=a+c—2h

It will also be useful to introduce the closely related sec-
ondary quantities

Figure3:Green bilines b at A

a=c-b b=a-c Cc=a-b
These are shown in Figure 3, along with three of the four

Incenters | (the other two vertices also have bilines, and to simplify formulas. For exampleé =a+¢.
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Theorem 5 (Standard triangle quadrances and spreads) The Circumlines are the lines of théMledial triangle

The quadrances and spreadsfAafA,As are Mi1MoM3, these are

Q=Q(A2,A5)=d  Q=Q(Ai,As)=cC by =MaMz=(2:2:-1) by =MzM; = (2:0:-1)

Qz=Q(A1,A2)=a bs3=MiMy;=(0:2:-1).

and The Double triangle of AjA;A3z (usually called thenti-
A A medial triangle) is formed from lines through the Points

s1 = S(Ahg, AAg) = 2= S(A2As, AoAr) = 2d parallel to the opposite Lines. ThisyD,D3 where
A

S3 = S(A3A1,A3A2) = a D; = [1, 1] D, = [—1, 1] D3 = [1, —1] .

Furthermore The lines oiD1D>D3 are

2 2 2 1.1 10
1—51:b— ]__SZZQ 1_%:@. DoD3=(1:1:0 DiD3=(1:0:-1)
ac ad cd DiD;=(0:1:-1).

Proof. Using the definition of quadrance,

Q= Q(A2,A3) = Qaz = (-1, 1)C(-1,1)"
=a+c—2b=d

Figure 4 shows these objects for our example Triangle.

and similarly forQ, andQgs. Using the definition of spread,

s1 = s(A1A2,A1A3) = s((1,0),(0,1))

2
(woceT)
= 1—
(2oc@oT)(©yceyT)
—1— in _A
ac ac Figure 4: The Medial triangleM1M,M3 and Double tri-
and similarly fors, andss. O angleD;D2D3

2.1 Basic affine objects in triangle geometry 2.2 The Orthocenter hierarchy

We now introduce some objects involving the metrical
structure, and so the entriasb,c of C from (7). Recall
thata=c—bandt=a—h.

TheAltitudes of AjAxAz are the lines

We now write down some basic central objects which fig-
ure prominently in triangle geometry, all with reference to
the standard trianglé; A2As in the form (6). The deriva-

tions of these formulas are mostly immediate using the
two basic operations of joins (2) and meets (3). We be-
gin with some purely affine notions, independent of the

ng=(c:-a:0) np=(b:c:—b) nz=(a:b:—h).

bilinear form. _ Theorem 6 (Orthocenter formula) The three Altitudes
TheMidpoints of the Triangle are meet at theOrthocenter
11 1 1 b

M1 = {575] My = {O,E] M3 = [570} sz[a,c].

TheMediansare Proof. We know that the altitudes meet from the Ortho-
center theorem. We check that passes throughl by

di =AM = <1 =1 0> do = AoMy = <1 12 :—1) ComputingbA*]- (a_c_a_c) =0.

d3=AgMz=(2:1:-1). Also ny passes througH since

TheCentroid is the common meet of the Medians g (ba+cg)— b= g (b(c— b)+c(a—b)—ac+ b2) -0

11
G= [EJ,’ §] : and similarly forns. O
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The Midlines my,mp and mg are the lines through the
midpointsM1, M2 andMs perpendicular to the respective
sides— these are usually callpdrpendicular bisectors
They are also the altitudes bf;M2Ms:

m = (—2c:2a:b)
mg=(2a:2b:—a).

my = (2b:2c: —c)

Theorem 7 (Circumcenter) The Midlines m,mp,mg
meet at theCircumcenter

1
C= A [cT,ad] .
Proof. We check thatn passes through@ by computing
1 _
EZ(—Z§0+Z¥®—+b
_ 1 2 2 _
_Z(ac—bz)( 2(a—b)’c+2(c—b) a)+(a ¢)=0

and similarly formp andmg. O

Figure 5: The Euler line of a triangle

As Gauss realized, this is also a consequence of the Ortho
center theorem applied to the Medial triangfeMoM3,
since the altitudes of the Medial triangle are the Midlines
of the original Triangle.

The three altitudes of the Double trianddeD,D3 are

th=(C:—a:-b) tr=(b:c:—-a tz=(a:b:-7).

