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ABSTRACT

We develop a generalized triangle geometry, using an ar-
bitrary bilinear form in an affine plane over a general field.
By introducing standardized coordinates we find canonical
forms for some basic centers and lines. Strong concurren-
cies formed by quadruples of lines from the Incenter hi-
erarchy are investigated, including joins of corresponding
Incenters, Gergonne, Nagel, Spieker points, Mittenpunkts
and the New points we introduce. The diagrams are taken
from relativistic (green) geometry.
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Univerzalna afina geometrija trokuta i

četverostruka simetrija sredǐsta upisane kružnice

SAŽETAK

Razvijamo opću geometriju trokuta koristeći proizvoljnu
bilinearnu formu u afinoj ravnini nad općim poljem.
Uvodeći standardizirane koordinate pronalazimo kanonske
oblike nekih osnovnih sredǐsta i pravaca. Proučavamo
snažnu konkurentnost četvorki pravaca koji pripadaju “hi-
jerarhiji sredǐsta upisane kružnice”uključujući i spojnice
odgovarajućih sjecǐsta simetrala kutova trokuta, Geor-
gonnovih točaka, Nagelovih točaka, Mittenpunkova (imen-
ovano sa strane autora, op. ur.) te Novih točaka koje se
uvode u članku. Slike su prikazane u tzv. zelenoj ge-
ometriji.

Ključne riječi: geometrija trokuta, afina geometrija,
racionalna trigonometrija, bilinearna forma, hijerarhija
sredǐsta upisane kružnice, Eulerov pravac, Georgonnova
točka, Nagelova točka, Mittenpunkt, kromogeometrija

1 Introduction

This paper repositions and extends triangle geometry
by developing it in the wider framework of Rational
Trigonometry and Universal Geometry ([10], [11]), valid
over arbitrary fields and with general quadratic forms. Our
main focus is on strong concurrency results for quadruples
of lines associated to the Incenter hierarchy.
Triangle geometry has a long and cyclical history ([1], [3],
[16], [17]). The centroidG = X2, circumcenterC = X3,
orthocenterH = X4 and incenterI = X1 were known to
the ancient Greeks. Prominent mathematicians like Euler
and Gauss contributed to the subject, but it took off mostly
in the latter part of the 19th century and the first part of
the 20th century, when many new centers, lines, conics,
and cubics associated to a triangle were discovered and
investigated. Then there was a period when the subject
languished; and now it flourishes once more—spurred by
the power of dynamic geometry packages like GSP, C.a.R.,
Cabri, GeoGebra, and Cinderella; by the heroic efforts of
Clark Kimberling in organizing the massive amount of in-

formation on Triangle Centers in his Online Encyclopedia
([5], [6], [7]); and by the explorations and discussions of
the Hyacinthos Yahoo group ([4]).

The increased interest in this rich and fascinating subject
is to be applauded, but there are also mounting concerns
about the consistency and accessibility ofproofs, which
have not kept up with the greater pace ofdiscoveries. An-
other difficulty is that the current framework is modelled
on the continuum as “real numbers”, which often leads
synthetic treatments to finesse number-theoretical issues.

One of our goals is to provide explicit algebraic formu-
las for points, lines and transformations of triangle geom-
etry which hold in great generality, over the rational num-
bers, finite fields, and even the field of complex rational
numbers, and with different bilinear forms determining the
metrical structure without any recourse to transcendental
quantities or “real numbers”. Of course we proceed only
a very small way down this road, but far enough to es-
tablish some analogs of results that have appeared first in
Universal Hyperbolic Geometry ([14]); namely the con-
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currency of somequadruplesof lines associated to the
classical Incenters, Gergonne points, Nagel points, Mitten-
punkts, Spieker points as well as theNew pointswhich we
introduce here. We identify the resulting centers in Kim-
berling’s list.
Our basic technology is simple but powerful: we propose
to replace the affine study of ageneral triangle under a
particular bilinear formwith the study of aparticular tri-
angle under a general bilinear form—analogous to the
projective situation as in ([14]), and using the framework
of Rational Trigonometry ([10], [11]). By choosing a very
elementary standard Triangle—with vertices the origin and
the two standard basis vectors—we get reasonably pleasant
and simple formulas for various points, lines and construc-
tions. An affine change of coordinates changes any triangle
under any bilinear form to the one we are studying, so our
results are in fact very general.
Our principle results center around the classical four
points, but a big difference with our treatment is that we ac-
knowledge from the start that the very existence of theIn-
center hierarchyis dependent on number-theoretical con-
ditions which end up playing an intimate and ultimately
rather interesting role in the theory. Algebraically it be-
comes difficult to separate the classical incenter from the
three closely related excenters, and the quadratic relations
that govern the existence of these carry a natural four-fold
symmetry between them. This symmetry becomes crucial
to simplifying formulas and establishing theorems. So in
our framework,there are four Incenters I0, I1, I2 and I3, not
one.
To showcase the generality of our results, we illustrate the-
orems not over the Euclidean plane, but in theMinkowski
planecoming fromEinstein’s special theory of relativity
in null coordinates,where the metrical structure is deter-
mined by the bilinear form

(x1,y1) · (x2,y2) ≡ x1y2 +y1x2.

In the language of Chromogeometry ([12] , [13]), this
is green geometry, with circles appearing as rectangu-
lar hyperbolas with asymptotes parallel to the coordinate
axes. Green perpendicularity amounts to vectors being Eu-
clidean reflections in these axes, while null vectors are par-
allel to the axes. It is eye-opening to see that triangle ge-
ometry is just as rich in such a relativistic setting as it is in
the Euclidean one!

1.1 Summary of results

We summarize the main results of this paper using Figure
1 from green geometry. As established in ([13]), the trian-
gle A1A2A3 has agreen Euler line CHGjust as in the Eu-
clidean setting, whereC = X3 is the Circumcenter,G = X2

is the Centroid, andH = X4 is the Orthocenter, with the
affine ratio

−→
CG :

−→
GH = 1 : 2, which we may express as

G = 2
3C+ 1

3H. The reader might like to check that using
the green notation of perpendicularity, the green altitudes
really do meet atH, and the green midlines/perpendicular
bisectors really do meet atC.

In the general situation there arefour Incenters/Excenters
I0, I1, I2 and I3 which algebraically are naturally viewed
symmetrically. Associated to any one IncenterI j is aGer-
gonne point Gj = X7 (not to be confused with the centroid
also labelledG), a Nagel point Nj = X8, a Mittenpunkt
D j = X9, aSpieker point Sj = X10 and most notably aNew
point Lj . It is not at all obvious that these various points
can be defined for a general affine geometry, but this is the
case, as we shall show. The New pointsL0,L1,L2,L3 are
a particularly novel feature of this paper. They really do
appear to be new, and it seems remarkable that these im-
portant points have not been intensively studied, as they
fit naturally and simply into the Incenter hierarchy, as we
shall see.
The four-fold symmetry between the four Incenters is
maintained by all these points: so in fact there arefour
Gergonne, Nagel, Mittenpunkt, Spieker and New points,
each associated to a particular Incenter, as also pointed out
in ([8]). Figure 1 shows just one Incenter and its related
hierarchy: as we proceed in this paper the reader will meet
the other Incenters and hierarchies as well.
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Figure 1: Aspects of the Incenter hierarchy in green ge-
ometry

The main aims of the paper are to set-up a coordinate sys-
tem for triangle geometry that incorporates the number-
theoretical aspects of the Incenter hierarchy, and respects
the four-fold symmetry inherent in it, and then to use this to
catalogue existing as well as new points and phenomenon.
Kimberling’s Triangle Center Encyclopedia ([6]) distin-
guishes the classical IncenterX1 as the first and perhaps
most important triangle center. Our embrace of the four-
fold symmetry between incenters and excenters implies
something of a re-evaluation of some aspects of classical
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triangle geometry; instead of certain distinguished centers
we have rather distinguished quadruples of related points.
Somewhat surprisingly, this point of view makes visible a
number of remarkablestrong concurrences—-where four
symmetrically-defined lines meet in a center. The proofs of
these relations are reasonably straight-forward but not au-
tomatic, as in general certain important quadratic relations
are needed to simplify expressions for incidence. Here is a
summary of our main results.

Main Results

i) The four linesI jG j , j = 0,1,2,3, meet in the De
Longchamps pointX20 (orthocenter of the Double
triangle) — these are the Soddy lines ([9]).

ii) The four linesI jNj meet in the CentroidG= X2, and
in fact G = 2

3I j +
1
3Nj — these are the Nagel lines.