Theorem 8 (Double orthocenter formula) The three al-
titudes of the Double triangle meet in the De Longchamps
point

1
Xo0 = n [b? — 2bc+ac, b” — 2ab+ad] .
Proof. We check that; passes througkyg by computing

(t(b*— 2bc+ac) —a(b? - 2ab+ac)) —b
1

((@a=b) (b? — 2bc+ac) — (c— b) (b? — 2ab+ ac)
—(a—c)(ac—b?)) =0

>l

and similarly fort, andts. O

The existence of an Euler line in relativistic geometries wa
established in [13], here we extend this to the general case.

Theorem 9 (Euler line) The points HC and G are con-
current, and satisfy G= 2H + 2C. The Euler line e= CH
is

e=(A—3bc: —A+3ba: bb).

Proof. Using the formulas above fét andC, we see that

1 2 N1, 2\ 1 _ _
§H +§C: (5) A [ba, be] + (5) A [ct, a3
= % [ac—b? ac—b?| = % [1,1] = G.

Computing the equation for the Euler li@H is straight-
forward. (I

In Figure 5 we illustrate the situation with our basic ex-
ample triangle with the Altitudes, Medians and Midlines
meeting to form the Orthocentét, CentroidG and Cir-
cumcentel respectively on the Euler line

Thebases of altitudesof M{MoM3 are:

1

= 1
2

1
E,=— Egzﬁ[ca].

E
! 2c

[oX:1 [c,q]
The joins of Points and corresponding bases of altitudes of
M1MoM3 are

AE; =(@:—-c:0)

AsEz=(a:T:-T).

AEy;=(a:c:-a)

Theorem 10 (Medial base perspectivity)The three lines
A1E1, AoE2, AsE3 meet at the point

_ 1
~a+tc-—b

,a).

Xe9 [c

Proof. Straightforward.

2.3 Bilines and Incenters

We now introduce théncenter hierarchy Unlike the Or-
thocenter hierarchy, this depends on number-theoretical
conditions. Recall thad = a+c— 2b.

Theorem 11 (Existence of Triangle bilines)The Trian-
gle A1A2A3 has Bilines at each vertex precisely when we
can find numbers,w, w in the field satisfying

ad=Vv? cd=w.

ac= U2

(8)
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Proof. From the Vertex bilines theorem, bilines exist pre-
cisely when the spreads, s, s3 of the Triangle have the
property that - 1,1 — s,1 — 53 are all squares. From

Proof. We use the Bilines theorem to find bilines through
A1 =[0,0]. The lines meeting & have direction vectors
v1 = (0,1) andvz = (1,0), with Q,, = (0,1)C(0,1)" =¢

the Standard triangle quadrances and spreads theorem, thisndQ,, = (1,0)C(1, 0)" = a. Now we renormalize and set

occurs for our standard triangha A>Az precisely when we
can findu, v, w satisfying (8). O

There is an important flexibility here: the threeenter
constantsu,v,w are only determined up to a sign. The
relations imply that

PR =W RP= PR W = AR,
So we may choose the signwfo thatdu= vw, and mul-
tiplying by u we get

acd = uvw
From this we deduce that

du=vw CV= uw and aw= uv.

(9)

The quadratic relations (8) and (9) will be very impor-
tant for us, for they reveal that the existence of the Inagente

hierarchy is a number-theoretical issue which depends not

only on the given triangle and the bilinear form, but also
on the nature of the field over which we work, and they
allow us to simplify many formulas involving,v andw.

Because only quadratic conditions are involved, we may lz=

always extend our field by adjoining (algebraic!) square
roots to ensure that a given triangle has bilines.

up = -vi to getQy, = %c: a=Qy,. So the biliness a;
have direction vectors

\Y;

w)

(O’ l) (17 0) (17
V)
W

and the bilines arb;; = (v:w:0) andb;_ = (v: —w:0).
Similarly you may check the other bilines througpand
Asz. U

Up+ Vo = and

\Y

W
Vv

m—w:W@Q—@®=Ci

Theorem 13 (Incenters) The triples {bi1,bp;, b3},
{byy,bp,b3_}, {b1,b2;,b3 } and {by ,by ,bz,} of
Bilines are concurrent, meeting respectively at the four
Incenters

[ —uw uv 1
lo= ; = [~w.V]
| UV—UW-+ VW Uv—uw+vw| (d+v—w)
[ uw —uv 1
= 5 = [Wv—V]
| —UV+UW+ VW —uv+uw-+vw| (d—v+w)
uw uv
lo= ; = [w, V]
| UV+ UW+ VW UV+uw+vw| (d+Vv+w)
[ uw uv 1
9 - [—V\/7 —V].
| UV+UW— VW uv+uw—vw| (d—v—w)

Proof. We may check concurrency of the various triples

The quadratic relations carry an important symmetry: we py computing

may replace any two af, v andw with their negatives, and

the relations remain unchanged. So if we have a formula

Fo involving u,v,w, then we may obtain related formulas
F1, P2, F3 by replacingv,w with their negativesy, w with
their negatives, and,v with their negatives respectively.
Adopting this convention allows us to exhibit the single
formulaFy, since therF, F, F3 are determined—we refer
to this asquadratic symmetry, and will make frequent
use of it in the rest of this paper.