The Spieker pointsSj also lie on the Nagel lines, and
in factSj = 1

2I j +
1
2Nj .

iii) The four lines I jD j meet in the Symmedian point
K = X6 (isogonal conjugate of the CentroidG) —
the standard such line is labelledL1,6 in [6].

iv) The four linesI jL j meet in the CircumcenterC, and
in fact C = 1

2I j +
1
2L j — the standard such line is

labelledL1,3.

v) The four linesG jNj meet in the pointX69 (isotomic
conjugate of the OrthocenterH) — these lines are
labelledL7,8.

vi) The four linesG jD j meet in the CentroidG = X2,
and in factG= 2

3D j +
1
3G j — the standard such line

is labelledL2,7.

vii) The four linesD jSj meet in the OrthocenterH = X4

— the standard such line is labelledL4,7.

viii) The four lines Nj L j meet in the pointX20 (ortho-
center of the Double triangle), and in factL j =
1
2X20+ 1

2Nj — the standard such line is labelledL1,3.

ix) The New pointL j lies on the lineD jSj which also
passes through the OrthocenterH, and in factSj =
1
2H + 1

2L j .

In particular the various points alluded to here haveconsis-
tent definitions over general fields and with arbitrary bilin-
ear forms! The New points are the meets of the linesL1,3

andL4,7, they are the reflections of the IncentersI j in the
CircumcenterC, and they are the reflections of the Ortho-
centerH in the Spieker pointsSj .

It is also worth pointing out a few additional relations be-
tween the triangle centers that appear here: the pointX69,
defined as the Isogonal conjugate of the OrthocenterH, is
also the central dilation in the Centroid of the Symmedian
pointK; in our notationX69 = δ−1/2(K) . This implies that
G= 2

3K + 1
3X69. In addition the De Longchamps pointX20,

defined as the orthocenter of the Double (or anti-medial)
triangle is also the reflection of the OrthocenterH in the
CircumcenterC. These relations continue to hold in the
general situation.

Table 1 summarizes the various strong concurrences we
have found. Note however that not all pairings yield con-
current quadruples: for example the lines joining corre-
sponding Nagel points and Mittenpunkts arenot in general
concurrent.

In the final section of the paper, we give some further re-
sults and directions involving chromogeometry.

1.2 Affine structure and vectors

We begin with some terminology and concepts for elemen-
tary affine geometry in a linear algebra setting, follow-
ing [10]. Fix a fieldF, of characteristic not two, whose
elements will be callednumbers. We work in a two-
dimensional affine spaceA2 overF, with V2 the associated
two-dimensional vector space. Apoint is then an ordered
pairA≡ [x,y] of numbers enclosed in square brackets, typ-
ically denoted by capital letters, such asA,B,C etc. Avec-
tor of V2 is an ordered pairv≡ (x,y) of numbers enclosed
in round brackets, typicallyu,v,w etc. Any pair of points
A and B determines a vectorv =

−→
AB; so for example if

A≡ [2,−1] andB ≡ [5,1] , thenv =
−→
AB= (3,2), and this

is the same vectorv =
−→
CD determined byC ≡ [4,1] and

D ≡ [7,3].

IncenterI GergonneG NagelN MittenpunktD SpiekerS NewL

IncenterI − X20 G = X2 K = X6 G = X2 C = X3

GergonneG X20 − X69 G = X2 − −
NagelN G = X2 X69 − − G = X2 X20

MittenpunktD K = X6 G = X2 − − H = X4 H = X4

SpiekerS G = X2 − G = X2 H = X4 − H = X4

New L C = X3 − X20 H = X4 H = X4 −

Table 1
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The non-zero vectorsv1 ≡ (x1,y1) and v2 ≡ (x2,y2) are
parallel precisely when one is a non-zero multiple of the
other, this happens precisely when

x1y2−x2y1 = 0.

Vectors may be scalar-multiplied and added component-
wise, so that ifv andw are vectors andα,β are numbers,
the linear combination αv+ βw is defined. For pointsA
andB and a numberλ, we may define theaffine combina-
tion C = (1−λ)A+ λB either by coordinates or by inter-
preting it as the sumA+λ

−→
AB. An important special case is

whenλ = 1/2; in that case the pointC≡ A/2+B/2 is the
midpoint of AB, a purely affine notion independent of any
metrical framework.
Once we fix an originO ≡ [0,0], the affine spaceA2 and
the associated vector spaceV2 are naturally identified: to
every pointA≡ [x,y] there is an associated position vector
a=

−→
OA= (x,y). So points and vectors are almost the same

thing, but not quite. The choice of distinguished point also
allows us a useful notational shortcut: we agree that for a
pointA≡ [x,y] and a numberλ we write

λ [x,y] ≡ (1−λ)O+ λA= [λx,λy] . (1)

A line is a proportionl ≡ 〈a : b : c〉 wherea and b are
not both zero. The pointA ≡ [x,y] lies on the line l ≡
〈a : b : c〉 , or equivalently the linel passes throughthe
pointA, precisely when

ax+by+c= 0.

For any two distinct pointsA1 ≡ [x1,y1] andA2 ≡ [x2,y2],
there is a unique linel ≡ A1A2 which passes through them
both; namely thejoin

A1A2 = 〈y1−y2 : x2−x1 : x1y2−x2y1〉 . (2)

In vector form, this line has parametric equationl : A1+λv,
wherev =

−−→
A1A2 = (x2−x1,y2−y1) is adirection vector

for the line, andλ is a parameter. The direction vector
of a line is unique up to a non-zero multiple. The line
l ≡ 〈a : b : c〉 has a direction vectorv = (−b,a).
Two lines areparallel precisely when they have parallel
direction vectors. For every pointP and line l , there is
then precisely one linem throughP parallel tol , namely
m : P+ λv, wherev is any direction vector forl . For any
two linesl1 ≡ 〈a1 : b1 : c1〉 andl2 ≡ 〈a2 : b2 : c2〉 which are
not parallel, there is a unique pointA≡ l1l2 which lies on
them both; using (1) we can write thismeetas

A≡ l1l2 =

[
b1c2−b2c1

a1b2−a2b1
,

c1a2−c2a1

a1b2−a2b1

]

= (a1b2−a2b1)
−1 [b1c2−b2c1,c1a2−c2a1] . (3)

Three pointsA1 = [x1,y1] ,A2 = [x2,y2] ,A3 = [x3,y3] are
collinear precisely when they lie on a common line, which
amounts to the condition

x1y2−x1y3 +x2y3−x3y2 +x3y1−x2y1 = 0.

Three lines〈a1 : b1 : c1〉 , 〈a2 : b2 : c2〉 and〈a3 : b3 : c3〉 are
concurrent precisely when they pass through the same
point, which amounts to the condition

a1b2c3−a1b3c2 +a2b3c1−a3b2c1+a3b1c2−a2b1c3 = 0.

1.3 Metrical structure: quadrance and spread

We now introduce a metrical structure, which is deter-
mined by a non-degenerate symmetric 2×2 matrixC, with
entries in the fixed fieldF over which we work. This ma-
trix defines a symmetric bilinear form on vectors, regarded
as row matrices, by the formula

v ·u = vu= vCuT .

Here non-degenerate means detC 6= 0, and implies that if
v ·u = 0 for all vectorsu thenv = 0.
Note our introduction of the simpler notationv · u = vu,
so that alsov · v = v2. There should be no confusion with
matrix multiplication, even ifv andu are viewed as 1×2
matrices. SinceC is symmetric,v ·u = vu= uv= u ·v.
Two vectorsv and u are perpendicular precisely when
v · u = 0. Since the matrixC is non-degenerate, for any
vectorv there is, up to a scalar, exactly one vectoru which
is perpendicular tov.
The bilinear form determines the main metrical quantity:
thequadranceof a vectorv is the number

Qv ≡ v ·v= v2.

A vector v is null precisely whenQv = v · v = v2 = 0, in
other words precisely whenv is perpendicular to itself.
Thequadrancebetween the pointsA andB is

Q(A,B) ≡ Q−→
AB

.

In the Euclidean case, this is of course the square of the
usual distance. But quadrance is a more elementary and
fundamental notion than distance, and its algebraic nature
makes it ideal for metrical geometry using other bilinear
forms (as Einstein and Minkowski tried to teach us a cen-
tury ago!)
Two linesl andm areperpendicular precisely when they
have perpendicular direction vectors. A line isnull pre-
cisely when it has a null direction vector (in which case all
direction vectors are null).
We now make the important observation that the affine no-
tion of parallelism may also be recaptured via the bilinear
form. (This result also appears with the same title in [15].)
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Theorem 1 (Parallel vectors) Vectors v and u are paral-
lel precisely when

QvQu = (vu)2 .

Proof. If C =

(
a b
b c

)
, v = (x,y) andu = (z,w) , then an

explicit computation shows that

QvQu−(vu)2 =−
(xw−yz)4(

ac−b2
)2

(ax2 +2bxy+cy2)2 (az2 +2bzw+cw2)2 .

Since the quadratic form is non-degenerate,ac− b2 6= 0,
so we see that the left hand side is zero precisely when
xw− yz= 0, in other words precisely whenv and u are
parallel. �

This motivates the following measure of the non-
parallelism of two vectors; thespread between non-null
vectorsv andu is the number

s(v,u) ≡ 1−
(vu)2

QvQu
.

This is the replacement in rational trigonometry for the
transcendental notion of angleθ, and in the Euclidean case
it has the value sin2 θ. Spread is a more algebraic, log-
ical, general and powerful notion than that of angle, and
together quadrance and spread provide the foundation for
Rational Trigonometry, a new approach to trigonometry
developed in [10]. The current pre-occupation with dis-
tance and angle as the basis for Euclidean geometry is a
historical aberration contrary to the explicit orientation of
Euclid himself, and is a key obstacle to appreciating and
understanding the relativistic geometry introduced by Ein-
stein and Minkowski.
The spreads(v,u) is unchanged if eitherv or u are multi-
plied by a non-zero number, and so we define thespread
between any non-null linesl andmwith direction vectorsv
andu to bes(l ,m)≡ s(v,u). From the Parallel vectors the-
orem, the spread between parallel lines is 0. Two non-null
lines l andm are perpendicular precisely when the spread
between them is 1.

1.4 Triple spread formula

We now derive one of the basic formulas in the subject: the
relation between the three spreads made by three (copla-
nar) vectors, and give a linear algebra proof, following the
same lines as the papers [11] and [15].

Theorem 2 (Triple spread formula) Suppose that
v1,v2,v3 are (planar) non-null vectors with respective
spreads s1 ≡ s(v2,v3), s2 ≡ s(v1,v3) and s3 ≡ s(v1,v2) .
Then

(s1 +s2 +s3)
2 = 2

(
s2
1 +s2

2+s2
3

)
+4s1s2s3. (4)

Proof. We may that assume at least two of the vectors are
linear independent, as otherwise all spreads are zero and
the relation is trivial. So suppose thatv1 andv2 linearly in-
dependent, andv3 = kv1 + lv2. Suppose the bilinear form
is given by the matrix

C =

(
a b
b c

)

with respect to the ordered basisv1,v2. Then in this basis
v1 = (1,0) ,v2 = (0,1) andv3 = (k, l) and we may compute
that

s3 =
ac−b2

ac
s2 =

l2
(
ac−b2

)

a(ak2 +2bkl+cl2)

s1 =
k2

(
ac−b2

)

b(ak2 +2bkl+cl2)
.

Then (4) is an identity, satisfied for alla,b,c,k andl . �

We now mention three consequences of the Triple spread
formula, taken from [10]. TheEqual spreads theoremas-
serts that ifs1 = s2 = s, thens3 = 0 ors3 = 4s(1−s). This
follows from the identity(s+s+s3)

2−2
(
s2 +s2+s2

3

)
−

4s2s3 = −s3
(
s3−4s+4s2

)
. TheComplementary spreads

theoremasserts that ifs3 = 1 thens1 + s2 = 1. This fol-
lows by rewriting the Triple spread formula in the form
(s3−s1−s2)

2 = 4s1s2 (1−s3).
And the Perpendicular spreads theoremasserts that if
v and u are non-null planar vectors with perpendicular
vectorsv⊥ and u⊥, then s(v,u) = s

(
v⊥,u⊥

)
. This fol-

lows from the Complementary spreads theorem, since if
s
(
v,v⊥

)
= s

(
u,u⊥

)
= 1, thens

(
v⊥,u⊥

)
= 1−s

(
v⊥,u

)
=

1− (1−s(v,u)) = s(v,u).

1.5 Altitudes and orthocenters

Given a line l and a pointP, there is a unique linen
throughP which is perpendicular to the linel ; it is the line
n : P+ λw, wherew is a perpendicular vector to the direc-
tion vectorv of l . We call n the altitude to l through P.
Note that this holds true even ifl is a null line; in this case
a direction vectorv of l is null, so the altitude tol through
P agrees with the parallel tol throughP.
We use the following conventions: a set{A,B} of two dis-
tinct points is aside and is denotedAB, and a set{l ,m}
of two distinct lines is avertex and is denotedlm. A set
{A1,A2,A3} of three distinct non-collinear points is atri-
angle and is denotedA1A2A3. The triangleA1A2A3 has
lines l3 ≡ A1A2, l2 ≡ A1A3 andl1 ≡ A2A3 (by assumption
no two of these are parallel), sidesA1A2,A1A3 andA2A3,
and verticesl1l2, l1l3 andl2l3.
The triangleA1A2A3 also has threealtitudes n1,n2,n3

passing throughA1,A2,A3 and perpendicular to the oppo-
site linesA2A3, A1A3,A1A2 respectively. The following
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holds both for affine and projective geometries: we give
a short and novel proof here for the general affine case.

Theorem 3 (Orthocenter) For any triangleA1A2A3 the
three altitudes n1,n2,n3 are concurrent at a point H.

Proof. Suppose thata1,a2,a3 are the associated position
vectors toA1,A2,A3 respectively. Since no two of the
lines of the triangleA1A2A3 are parallel, the Perpendicular
spreads corollary implies that no two of the three altitude
lines are parallel. DefineH to be the meet ofn1 andn2,
with h the associated position vector. In the identity

(h−a1)(a3−a2)+(h−a2) (a1−a3) = (h−a3)(a1−a2)

the left hand side equals 0 by assumption, so the right hand
is also equal to 0, implying thath−a3 is perpendicular to
the linea1a2. Therefore, the three altitude linesn1,n2,n3

are concurrent at the pointH. �

We callH theorthocenter of the triangleA1A2A3.

1.6 Change of coordinates and an explicit example

If we change coordinates via either an affine transforma-
tion in the original affine spaceA2, or equivalently a linear
transformation in the associated vector spaceV2, then the
matrix for the form changes in the familiar fashion. Sup-
poseφ : V → V is a linear transformation given by an in-
vertible 2× 2 matrix M, so thatφ(v) = vM = w, with in-
verse matrixN, so thatwN = v. Define a new bilinear form
◦ by

w1 ◦w2 ≡ (w1N) · (w2N) = (w1N)C(w2N)T

= w1(NCNT)wT
2 . (5)

So the matrixC for the original bilinear form· becomes the
matrixD ≡ NCNT for the new bilinear form◦.

Example 1 We illustrate these abstractions in a concrete
example that will be used throughout in our diagrams.
Our basic Triangle shown in Figure 2 has points A1 ≡
[3,1], A2 ≡ [4,4] and A3 ≡ [47/5,29/5], and lines A1A2 =
〈−3 : 1 : 8〉, A1A3 = 〈−3 : 4 : 5〉 and A2A3 = 〈1 :−3 : 8〉.
The bilinear form we will consider is that of green ge-
ometry in the language of chromogeometry ([12], [13]),

determined by the symmetric matrix Cg =

(
0 1
1 0

)
and

corresponding quadrance Q(x,y) = 2xy. After translation

by (−3,−1) we obtain Ã1 = [0,0], Ã2 = [1,3], Ã3 =
[32/5,24/5]. The matrix N and its inverse M

N =

(
1 3
32
5

24
5

)
M = N−1 =

(
− 1

3
5
24

4
9 − 5

72

)

send[1,0] and [0,1] to Ã2 andÃ3, andÃ2 andÃ3 to [1,0]
and[0,1] respectively. So the effect of translation followed

by multiplication by M is to send the original triangle to
thestandard triangle with points[0,0] , [1,0] and[0,1].
The bilinear form in these new standard coordinates is
given by the matrix NCgNT which is, up to a multiple,

C =

(1
4 1
1 64

25

)
=

(
a b
b c

)
.

We will shortly see that the Orthocenter in standard coor-
dinates is(ac−b2)−1 [b(c−b) ,b(a−b)] . In our example
this would be the point

[
− 13

3 , 25
12

]
, and to convert that back

into the original coordinates, we would multiply by N to
get

[
− 13

3
25
12

]
N =

[
9 −3

]

and translate by(3,1) to get the original orthocenter
H = [12,−2] . This is shown in Figure 2, along with the
Centroid G= [82/15,18/5] and the Circumcenter C=
[11/5,32/5]—we will meet these points shortly.

C

A

A
A

e

G

H

1

2

3

4 8

4

Figure 2: Euler line in green geometry

1.7 Bilines

A biline of the non-null vertexl1l2 is a lineb which passes
throughl1l2 and satisfiess(l1,b) = s(l2,b). The existence
of bilines depends on number-theoretical considerations of
a particularly simple kind.