From now on our working assumption is thahe stan-
dard triangle A1A2A3 has bilines at each vertex, implying
that we have Incenter constantsvuand w satisfying8)
and (9). Sou,v andw now become ingredients in our for-

mulas for various objects in the Incenter hierarchy, along

with the numbers, b andc (andd) from the bilinear form
co (a b)

“\b ¢/
Theorem 12 (Bilines) The Bilines of the Triangle are
by = (viw:0) and b_ = (v:—w:0) through A,
bor =(u:u+w:—uyand bp_ = (u: u—w: —u) through

Ay, and 3 = (u—v:u:—u)and - = (u+v:u: —u)
through A.
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v w 0 \Y w 0
det| u u+w —u|=detl u u—w -—u
u—v u —u u+v u —u
v —W 0 \Y —W 0
=def u u—w —u|=def u u+w —u|=0.
u—v u —u u+v u —u

The corresponding meet ¢f: w: 0), (u:u+w: —u) and
(uU—v:u:—uyis

bbb, — —uw uv
LR = V= uw—+ VW Uv— uw—+ vw
- [-wy]
“aw—cv+dut
1
- = [—wV=lo
m+v—w)[ V] =lo

We have used the quadratic relations, and the last equality
is valid since

u(d+v—w)— (aw—cv+du) = cv—aw+ uv— uw=_0.

The computations are similar for the other Incenterd.]
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The reader should check that the formulasliol,, I3 may 2.4 New points
also be obtained frony by the quadratic symmetry rule
described above. From now on in such a situation we will
only write down the formula corresponding i and we
will also often omit algebraic manipulations involving the
guadratic relations.

Thelncenter altitude t;jj is the line through the Incentér
and perpendicular to the Lidgof our Triangle. There are
twelve Incenter altitudes; three associated to each lecent
The Incenter altitudes associatedd@are

One of the main novelties of this paper is the introduc-
tion of the fourNew points . associated to each Incenter
[j. Itis surprising that these points have seemingly slipped
through the radar: they deserve to be among the top twenty
in Kimberling’s list, in our opinion.

tio=(C(d+v—w): —a(d+v—w):av+cw)
too= (b(d+v—w):c(d+v—w):bw—cv)
tso=(a(d+v—w):b(d+v—w):aw—bv).

The Contact points Gj; are the meets of corresponding
Incenter altitudes; and Linesl;. There are twelve Con-
tact points; three associated to each Incenter. The Contact
points associated to the Incentgare

1
Cio= a—w,Cc+V
10= (q3ve )[ +V]
C20 = [0, CvV— bM ) ) )
c(d+v—w) Figure 7: Green Incenter altitudes, New points L and In-
B 1 New center C
Cso adrv_ )[bv aw,0].

Theorem 14 (New points) The  triples  {t11,t22t33},

{tio,t23,t32}, {t2o,t13,t31} and {tso,t12,t21} of Incenter
altitudes are concurrent. Each triple is associated to the

Incenter which does not lie on any of the lines in that triple.
b The points where these triples meet arelftesv pointsL;;
b for example{t11,to2 t33} meet at
_ I
T~ ) A I Lo= % [au+ cv+ bw+ ct,cu— bv—aw+ ag .
1 ¢ A3 Proof. We check that g as defined is incident with; =
il [ ({t(d—v+4w): —a(d—v+w): —av—cw) by computing
7!;/ ) ! ((c=b)u+cv+bw+c(a—Db)) (a—b) (a+c—2b—v+w)
- AT 1;' 5 5 + ((a—b)u—bv—aw+a(c—b)) (—(c—b) (a+c—2b—v+w))
—2(ac—b?) ((c—b)v+ (a—b)w)
Figure 6: Green bilines bincenters | Contact points and — alc+ 2ab® — 2ach— a?h? — ac® + 2ac?b -+ c?b?
_ Incircles _ _ — 2cb® 4 b?V2 — b?wW? — acV? + acw?
In Figure 6 we see our standard example Triangle in the N
green geometry with Bilined at each vertex, meeting = (&c—b%) (a°—c"— 2ab+ 2cb— ¥+ w?) =0