Theorem 4 (Vertex bilines) If v and u are linearly inde-
pendent non-null vectors, then there is a non-zero vector
w with s(v,w) = s(u,w) precisely when1− s(v,u) is a
square. In this case we may renormalize v and u so that
Qv = Qu, and then there are exactly two possibilities for
w up to a multiple, namely v+ u and v−u, and these are
perpendicular.

Proof. Sincev andu are linearly independent, any vector
can be written uniquely asw = kv+ lu for some numbers
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k andl . The conditions(v,w) = s(u,w) amounts to

(vw)2

QvQw
=

(uw)2

QuQw
⇐⇒ u2(

kv2 + lvu
)2

= v2(
kvu+ lu2)2

⇐⇒ u2
(

k2(
v2)2

+2lkv2(vu)+ l2 (vu)2
)

=

= v2
(

k2 (vu)2 +2lku2(vu)+ l2
(
u2)2

)

⇐⇒ k2u2(v2)2
+l2u2 (vu)2=k2v2 (vu)2+ l2v2(u2)2

⇐⇒
(

v2u2− (vu)2
)(

k2v2− l2u2) = 0.

Sincev andu are by assumption not parallel, the first term
is non-zero by the Parallel vectors theorem, and so the con-
dition s(v,w) = s(u,w) is equivalent tok2v2 = l2u2. Since
v,u are non-null,v2 andu2 are non-zero, sok andl are also,
since by assumptionw = kv+ lu is non-zero.
So if s(v,w) = s(u,w) then we may renormalizev andu
so thatv2 = u2 (by for example setting̃v = kv andũ = lu,
and then replacing̃v, ũ by v,u again), and then 1−s(v,u) =

(vu)2/
(
v2

)2
is a square. There are then two solutions:

w = v+ u andw = v−u, corresponding tol = ±k. Since
(v+u)(v−u) = v2−u2 = 0, these vectors are perpendic-
ular. The converse is straightforward along the same lines.

�

Example 2 In our example triangle of Figure 2, v1 =
−−→
A2A3 = (27/5,9/5), v2 =

−−→
A1A3 = (32/5,24/5) and v3 =

−−→
A1A2 = (1,3) , so

s(v2,v3) = 1−

(
v2CgvT

3

)2

(
v2CgvT

2

)(
v3CgvT

3

) =
25
16

is a square, so the vertex at A1 has bilines. Since Qv2 =
v2CgvT

2 = 1536/25 and Qv3 = v3CgvT
3 = 6, we can renor-

malize v2 by scaling it by5/16 to get u2 =
−−→
A1B = (2,3/2)

so that now Qu2 = Qv3. This means that u2 + v3 =
−−→
A1C1

and u2−v3 =
−−→
A1C2 are the direction vectors for the bilines

of the vertex at A1.

A

C

A

C

B

A

v

u

I

b

b

I

I

1

1

2

2

3

3

2

4 8

8

4

Figure3 : Green bilines b at A1

These are shown in Figure 3, along with three of the four
Incenters I (the other two vertices also have bilines, and

they are mutually concurrent). Naturally this triangle has
been chosen carefully to ensure that Incenters do exist. In
green geometry, a vertex formed from a light-like line and
a time-like line will not have bislines, not even approxi-
mately over the rational numbers.

2 Standard coordinates and triangle
geometry

Our principle strategy to study triangle geometry is to ap-
ply an affine transformation to move a general triangle to
standard position:

A1 = [0,0] A2 = [1,0] and A3 = [0,1] . (6)

With this convention,A1A2A3 will be called the (standard)
Triangle, with Points A1,A2,A3. TheLines of the Trian-
gle are then

l1 ≡ A2A3 = 〈1 : 1 :−1〉 l2 ≡ A1A3 = 〈1 : 0 : 0〉

l3 ≡ A2A1 = 〈0 : 1 : 0〉 .

All further objects that we define with capital letters
refer to this standard Triangle, and coordinates in this
framework are calledstandard coordinates. In general
the standard coordinates of points and lines in the plane
of the original triangle depend on the choice of affine
transformation—we are in principle free to permute the
vertices—but triangle centers and central lines will have
well-defined standard coordinates independent of such per-
mutations.
Since we have performed an affine transformation, what-
ever metrical structure we started with has changed as in
(5). So we will assume that the new metrical structure, in
standard coordinates, is determined by a bilinear form with
generic symmetric matrix

C≡

(
a b
b c

)
. (7)

We assume that the form is non-degenerate, so that thede-
terminant

∆ ≡ detC = ac−b2

is non-zero. Another important number is themixed trace

d ≡ a+c−2b.

It will also be useful to introduce the closely related sec-
ondary quantities

a≡ c−b b≡ a−c c≡ a−b

to simplify formulas. For exampled = a+c.

69



KoG•16–2012 N. Le, N. J. Wildberger: Universal Affine Triangle Geometry and Four-fold Incenter Symmetry

Theorem 5 (Standard triangle quadrances and spreads)
The quadrances and spreads ofA1A2A3 are

Q1 ≡ Q(A2,A3) = d Q2 ≡ Q(A1,A3) = c

Q3 ≡ Q(A1,A2) = a

and

s1 ≡ s(A1A2,A1A3) =
∆
ac

s2 ≡ s(A2A3,A2A1) =
∆
ad

s3 ≡ s(A3A1,A3A2) =
∆
cd

.

Furthermore

1−s1 =
b2

ac
1−s2 =

(c)2

ad
1−s3 =

(a)2

cd
.

Proof. Using the definition of quadrance,

Q1 ≡ Q(A2,A3) = Q−−−→
A2A3

= (−1,1)C(−1,1)T

= a+c−2b= d

and similarly forQ2 andQ3. Using the definition of spread,

s1 ≡ s(A1A2,A1A3) = s((1,0) ,(0,1))

= 1−

(
(1,0)C(0,1)T

)2

(
(1,0)C(1,0)T

)(
(0,1)C(0,1)T

)

= 1−
1
ac

b2 =
∆
ac

and similarly fors2 ands3. �

2.1 Basic affine objects in triangle geometry

We now write down some basic central objects which fig-
ure prominently in triangle geometry, all with reference to
the standard triangleA1A2A3 in the form (6). The deriva-
tions of these formulas are mostly immediate using the
two basic operations of joins (2) and meets (3). We be-
gin with some purely affine notions, independent of the
bilinear form.
TheMidpoints of the Triangle are

M1 =

[
1
2
,
1
2

]
M2 =

[
0,

1
2

]
M3 =

[
1
2
,0

]
.

TheMediansare

d1 ≡ A1M1 = 〈1 :−1 : 0〉 d2 ≡ A2M2 = 〈1 : 2 :−1〉

d3 ≡ A3M3 = 〈2 : 1 :−1〉 .

TheCentroid is the common meet of the Medians

G =

[
1
3
,
1
3

]
.

The Circumlines are the lines of theMedial triangle
M1M2M3, these are

b1 ≡ M2M3 = 〈2 : 2 :−1〉 b2 ≡ M3M1 = 〈2 : 0 :−1〉

b3 ≡ M1M2 = 〈0 : 2 :−1〉 .

The Double triangle of A1A2A3 (usually called theanti-
medial triangle) is formed from lines through the Points
parallel to the opposite Lines. This isD1D2D3 where

D1 = [1,1] D2 = [−1,1] D3 = [1,−1] .

The lines ofD1D2D3 are

D2D3 = 〈1 : 1 : 0〉 D1D3 = 〈1 : 0 :−1〉

D1D2 = 〈0 : 1 :−1〉 .

Figure 4 shows these objects for our example Triangle.

A

D

M

A
G

D
M

A

D

M

1

1

1

2

2

2

3

3

3

4 8

4

Figure 4: The Medial triangleM1M2M3 and Double tri-
angleD1D2D3

2.2 The Orthocenter hierarchy

We now introduce some objects involving the metrical
structure, and so the entriesa,b,c of C from (7). Recall
thata≡ c−b andc = a−b.
TheAltitudes of A1A2A3 are the lines

n1 = 〈c : −a : 0〉 n2 = 〈b : c : −b〉 n3 = 〈a : b : −b〉 .

Theorem 6 (Orthocenter formula) The three Altitudes
meet at theOrthocenter

H =
b
∆

[a,c] .

Proof. We know that the altitudes meet from the Ortho-
center theorem. We check thatn1 passes throughH by
computingb∆−1(ac−ac) = 0.
Also n2 passes throughH since

b
∆

(ba+cc)−b =
b
∆

(
b(c−b)+c(a−b)−ac+b2) = 0

and similarly forn3. �
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The Midlines m1,m2 and m3 are the lines through the
midpointsM1,M2 andM3 perpendicular to the respective
sides— these are usually calledperpendicular bisectors.
They are also the altitudes ofM1M2M3:

m1 =
〈
−2c : 2a : b

〉
m2 = 〈2b : 2c : −c〉

m3 = 〈2a : 2b : −a〉 .

Theorem 7 (Circumcenter) The Midlines m1,m2,m3

meet at theCircumcenter

C =
1

2∆
[cc,aa] .

Proof. We check thatm1 passes throughC by computing

1
2∆

(
−2c2c+2a2a

)
+b

=
1

2(ac−b2)

(
−2(a−b)2c+2(c−b)2a

)
+(a−c) = 0

and similarly form2 andm3. �
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Figure 5: The Euler line of a triangle

As Gauss realized, this is also a consequence of the Ortho-
center theorem applied to the Medial triangleM1M2M3,
since the altitudes of the Medial triangle are the Midlines
of the original Triangle.
The three altitudes of the Double triangleD1D2D3 are

t1 =
〈
c : −a : −b

〉
t2 = 〈b : c : −a〉 t3 = 〈a : b : −c〉 .

Theorem 8 (Double orthocenter formula) The three al-
titudes of the Double triangle meet in the De Longchamps
point

X20 ≡
1
∆

[
b2−2bc+ac,b2−2ab+ac

]
.

Proof. We check thatt1 passes throughX20 by computing

1
∆

(
c
(
b2−2bc+ac

)
−a

(
b2−2ab+ac

))
−b

=
1
∆

((a−b)
(
b2−2bc+ac

)
− (c−b)

(
b2−2ab+ac

)

− (a−c)
(
ac−b2)) = 0

and similarly fort2 andt3. �

The existence of an Euler line in relativistic geometries was
established in [13], here we extend this to the general case.

Theorem 9 (Euler line) The points H,C and G are con-
current, and satisfy G= 1

3H + 2
3C. The Euler line e≡CH

is

e=
〈
∆−3bc : −∆ +3ba : bb

〉
.

Proof. Using the formulas above forH andC, we see that

1
3

H +
2
3

C =

(
1
3

)
1
∆

[ba,bc]+

(
2
3

)
1

2∆
[cc,aa]

=
1

3∆
[
ac−b2,ac−b2] =

1
3

[1,1] = G.

Computing the equation for the Euler lineCH is straight-
forward. �

In Figure 5 we illustrate the situation with our basic ex-
ample triangle with the Altitudes, Medians and Midlines
meeting to form the OrthocenterH, CentroidG and Cir-
cumcenterC respectively on the Euler linee.
Thebases of altitudesof M1M2M3 are:

E1 =
1
2d

[c,a] E2 =
1
2c

[c,a] E3 =
1
2a

[c,a] .

The joins of Points and corresponding bases of altitudes of
M1M2M3 are

A1E1 = 〈a : −c : 0〉 A2E2 = 〈a : c : −a〉

A3E3 = 〈a : c : −c〉 .

Theorem 10 (Medial base perspectivity)The three lines
A1E1,A2E2,A3E3 meet at the point

X69 =
1

a+c−b
[c,a] .

Proof. Straightforward. �

2.3 Bilines and Incenters

We now introduce theIncenter hierarchy. Unlike the Or-
thocenter hierarchy, this depends on number-theoretical
conditions. Recall thatd ≡ a+c−2b.

Theorem 11 (Existence of Triangle bilines)The Trian-
gle A1A2A3 has Bilines at each vertex precisely when we
can find numbers u,v,w in the field satisfying

ac= u2 ad = v2 cd = w2. (8)
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Proof. From the Vertex bilines theorem, bilines exist pre-
cisely when the spreadss1, s2, s3 of the Triangle have the
property that 1− s1,1− s2,1− s3 are all squares. From
the Standard triangle quadrances and spreads theorem, this
occurs for our standard triangleA1A2A3 precisely when we
can findu, v, w satisfying (8). �

There is an important flexibility here: the threeIncenter
constantsu,v,w are only determined up to a sign. The
relations imply that

d2u2 = v2w2 c2v2 = u2w2 a2w2 = u2v2.

So we may choose the sign ofu so thatdu= vw, and mul-
tiplying by u we get

acd= uvw.

From this we deduce that

du= vw cv= uw and aw= uv. (9)

The quadratic relations (8) and (9) will be very impor-
tant for us, for they reveal that the existence of the Incenter
hierarchy is a number-theoretical issue which depends not
only on the given triangle and the bilinear form, but also
on the nature of the field over which we work, and they
allow us to simplify many formulas involvingu,v andw.
Because only quadratic conditions are involved, we may
always extend our field by adjoining (algebraic!) square
roots to ensure that a given triangle has bilines.
The quadratic relations carry an important symmetry: we
may replace any two ofu,v andw with their negatives, and
the relations remain unchanged. So if we have a formula
F0 involving u,v,w, then we may obtain related formulas
F1,F2,F3 by replacingv,w with their negatives,u,w with
their negatives, andu,v with their negatives respectively.
Adopting this convention allows us to exhibit the single
formulaF0, since thenF1,F2,F3 are determined—we refer
to this asquadratic symmetry, and will make frequent
use of it in the rest of this paper.
From now on our working assumption is that:the stan-
dard triangleA1A2A3 has bilines at each vertex, implying
that we have Incenter constants u,v and w satisfying(8)
and (9). Sou,v andw now become ingredients in our for-
mulas for various objects in the Incenter hierarchy, along
with the numbersa,b andc (andd) from the bilinear form

C =

(
a b
b c

)
.

Theorem 12 (Bilines) The Bilines of the Triangle are
b1+ ≡ 〈v : w : 0〉 and b1− ≡ 〈v : −w : 0〉 through A1,
b2+ ≡ 〈u : u+w : −u〉 and b2− ≡ 〈u : u−w : −u〉 through
A2, and b3+ ≡ 〈u−v : u : −u〉 and b3− ≡ 〈u+v : u : −u〉
through A3.

Proof. We use the Bilines theorem to find bilines through
A1 = [0,0] . The lines meeting atA1 have direction vectors
v1 = (0,1) andv2 = (1,0) , with Qv1 = (0,1)C(0,1)T = c
andQv2 = (1,0)C(1,0)T = a. Now we renormalize and set

u1 = v
wv1 to getQu1 = v2

w2 c= a= Qv2. So the biliness atA1

have direction vectors

u1 +v2 =
v
w

(0,1)+ (1,0) =
(

1,
v
w

)
and

u1−v2 =
v
w

(0,1)− (1,0) =
(
−1,

v
w

)

and the bilines areb1+ ≡ 〈v : w : 0〉 andb1− ≡ 〈v : −w : 0〉.
Similarly you may check the other bilines throughA2 and
A3. �

Theorem 13 (Incenters) The triples {b1+,b2+,b3+},
{b1+,b2−,b3−}, {b1−,b2+,b3−} and {b1−,b2−,b3+} of
Bilines are concurrent, meeting respectively at the four
Incenters

I0=

[
−uw

uv−uw+vw
,

uv
uv−uw+vw

]
=

1
(d+v−w)

[−w,v]

I1=

[
uw

−uv+uw+vw
,

−uv
−uv+uw+vw

]
=

1
(d−v+w)

[w,−v]

I2=

[
uw

uv+uw+vw
,

uv
uv+uw+vw

]
=

1
(d+v+w)

[w,v]

I3=

[
uw

uv+uw−vw
,

uv
uv+uw−vw

]
=

1
(d−v−w)

[−w,−v].

Proof. We may check concurrency of the various triples
by computing

det




v w 0
u u+w −u

u−v u −u


= det




v w 0
u u−w −u

u+v u −u




= det




v −w 0
u u−w −u

u−v u −u


= det




v −w 0
u u+w −u

u+v u −u


= 0.

The corresponding meet of〈v : w : 0〉, 〈u : u+w : −u〉 and
〈u−v : u : −u〉 is

b1+b2+b3+ =

[
−uw

uv−uw+vw
,

uv
uv−uw+vw

]

=
u

aw−cv+du
[−w,v]

=
1

(d+v−w)
[−w,v] ≡ I0.

We have used the quadratic relations, and the last equality
is valid since

u(d+v−w)− (aw−cv+du) = cv−aw+uv−uw= 0.