in threes at the Incenteits The Contact points are also
shown, as are the Incircles, which are the circles with re-
spect to the metrical structure centered at the Incenters an ) o ]
passing through the Contact points: they have equations inTh€In-New lines are the joins of corresponding Incenter
the variable poinK of the formQ(X,1) = Q(C, 1) wherel points and New points. The In-New line associatethts

is an incenter an@ is one of its gssociated Contact points. loLo = (—aad+ (ac+ab— sz) V4 aaw:

In this green geometry such circles appear as rectangular B B 5 3 B
hyperbolas, with axes parallel to the coordinate axes. cCd+ v+ (ac+ ch—2b%) w: —aaw— ctv).

using the quadratic relations (8). The computations for the
other Incenter altitudes and, Lo, L3 are similar. O
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Theorem 15 (In-New center) The four In-New linesjL;
are concurrent and meet at the circumcenter

1
C= A [ct,ad],
and in fact C is the midpoint dfL;.

Proof. We check tha€ is the midpoint of ;L by comput-
ing

1I-+1L-— 1 1 W, V]
212N =2) @rvow Y

+<}> i[(c—b) u+cv+bw+c(a—b), (a—b) u—bv—aw+a(c—b)]

2) 27

:m[Zc(a_b)(d+V—W),23(C—b)(d+v—w)]
1

:i[CQaa]:C

O

Since the central dilation preserves spread, the three alti
tudes ofA1A2Az are sent b36,1/2 to the three altitudes of
the medial triangle, which are the midlines/perpendicular
bisectors of the original Triangle, showing again that,»
sends the orthocenteéf to the circumcente€, and as in
the Euler line theorem it follows tha® lies one = HC,
dividing HC in the affine ratio 2 : 1

We will see later that the central dilation also explains
aspects of the various Nagel lines (there are four), since
d_1/ takes any Incentek to an incenter of the Medial
triangle, called aSpieker point §. It follows that the
four joins of Incenters and corresponding Spieker points
all pass througls, andG divides each sidgS in the affine
ratio2: 1

The inverse of the central dilatidn 1 /> is d-2, which takes

the Points ofA;A2A;3 to the points of the Double triangle
D1D2D3, which hasAjA2Ag as its medial triangle.

Theorem 16 (Central dilation formula) The central di-
lation takes X= [x,y] to

The In-New center theorem shows that what we are calling
the In-New lines are also the In-Circumcenter lines, the 0_1/2(X) = 2 1-x1-y]
standard one which is labelléd 3 in [6]. The Incenter al-

. . . - while the inverse central dilatiod_» takes X t®_» (X) =
titudes, New points and In-New lines are shown in Figure 2 2(X)

- [1-2x,1—2y].

The proofs in these two theorems are typical of the onesProof. If Y =&_;, (X) then affinely%X + %Y = G so that
which appear in the rest of the paper. Algebraic manipula- 3 1 1

tions are combined with the quadratic relations to simplify Y = EG - EX =5 [1-x1-y].

expressions. Although sometimes long and involved, the
verifications are in principle straightforward, and fsom
now on we omit the details for results such as these.

Inverting, we get the formula fay_, (X). O

Example 3 The central dilation of the Orthocenter is

) 1 b(c—b) b(a—Db)
3 Transformations 01p(H)=3|1-—F—1-—F
Important classical transformations of points associtied 1 [c(a—Db),a(c—h)] = % [cc,aa] =C

a triangle include dilations in the centroid, and the isogo- ZA
nal and isotomic conjugates. It is useful to have generalwhich is the Circumcenter.

formulae for these in our standard coordinates. Example 4 The inverse central dilation of the Orthocen-

ter is theDe Longchamps point Xoo—the orthocenter of

3.1 Dilations about the Centroid the Double triangléd1D,D3

The dilationd of factorA centered at the origin takés y]

2b(c—b 2b(a—b
to A[x,y]. This also acts on vectors by scalar multiplying, 6-2(H)=Xp0= |1— (A ),1— (A )
and in particular it leaves spreads unchanged and multi- 1
plies any quadrance by a factor ®. Similarly the dila- == [b2 — 2cb+ac,b’— 2ab+ ac|.

tion centered at a poit takes a poinB to A+ AAB. Any A

dilation preserves directions of lines, so preserves sisgtea 3.2 Reflections and Isogonal conjugates
and changes quadrances between points proportionally.
Given our TriangleAjA2Az with centroid G, define the
central dilation &_; , to be the dilation by the factor1/2
centered aG. It takes the three Points of the Triangle to the
midpointsM1, M2, M3 of the opposite sides. This medial
triangleM1M>Mj3 then clearly has lines which are parallel
to the original triangle.