The computations are similar for the other Incenters.�
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The reader should check that the formulas forI1, I2, I3 may
also be obtained fromI0 by the quadratic symmetry rule
described above. From now on in such a situation we will
only write down the formula corresponding toI0, and we
will also often omit algebraic manipulations involving the
quadratic relations.
TheIncenter altitude ti j is the line through the IncenterI j

and perpendicular to the Linel i of our Triangle. There are
twelve Incenter altitudes; three associated to each Incenter.
The Incenter altitudes associated toI0 are

t10 = 〈c(d+v−w) : −a(d+v−w) : av+cw〉

t20 = 〈b(d+v−w) : c(d+v−w) : bw−cv〉

t30 = 〈a(d+v−w) : b(d+v−w) : aw−bv〉.

The Contact points Ci j are the meets of corresponding
Incenter altitudesti j and Linesl i . There are twelve Con-
tact points; three associated to each Incenter. The Contact
points associated to the IncenterI0 are

C10 =
1

(d+v−w)
[a−w,c+v]

C20 =
1

c(d+v−w)
[0,cv−bw]

C30 =
1

a(d+v−w)
[bv−aw,0].

4

4

8 12

12

8
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b
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Figure 6: Green bilines b, Incenters I, Contact points and
Incircles

In Figure 6 we see our standard example Triangle in the
green geometry with Bilinesb at each vertex, meeting
in threes at the IncentersI . The Contact points are also
shown, as are the Incircles, which are the circles with re-
spect to the metrical structure centered at the Incenters and
passing through the Contact points: they have equations in
the variable pointX of the formQ(X, I) = Q(C, I) whereI
is an incenter andC is one of its associated Contact points.
In this green geometry such circles appear as rectangular
hyperbolas, with axes parallel to the coordinate axes.

2.4 New points

One of the main novelties of this paper is the introduc-
tion of the fourNew points Lj associated to each Incenter
I j . It is surprising that these points have seemingly slipped
through the radar: they deserve to be among the top twenty
in Kimberling’s list, in our opinion.
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Figure 7: Green Incenter altitudes, New points L and In-
New center C

Theorem 14 (New points)The triples {t11,t22,t33},
{t10,t23,t32}, {t20,t13,t31} and {t30,t12,t21} of Incenter
altitudes are concurrent. Each triple is associated to the
Incenter which does not lie on any of the lines in that triple.
The points where these triples meet are theNew points Li ;
for example{t11,t22,t33} meet at

L0 =
1

2∆
[au+cv+bw+cc,cu−bv−aw+aa] .

Proof. We check thatL0 as defined is incident witht11 =
〈c(d−v+w) : −a(d−v+w) : −av−cw〉 by computing

((c−b)u+cv+bw+c(a−b))(a−b)(a+c−2b−v+w)

+ ((a−b)u−bv−aw+a(c−b)) (−(c−b)(a+c−2b−v+w))

−2
(
ac−b2)((c−b)v+(a−b)w)

= a3c+2ab3−2a2cb−a2b2−ac3+2ac2b+c2b2

−2cb3+b2v2−b2w2−acv2+acw2

=
(
ac−b2)(

a2−c2−2ab+2cb−v2+w2) = 0

using the quadratic relations (8). The computations for the
other Incenter altitudes andL1,L2,L3 are similar. �

The In-New lines are the joins of corresponding Incenter
points and New points. The In-New line associated toI0 is

I0L0 = 〈−aad+
(
ac+ab−2b2)v+aaw :

ccd+ccv+
(
ac+cb−2b2)w : −aaw−ccv〉.
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Theorem 15 (In-New center) The four In-New lines IjL j

are concurrent and meet at the circumcenter

C =
1

2∆
[cc,aa] ,

and in fact C is the midpoint ofI jL j .

Proof. We check thatC is the midpoint ofI jL j by comput-
ing

1
2

I j +
1
2

L j =

(
1
2

)
1

(d+v−w)
[−w,v]

+

(
1
2

)
1

2∆
[(c−b)u+cv+bw+c(a−b),(a−b)u−bv−aw+a(c−b)]

=
1

4∆(d+v−w)
[2c(a−b) (d+v−w) ,2a(c−b) (d+v−w)]

=
1

2∆
[cc,aa] = C.

�

The In-New center theorem shows that what we are calling
the In-New lines are also the In-Circumcenter lines, the
standard one which is labelledL1,3 in [6]. The Incenter al-
titudes, New points and In-New lines are shown in Figure
7.
The proofs in these two theorems are typical of the ones
which appear in the rest of the paper. Algebraic manipula-
tions are combined with the quadratic relations to simplify
expressions. Although sometimes long and involved, the
verifications are in principle straightforward, and sofrom
now on we omit the details for results such as these.

3 Transformations

Important classical transformations of points associatedto
a triangle include dilations in the centroid, and the isogo-
nal and isotomic conjugates. It is useful to have general
formulae for these in our standard coordinates.

3.1 Dilations about the Centroid

The dilationδ of factorλ centered at the origin takes[x,y]
to λ [x,y] . This also acts on vectors by scalar multiplying,
and in particular it leaves spreads unchanged and multi-
plies any quadrance by a factor ofλ2. Similarly the dila-
tion centered at a pointA takes a pointB to A+ λ

−→
AB. Any

dilation preserves directions of lines, so preserves spreads,
and changes quadrances between points proportionally.
Given our TriangleA1A2A3 with centroidG, define the
central dilation δ−1/2 to be the dilation by the factor−1/2
centered atG. It takes the three Points of the Triangle to the
midpointsM1,M2,M3 of the opposite sides. This medial
triangleM1M2M3 then clearly has lines which are parallel
to the original triangle.

Since the central dilation preserves spread, the three alti-
tudes ofA1A2A3 are sent byδ−1/2 to the three altitudes of
the medial triangle, which are the midlines/perpendicular
bisectors of the original Triangle, showing again thatδ−1/2
sends the orthocenterH to the circumcenterC, and as in
the Euler line theorem it follows thatG lies one = HC,
dividing HC in the affine ratio 2 : 1.
We will see later that the central dilation also explains
aspects of the various Nagel lines (there are four), since
δ−1/2 takes any IncenterIi to an incenter of the Medial
triangle, called aSpieker point Si. It follows that the
four joins of Incenters and corresponding Spieker points
all pass throughG, andG divides each sideIiSi in the affine
ratio 2 : 1.
The inverse of the central dilationδ−1/2 is δ−2, which takes
the Points ofA1A2A3 to the points of the Double triangle
D1D2D3, which hasA1A2A3 as its medial triangle.

Theorem 16 (Central dilation formula) The central di-
lation takes X= [x,y] to

δ−1/2(X) =
1
2

[1−x,1−y]

while the inverse central dilationδ−2 takes X toδ−2 (X) =
[1−2x,1−2y].

Proof. If Y = δ−1/2(X) then affinely1
3X + 2

3Y = G so that

Y =
3
2

G−
1
2

X =
1
2

[1−x,1−y].

Inverting, we get the formula forδ−2 (X). �

Example 3 The central dilation of the Orthocenter is

δ−1/2(H) =
1
2

[
1−

b(c−b)

∆
,1−

b(a−b)

∆

]

=
1

2∆
[c(a−b) ,a(c−b)] =

1
2∆

[cc,aa] = C

which is the Circumcenter.

Example 4 The inverse central dilation of the Orthocen-
ter is theDe Longchamps point X20—the orthocenter of
the Double triangleD1D2D3

δ−2 (H) = X20 ≡

[
1−

2b(c−b)

∆
,1−

2b(a−b)

∆

]

=
1
∆

[
b2−2cb+ac,b2−2ab+ac

]
.

3.2 Reflections and Isogonal conjugates

Suppose thatv is a non-null vector, so thatv is not perpen-
dicular to itself. It means that we can find a perpendicular
vectorw so thatv andw are linearly independent. Now if
u is an arbitrary vector, writeu = rv+swfor some unique
numbersr ands, and define thereflection of u in v to be

rv (u) ≡ rv−sw.
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If we replacev with a multiple, the reflection is unchanged.
Now suppose thatl andm are lines which meet at a point
A, with respective direction vectorsv andu. Then there-
flection of m in l is the line throughA with direction vector
rv (u). It is important to note that ifn is the perpendicular
to l throughA, then

r l (m) = rn (m) .

Our standard triangleA1A2A3 determines an important
transformation of points.

Theorem 17 (Isogonal conjugate)If X is a point dis-
tinct from A1,A2,A3, then the reflections of the lines
A1X,A2X,A3X in the bilines at A1,A2,A3 respectively meet
in a point i(X), called theisogonal conjugate of X. If
X = [x,y] then

i (X) =
x+y−1

ax2 +2bxy+cy2−ax−cy
[cy,ax] .

Proof. First we reflect the vectora = (x,y) in the bi-
lines 〈v : w : 0〉 and 〈v : −w : 0〉 throughA1. We do this
by writing (x,y) = r (w,v)+ s(w,−v) = (rw+sw, rv−sv)
and solving to getr = (2vw)−1 (vx+wy) and s =

(2vw)−1 (vx−wy) . The reflection is then

r (w,v)−s(w,−v) =
1

2vw
(vx+wy)(w,v)

−
1

2vw
(vx−wy)(w,−v) =

(wy
v

,
vx
w

)

which is, up to a multiple and using the quadratic relations,
(
w2y,v2x

)
= (cdy,adx) = d (cy,ax) .

So reflection in the biline atA1 takes the lineA1X to
the lineA1 + λ1(cy,ax) . Similarly, by computing the re-
flections of (x−1,y) and (x,y−1) in the bilines atA2

and A3, we find that the linesA2X and A3X get sent
to the linesA2 + λ2 (ax+(a−d)y−a,−ax−ay+a) and
A3 + λ3(−cx−cy+c,x(c−d)+cy−c) respectively. It is
now a computation that these three reflected lines meet at
the pointi (X) as defined above. �

Example 5 The isogonal conjugate of the centroid G is
thesymmedian point

K ≡ i

([
1
3
,
1
3

])
=

1
2(a+c−b)

[c,a] = X6.

Example 6 The isogonal conjugate of the Orthocenter H
is the Circumcenter:

i

([
b(c−b)

∆
,
b(a−b)

∆

])
=

1
2∆

[c(a−b),a(c−b)]

= C = X3.

3.3 Isotomic conjugates

Theorem 18 (Isotomic conjugates)If X is a point dis-
tinct from A1,A2,A3, then the lines joining the points
A1,A2,A3 to the reflections in the midpoints M1,M2,M3 of
the meets of A1X,A2X,A3X with the lines of the Triangle
are themselves concurrent, meeting in theisotomic conju-
gate of X. If X = [x,y] then

t (X) =

[
y(x+y−1)

x2 +xy+y2−x−y
,

x(x+y−1)

x2 +xy+y2−x−y

]
.

Proof. The pointX ≡ [x,y] has Cevian lines which meet
the linesA2A3,A1A3,A1A2 respectively in the points
[

x
x+y

,
y

x+y

] [
0,

y
1−x

] [
x

1−y
,0

]
.

These three points may be reflected respectively in the
midpoints[1/2,1/2], [0,1/2], [1/2,0] to get the points
[

y
x+y

,
x

x+y

] [
0,

1−x−y
1−x

] [
1−x−y

1−y
,0

]
.

The lines〈x : −y : 0〉, 〈1−x−y : 1−x : −1+x+y〉 and
〈1−y : 1−x−y : −1+x+y〉 joining these points to the
original vertices meet att (X) as defined above. �

Example 7 The isotomic conjugate of the Orthocenter H
is

t

([
(c−b)b
ac−b2 ,

(a−b)b
ac−b2

])
=

[
a−b

a+c−b
,

c−b
a+c−b

]
≡X69.

4 Strong concurrences

4.1 Sight Lines, Gergonne and Nagel points

We now adopt the principle that algebraic verifications of
incidence, using the quadratic relations, will be omitted.
A Sight line si j is the join of a Contact pointCi j with the
Point Ai opposite to the Line that it lies on, and is natu-
rally associated with the IncenterI j . There are twelve Sight
lines; three associated to each Incenter:

s10 = 〈c+v : −a+w : 0〉

s20 = 〈cv−bw : c(d+v−w) : −cv+bw〉

s30 = 〈a(d+v−w) : −aw+bv: aw−bv〉

s11 = 〈c−v : −a−w : 0〉

s21 = 〈−cv+bw : c(d−v+w) : cv−bw〉

s31 = 〈a(d−v+w) : aw−bv: −aw+bv〉

s12 = 〈c+v : −a−w : 0〉

s22 = 〈cv+bw : c(d+v+w) : −cv−bw〉

s32 = 〈a(d+v+w) : aw+bv: −aw−bv〉

s13 = 〈c−v : −a+w : 0〉

s23 = 〈−cv−bw : c(d−v−w) : cv+bw〉

s33 = 〈a(d−v−w) : −aw−bv: aw+bv〉.
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Figure 8: Green Sight lines, Gergonne points G, In-
Gergonne lines and In-Gergonne center X20

Here we introduce a well-known center of the triangle, the
Gergonne point (see for example [2], [9]).

Theorem 19 (Gergonne points)The triples{s10,s20,s30},
{s11,s21,s31}, {s12,s22,s32} and {s13,s23,s33} of Sight
lines are concurrent. Each triple is associated to an Incen-
ter, and the meets of these triples are theGergonne points
G j . The Gergonne point associated to I0 is

G0 =
b−u

2(du−cv+aw)−∆
[w−a,−v−c] .

The join of a corresponding IncenterI j and Gergonne point
G j is anIn-Gergonne line or Soddy line. There are four
Soddy lines, and

I0G0 =〈2bcv+(∆−2bc)w− (∆−2bc)d :

2baw+(∆−2ba)v+(∆−2ba)d :

− (∆−2ba)v− (∆−2bc)w〉.

Theorem 20 (In-Gergonne center)The four In-
Gergonne/Soddy lines IjG j are concurrent, and meet at
the De Longchamps point

X20 =
1
∆

[
b2−2cb+ac,b2−2ab+ac

]

which is the orthocenter of the Double triangle. Further-
more the midpoint ofHX20 is the Circumcenter C, so that
X20 lies on the Euler line.

Proof. The concurrency of the In-Gergonne/Soddy lines
I jG j is as usual. The equation

1
2∆

[b(c−b) ,b(a−b)]+
1

2∆
[
b2−2cb+ac,b2−2ab+ac

]

=
1

2∆
[c(a−b),a(c−b)] = C

shows thatC = 1
2H + 1

2X20. Since the Euler line ise=CH,
X20 lies one. �

Figure 8 shows the Gergonne pointsG and the In-
Gergonne lines meeting atX20.

Theorem 21 (Nagel points)The triples {s11,s22,s33},
{s10,s32,s23}, {s20,s31,s13} and {s30,s21,s12} of Sight
lines are concurrent. Each triple involves one Sight line
associated to each of the Incenters, and so is associated to
the Incenter with which it does not share a Sight line. The
points where these triples meet are theNagel points Nj .
For example,{s11,s22,s33} meet at

N0 =
1
∆

[(b+u)a+cv+bw,(b+u)c−bv−aw].

Proof. We check thatN0 as defined is incident with
〈c−v : −a−w : 0〉 by computing

(b+u)a+cv+bw
∆

(c−v)+
(b+u)c−bv−aw

∆
(−a−w)

=
−cduv2+aduw2+ccv2w+aavw2−acadv−accdw

∆
=0

using the quadratic relations, (8) and (9).
The computations for the other Sight lines andN1,N2,N3

are similar. �
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Figure 9: Green Sight lines, Nagel points N, In-Nagel
lines and In-Nagel center G= X2

The join of a corresponding Incenter and Nagel point is an
In-Nagel line. There are four In-Nagel lines, and

I0N0 = 〈2v+w−d : v+2w+d : −v−w〉 .

In classical triangle geometry, the lineI0N0 is called simply
theNagel line.

Theorem 22 (In-Nagel center)The four In-Nagel lines
I jNj are concurrent, and meet at the Centroid G= X2, and
in fact G= 2

3I j +
1
3Nj .
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Proof. Using the formulas above forI0 andN0, we see that

2
3

I0 +
1
3

N0 =

(
2
3

)
1

(d+v−w)
[−w,v]

+

(
1
3

)
1
∆

[(b+u)a+cv+bw,(b+u)c−bv−aw]

=
1

3∆(d+v−w)
[∆(d+v−w) ,∆(d+v−w)]

=
1
3

[1,1] = G.

�

The join of a corresponding Gergonne pointG j and Nagel
point Nj is a Gergonne-Nagel line. There are four
Gergonne-Nagel lines, and

G0N0 = 〈−au+av+aw : cu+cv+cw : −cw−av〉 .

L
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N
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4 8 12

69
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Figure 10:Green Gergonne-Nagel center X69 and Nagel-
New center X20

Theorem 23 (Gergonne-Nagel center)The four
Gergonne-Nagel GjNj lines are concurrent, and meet at
the isotomic conjugate of the Orthocenter,

X69 =
1

a+c−b
[c,a] .

The join of a corresponding New pointL j and Nagel point
Nj is aNagel-New line. There are four Nagel-New lines,
and the one associated toI0 is

L0N0 =〈ac−3ab+2b2−cu+bv+aw:

3cb−ac−2b2+au+cv+bw:

(a−c)b+(a−c)u−av+cw〉.