Suppose that is a non-null vector, so thatis not perpen-
dicular to itself. It means that we can find a perpendicular
vectorw so thatv andw are linearly independent. Now if
uis an arbitrary vector, write = rv 4+ swfor some unique
numbers ands, and define theeflection of uin vto be

rv(U) =rv—sw
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If we replacev with a multiple, the reflection is unchanged.
Now suppose thdtandm are lines which meet at a point
A, with respective direction vectossandu. Then there-
flection of min | is the line througiA with direction vector
rv(u). Itis important to note that if is the perpendicular
to| throughA, then

r (m)=rn(m).

Our standard trianglé\;A2Az determines an important
transformation of points.

Theorem 17 (Isogonal conjugate)lif X is a point dis-
tinct from A, Az, Az, then the reflections of the lines
A1X,AxX,AsX inthe bilines at A Az, Az respectively meet
in a point i(X), called theisogonal conjugate of X. If

X =[xy] then

X+y—1

HX) = ax2 + 2bxy-+ cy? — ax— cy

[cy,aX .

Proof. First we reflect the vectoa = (x,y) in the bi-
lines (v:w:0) and (v: —w:0) throughA;. We do this
by writing (X,y) = r (W,V) +S(W, —V) = (rw +swrv — sv)
and solving to getr = (2ww) *(vx+wy) and s =
(2vw) " (vx—wy) . The reflection is then

(W) (W —v) = 5

(vx+wy) (w,v)

WYy VX
v’ w

2vw )
which is, up to a multiple and using the quadratic relations,

(vx—wy) (w,—v) =

(WAy,?x) = (cdy.adxX) = d(cy.ax).

So reflection in the biline af; takes the lineA; X to

the line A1 + A1 (cy,ax). Similarly, by computing the re-
flections of (x—1,y) and (x,y— 1) in the bilines atA;

and Az, we find that the linesAoX and AsX get sent

to the linesAz + Az (ax+ (a—d)y —a,—ax—ay+a) and

Az + A3 (—cx—cy+c,x(c—d)+cy—c) respectively. Itis
now a computation that these three reflected lines meet a
the pointi (X) as defined above. O

Example 5 The isogonal conjugate of the centroid G is
the symmedian point

()

a+c—b)
Example 6 The isogonal conjugate of the Orthocenter H
is the Circumcenter:

i ({b(cA— b), b(aA— b)

11

33 o2

= Xs.

1

27
=C=Xs.

[c(a—b),a(c—Db)]

3.3

Theorem 18 (Isotomic conjugates)lif X is a point dis-
tinct from A, Az, Az, then the lines joining the points
A1, Az, As to the reflections in the midpoints{M», M3 of
the meets of £, AxX, AzX with the lines of the Triangle
are themselves concurrent, meeting in itsgtomic conju-
gate of X. If X = [x,y] then

t(x) = | YYD X(x+y—1)
X XY+Y2 =Xy R+ XY+ Y2 =Xy

Proof. The pointX = [x,y] has Cevian lines which meet
the linesAxAz, A1A3, A1A2 respectively in the points

X y y X

[X+y’X+y} [O’ 1—X] L—y’o}'

These three points may be reflected respectively in the
midpoints[1/2,1/2],[0,1/2],[1/2,0] to get the points
Bl ]
X+Y X+y 1-x l1-y

The lines(x: —y:0), (1-x—y:1—-x:—-1+x+Yy) and
(1-y:1—x-—y:—14+x+Y) joining these points to the
original vertices meet atX) as defined above. O

Example 7 The isotomic conjugate of the Orthocenter H

(fesp )|

4 Strong concurrences

Isotomic conjugates

(c—b)b (a—b)b
ac— b2’ ac—b?

a—b c—b
at+c—b’at+c—Db

= Xgo-

4.1 Sight Lines, Gergonne and Nagel points

We now adopt the principle that algebraic verifications of
incidence, using the quadratic relations, will be omitted.
A Sight line s;j is the join of a Contact poir@;; with the
Point A; opposite to the Line that it lies on, and is natu-
rally associated with the Incentigr There are twelve Sight
lines; three associated to each Incenter:
sio=(C+v:—a+w:0)

tszoz (cv—bw: c(d+v—w): —cv+bw)