Theorem 24 (Nagel-New center)The four Nagel-New
lines Nj L j meet in the De Longchamps point X20, and in
fact Lj = 1

2N0 + 1
2X20.

Proof. We check that

1
2

X20+
1
2

N0 =

(
1
2

)
1
∆

[
b2−2cb+ac,b2−2ab+ac

]

+

(
1
2

)
1
∆

[(b+u)a+cv+bw,(b+u)c−bv−aw]

=
1

2∆
[au+cv+bw+cc,cu−bv−aw+aa] = L0.

�

4.2 InMid lines and Mittenpunkts

The join of an IncenterI j with a MidpointMi is anInMid
line. There are twelve InMid lines:

I0M1 = 〈v+w−d : v+w+d : −v−w〉

I0M2 = 〈v+w−d : 2w : −w〉

I0M3 = 〈2v : v+w+d : −v〉

I1M1 = 〈v+w+d : v+w−d : −v−w〉

I1M2 = 〈v+w+d : 2w : −w〉

I1M3 = 〈2v : v+w−d : −v〉

I2M1 = 〈v−w−d : v−w+d : −v+w〉

I2M2 = 〈v−w−d : −2w : w〉

I2M3 = 〈2v : v−w+d : −v〉

I3M1 = 〈−v+w−d : −v+w+d : v−w〉

I3M2 = 〈−v+w−d : 2w : −w〉

I3M3 = 〈−2v : −v+w+d : v〉 .

Theorem 25 (InMid lines) The triples of In-
Mid lines {I1M1, I2M2, I3M3}, {I0M1, I2M3, I3M2},
{I0M2, I1M3, I3M1} and {I0M3, I1M2, I2M1} are concur-
rent. Each triple involves one InMid line associated to
each of three Incenters, and so is associated to the Incenter
which does not appear. The points where these triples meet
are theMittenpunkts D j . For example,{I1M1, I2M2, I3M3}
meet at

D0 =
1

2(a+c−b+u−v+w)
[c+u+w,a+u−v].

The join of a corresponding IncenterI j and Mittenpunkt
D j is an In-Mitten line . There are four In-Mitten lines,
and

I0D0=〈(c+d)v+aw−ad:cv+(a+d)w+cd:−aw−cv〉.
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Figure 11:Green InMid lines and Mittenpunkts D

Theorem 26 (In-Mitten center) The four In-Mitten lines
are concurrent and meet at thesymmedian point (see Ex-
ample 3)

K = X6 =
1

2(a+c−b)
[c,a] .

The join of a corresponding Gergonne pointG j and Mit-
tenpunktD j is a Gergonne-Mitten line. There are four
Gergonne-Mitten lines and

D0G0=

〈 (∆−4bd)u+(4cc−∆)v+2(4aa−∆)w+(a−2a)∆ :
−(∆−4bd)u+2(4cc−∆)v+(4aa−∆)w−(c−2c)∆ :

(∆−4cc)v+(∆−4aa)w−b∆

〉
.

Theorem 27 (Gergonne-Mitten center)The four
Gergonne-Mitten lines GjD j meet in the Centroid G= X2,
and in fact G= 2

3D j +
1
3G j .

Proof. We use the formulas above forD0 andG0 to com-
pute

2
3

D0 +
1
3

G0

=

(
2
3

)
1

2(a+c−b+u−v+w)
[c+u+w,a+u−v]

+

(
1
3

)
b−u

2(du−cv+aw)−∆
[w− (c−b) ,−v− (a−b)]

=
1
3

[1,1] = G.

�

The join of a corresponding MittenpunktD j and New point
L j is aMitten -New line. There are four Mitten-New lines
and

D0L0 = 〈av+bw−cd : bv+cw+ad : −b(v+w)〉 .

Theorem 28 (Mitten-New center) The four Mitten-New
lines DjL j are concurrent, and meet at the Orthocenter

H =
1
∆

[ba,bc] .

Figure 12 shows the four In-Mitten lines meeting atK =
X6, the four Gergonne-Mitten lines meeting atG = X2 and
the four Mitten-New lines meeting atH = X4.
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Figure 12:Green Mitten-New center H, Gergonne-Mitten
center G and In-Mitten center K

4.3 Spieker points

The central dilation of an Incenter is aSpieker point.
There are four Spieker pointsS0, S1, S2, S3 which are cen-
tral dilations ofI0, I1, I2, I3 respectively.

Theorem 29 (Spieker points)The four Spieker points are

S0 =
1
2

1
(d+v−w)

[v+d,−w+d]

S1 =
1
2

1
(d−v+w)

[−v+d,w+d]

S2 =
1
2

1
(d+v+w)

[v+d,w+d]

S3 =
1
2

1
(d−v−w)

[−v+d,−w+d].

Proof. We use the central dilation formula which takes
I0 = (d+v−w)−1 [−w,v] to the point

S0 ≡ δ−1/2(I0) =
1
2

[
1−

−w
d+v−w

,1−
v

d+v−w

]

=
1

2(d+v−w)
[v+d,−w+d]

and similarly for the other Spieker points. �
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Theorem 30 (Spieker-Nagel lines)The Spieker points lie
on the corresponding In-Nagel lines, and in particular S0,
S1, S2, S3 are the midpoints of the sidesI0N0, I1N1, I2N2,
I3N3 respectively.

Proof. We check that in factS0 is the midpoint ofI0N0 by
computing

1
2

I0 +
1
2

N0 =
1
2

1
(d+v−w)

[−w,v]

+
1
2

1
∆

[(b+u)(c−b)+cv+bw,(b+u)(a−b)−bv−aw]

= S0.

The computations for the other In-Nagel lines andS1, S2,
S3 are similar. �
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Figure 13:Green Spieker points S and Mitten-Spieker cen-
ter H

The joins of corresponding MittenpunktsD j and Spieker
points Sj are theMitten-Spieker lines. There are four
Mitten-Spieker lines, and

D0S0 = 〈av+bw−cd : bv+cw+ad : −b(v+w)〉 .

Theorem 31 (Mitten-Spieker center) The four Mitten-
Spieker lines DjSj are concurrent and meet at the Ortho-
center H= X4.

Theorem 32 (New Mitten-Spieker) The Spieker point Sj
is the midpoint ofHL j , so that the corresponding New
point Lj also lies on the corresponding Mitten-Spieker line.

Proof. The midpoint ofHL0 is

1
2

H +
1
2

L0 =
1

2∆
[b(c−b),b(a−b)]

+
1

4∆
[(c−b)u+cv+bw+c(a−b),

(a−b)u−bv−aw+a(c−b)]

=
1

4(ac−b2)
[ac−b2+(c−b)(u+b)+cv+bw,

ac−b2+(a−b)(u+b)−aw−bv]

=
1

4(ac−b2)
[ac−b2+(c−b+w)(u+b),

ac−b2+(a−b−v)(u+b)]

=
1
4

[
1+

(c−b+w)

u−b
,1+

(a−b−v)
u−b

]

=
1

4(u−b)
[c−2b+u+w,a−2b+u−v].

Now a judicious use of the quadratic relations, which we
leave to the reader, shows that this isS0. The computations
for the other Spieker points are similar. �

The proof shows in fact that there is quite some variety
possible in the formulas for the various points and lines in
this paper.

5 Future Directions

This paper might easily be the starting point for many more
investigations, as there are lots of additional points in the
Incenter hierarchy that might lead to similar phenomenon.
In a related but slightly different direction, the basic idea
of Chromogeometry([12], [13]) is that we can expect
wonderful relations between the corresponding geometri-
cal facts in theblue(Euclidean bilinear formx1x2 +y1y2),
red (bilinear form x1x2 − y1y2) and green(bilinear form
x1y2 +y1x2) geometries.

4
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Figure 14:Blue, red and green Incenter circles

A spectacular illustration of this is the following, which we
will describe in detail in a future work: if we have a triangle
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A1A2A3 that has both blue, red and green Incenters (a rather
delicate issue, as it turns out), then remarkably the four red
Incenters and four green Incenters lie on a conic, in fact a
blue circle, as in Figure 14. Similarly, the four red Incen-
ters and four blue Incenters lie on a green circle, and the
four green Incenters and four blue Incenters lie on a red cir-
cle. The centers of these three coloured Incenter circles are
exactly the respective orthocentersHb,Hr ,Hg which form
the Omega triangleof the given triangleA1A2A3, intro-
duced in [12].
In particular the four green IncentersI that have appeared
in our diagrams are in factconcyclic in a Euclidean sense,
as well as in a red geometry sense. By applying central di-
lations, we may conclude similar facts about circles pass-
ing through Nagel points and Spieker points. Many more
interesting facts wait to be discovered.
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