0= (a(d+v—w): —aw+ bv: aw— bv)
si1=(C—v:—-a—w:0)

1= (—cv+bw: c(d—v+w): cv—bw)

31 = (a(d—v+w):aw—bv: —aw+ bv)
Si2=(C+v:—-a—w:0)

Sp2 = (cv+bw: c(d+v+w): —cv—bw)
s32=(a(d+v+w):aw+bv: —aw— bv)
S13=(C—v:—-a+w:0)

S3=(—cv—bw: c(d—v—w):cv+ bw)
s33=(a(d—v—w): —aw—bv:aw-+bv).
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Figure 8: Green Sight lines, Gergonne points, |G
Gergonne lines and In-Gergonne centep X

Here we introduce a well-known center of the triangle, the
Gergonne point (see for example [2], [9]).

Theorem 19 (Gergonne points)The triples{sio, 20,30},

{s11,%1, 881}, {S12,%2,832} and {s13, 3,533} of Sight
lines are concurrent. Each triple is associated to an Incen-
ter, and the meets of these triples are Gergonne points

G;j. The Gergonne point associated tas

B b—u
~ 2(du—cv+aw) —A

Go w—a —-v—7.

The join of a corresponding Incentigrand Gergonne point
G;j is anIn-Gergonne line or Soddy line. There are four
Soddy lines, and

[0Go =(2btv+ (A —2bT)w— (A —2bT)d :
2baw+ (A —2ba)v+ (A—2ba)d:
— (A—2ba)v— (A —2bT)w).
Theorem 20 (In-Gergonne center)The four In-

Gergonne/Soddy lineg®; are concurrent, and meet at
the De Longchamps point

1
Xop = n [b? — 2cb+ac, b? — 2ab+ ad]
which is the orthocenter of the Double triangle. Further-
more the midpoint o Xxq is the Circumcenter Cso that

Xop lies on the Euler line.

Proof. The concurrency of the In-Gergonne/Soddy lines
I;Gj is as usual. The equation

1 1
oz [b(e—b).b(a—b)l+ - [b% — 2cb+ac, b® — 2ab+ ac]
1
=55 [c(a—b),a(c—b)]=C
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shows thaC = 1H + 2Xo. Since the Euler line is=CH,
Xop lies one. O
Figure 8 shows the Gergonne poin& and the In-
Gergonne lines meeting &bo.

Theorem 21 (Nagel points)The  triples {si1,S2 S33},
{s10,32,%23}, {S20,S81,513} and {sz0,521,S12} of Sight
lines are concurrent. Each triple involves one Sight line
associated to each of the Incenters, and so is associated to
the Incenter with which it does not share a Sight line. The
points where these triples meet are tRagel points N;.

For example{s;1, S22 S33} meet at

No = % [(b+u)a+cv+bw (b+u)T—bv—aw.

Proof. We check thatNg as defined is incident with
(C—v:—a—w:0) by computing

b+u)a+cv+ bw b+u)Tc—bv—aw
(b+u A* Lol Ch L) - (—a—w)
_ —cduv+aduw + ccvPw+ aavw? —acadv—accdw
= A =
using the quadratic relations, (8) and (9).

The computations for the other Sight lines ad Ny, N3
are similar. O

0

Figure 9: Green Sight lines, Nagel points,M-Nagel
lines and In-Nagel center & X,

The join of a corresponding Incenter and Nagel point is an
In-Nagel line. There are four In-Nagel lines, and

loNo = (2v+w—d:v+2w+d: —v—w).

In classical triangle geometry, the litg\y is called simply
theNagel line

Theorem 22 (In-Nagel center) The four In-Nagel lines
IjN; are concurrent, and meet at the Centroid=3Xz, and
in fact G= 2l + 3N;.



KoG-16-2012

N. Le, N. J. Wildberger: Universal Affine Triangle GeometndaFour-fold Incenter Symmetry

Proof. Using the formulas above fdog andNy, we see that

2. 1 2 1

Slo+5No= ( )m[ Wy
+ (%) %[(b+ u)a+cv+bw (b+u)T—bv—aw
:m[A(d+V—W)7A(d+V_W)]
-imy=c

[
The join of a corresponding Gergonne pd@jtand Nagel
point N; is a Gergonne-Nagel line There are four
Gergonne-Nagel lines, and

GoNp = (—au+av+aw: Tu+cv+Tw: —Tw—av).

Figure 10: Green Gergonne-Nagel centeggXand Nagel-
New center %

Theorem 23 (Gergonne-Nagel center)The four
Gergonne-Nagel @\; lines are concurrent, and meet at
the isotomic conjugate of the Orthocenter,
1

——|C,q.
Xeg = atc b[ ]
The join of a corresponding New poibf and Nagel point
N; is aNagel-New line There are four Nagel-New lines,
and the one associatedItpis

LoNo =(ac— 3ab+ 2b? — tu+ bv+ aw:
3cb—ac— 2b%+au+ cv+ bw:
(a—c)b+ (a—c)u—av+Tw).
Theorem 24 (Nagel-New center)The four Nagel-New

lines NLJ meet in the De Longchamps pointgXand in
fact L= 2N0+ 2)(20

Proof. We check that

—X20+ No

1\ 1
5 ( )A [b” — 2cb-+ ac, b” — 2ab+ ac]

2

< ) [(b+u)a+cv+bw (b+u)t—bv—aw|

2A [au+ cv+ bw+ ct,cu—bv—aw+ad = Lo.

4.2 InMid lines and Mittenpunkts

The join of an Incentelj with a MidpointM; is aninMid
line. There are twelve InMid lines:

[oM1 = (v+w—d:v4+w+d: —v—w)
[oM2 = (v+w—d:2w: —w)
|0|V|3—<2V v+w+d: —V>
1My = (v+w+d:v+w—d: —v—w)
1Mo = (v+w+d:2w: —w)
|1|V|3—<2V V+W-— d'—V>
oMy =(v—w—d:v—w+d:—-v+w)
oMy = (v—w—d: —2w:w)
oMz = (2v:v—w+d: —v)
(-
(-
(-

IsM1 = (—v+w—d: —v+w+d:v—w)
IsM2 = (—v+w—d:2w: —w)
[IsM3 = (—2v: —v+w+d: V).

Theorem 25 (InMid lines) The triples of In-

Mid lines {|1M1,|2M2,|3M3}, {|0M1,|2M3,|3M2},
{|0M2,|1M3,|3M1} and {|0M3,|1M2,|2M1} are concur-
rent. Each triple involves one InMid line associated to
each of three Incenters, and so is associated to the Incenter
which does not appear. The points where these triples meet
are theMittenpunktsD;. For example{l1M1, oM, [3M3}
meet at

1
2(a+c—b+u—-v+w)

Do = [c+u+wa+u—Vv.

The join of a corresponding Incentgrand Mittenpunkt
D; is anIn-Mitten line . There are four In-Mitten lines,
and

l[oDo=((c+d)v+aw—ad:cv+(a+d)w+cd: —aw—cv).
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Az
A

ﬁﬁﬁj;j A1

A NN

Figure 11: Green InMid lines and Mittenpunkts D

Theorem 26 (In-Mitten center) The four In-Mitten lines
are concurrent and meet at tlggmmedian point (see Ex-
ample 3)

K=X5= >

2@rc-p ¥

The join of a corresponding Gergonne po@it and Mit-
tenpunktD; is a Gergonne-Mitten line. There are four
Gergonne-Mitten lines and

—(A—4bd)u+2(4cc—A) v+ (daa—A)w—(c—2C)A:

(A—4bd)u+ (4cc—A)v+2(daa—A)w+ (a—2a)A:
Doeo:< >
(A—4cT) v+ (A—4a@) w— bA

Theorem 27 (Gergonne-Mitten center) The four
Gergonne-Mitten lines B meet in the Centroid G- X5,
and in fact G= 2D; + 1G;.

Proof. We use the formulas above fBp andGg to com-
pute
2 1

—Do+ =G
3 o+3 0

2 1
- (5) 2(a+c—b+u—v+w) [c+utwa+u—Vv

1 b—u
- (é) 2(du—cv+ aW)—A [W_ (C_b),—V— (a—b)]

O
The join of a corresponding MittenpunRj and New point
L is aMitten-New line. There are four Mitten-New lines
and

DolLo = (av+bw—td: bv+cw+ad: —b(v+w)).
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Theorem 28 (Mitten-New center) The four Mitten-New
lines DjL;j are concurrent, and meet at the Orthocenter

Figure 12 shows the four In-Mitten lines meetingkat=
Xg, the four Gergonne-Mitten lines meeting@t= X, and
the four Mitten-New lines meeting &t = X.

Figure 12: Green Mitten-New center HGergonne-Mitten
center G and In-Mitten center K

4.3 Spieker points

The central dilation of an Incenter is $pieker point.
There are four Spieker poing, S, S, S3 which are cen-
tral dilations oflg, I1, 12, 13 respectively.

Theorem 29 (Spieker points) The four Spieker points are

:%@Iﬁ%E®W+¢_W+m

:%GT%I@+N+¢W+M

= %7(d+v+w) v+d,w+d]
%:%a;:ﬁxﬁpw+¢—w+m.

Proof. We use the central dilation formula which takes
lo= (d4v—w)"*[-w,V] to the point

1 —W v
S=3-1(l0) =3 |1~ drv_w ' dFv_w

and similarly for the other Spieker points. O
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Theorem 30 (Spieker-Nagel lines)The Spieker points lie
on the corresponding In-Nagel lines, and in particulat S
S, $, S are the midpoints of the sidésNg, 1N, 12N,
13N3 respectively.

Proof. We check that in fack is the midpoint ofigNg by
computing

10101 1
207207 2(d+v—w)
+%%[(b+u)(c—b)+cv+bvv,(b+u)(a—b)—bv—aV\4

- %

[_W’ V]

The computations for the other In-Nagel lines &dS,,
S are similar. O

Proof. The midpoint ofHLg is

2H 4 2Lo= o [b(c—b) b(a-b)

1
+E[(c—b)u+cv+bw+c(a—b),
(a—b)u—bv—aw+a(c—b)]
__1 P (o
= 1@ [ac—b“+ (c—b) (u+b)+cv+bw,
ac—b?+ (a—b) (u+b)—aw— by

_;[ac_b2+(c—b+w)(u+b),

~ 4(ac—b?)
ac—b?+ (a—b—v)(u+b)
1 (c—b+w) (a—b—v)
T4 1+ u—b 1+ u—b
1

= c—2b+u+wa—2b+u—V.
20-D) [ +u+w, +u—V|
Now a judicious use of the quadratic relations, which we
leave to the reader, shows that thi§&s The computations
for the other Spieker points are similar. O

The proof shows in fact that there is quite some variety
possible in the formulas for the various points and lines in
this paper.

5 Future Directions

This paper might easily be the starting point for many more
investigations, as there are lots of additional points & th
Incenter hierarchy that might lead to similar phenomenon.
In a related but slightly different direction, the basicade
of Chromogeometry[12], [13]) is that we can expect
wonderful relations between the corresponding geometri-
cal facts in theéblue (Euclidean bilinear fornx;x + y1y2),

Figure 13: Green Spieker points S and Mitten-Spieker cen-red (bilinear formx;x, — y1y2) and green (bilinear form

ter H

The joins of corresponding Mittenpunkiy and Spieker
points S; are theMitten-Spieker lines. There are four
Mitten-Spieker lines, and

DoS = (av+bw—td: bv+cw+ad: —b(v+w)).

Theorem 31 (Mitten-Spieker center) The four Mitten-
Spieker lines [S; are concurrent and meet at the Ortho-
center H= Xj.

Theorem 32 (New Mitten-Spieker) The Spieker point;S
is the midpoint ofHL;, so that the corresponding New

X1Y2 + Y1X2) geometries.

Figure 14:Blue, red and green Incenter circles

A spectacular illustration of this is the following, whictew

pointL; also lies on the corresponding Mitten-Spieker line.  will describe in detail in a future work: if we have a triangle
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A1A2Az that has both blue, red and green Incenters (arather [8] B. ODEHNAL, Generalized Gergonne and Nagel

delicate issue, as it turns out), then remarkably the fadir re
Incenters and four green Incenters lie on a conic, in fact a
blue circle as in Figure 14. Similarly, the four red Incen-

points,Beitrage Algebra Geonbl (2)(2010), 477—
491.

ters and four blue Incenters lie on a green circle, and the [9] A- OLDKNOW, The Euler-Gergonne-Soddy Triangle

four green Incenters and four blue Incenters lie on a red cir-
cle. The centers of these three coloured Incenter circkes ar
exactly the respective orthocenteis, Hy,Hg which form

the Omega triangleof the given triangleA;A2As, intro-
duced in [12].

In particular the four green Incentdrshat have appeared

in our diagrams are in facioncyclic in a Euclidean sense,
as well as in a red geometry sen®&y applying central di-
lations, we may conclude similar facts about circles pass-
ing through Nagel points and Spieker points. Many more
interesting facts wait to be discovered.
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