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Abstract 

This paper proposes a new methodology for solving the multiple objective fractional linear 

programming problems using Taylor’s formula and goal programming techniques. The proposed 

methodology is tested on the example of company's financial structure optimization. The obtained 

results indicate the possibility of efficient application of the proposed methodology for company's 

financial structure optimization as well as for solving other multi-criteria fractional programming 

problems. 

 

Key words:  multiple objective, fractional linear programming, goal programming, 

Taylor’s formula, financial structure optimization 

 

 

1. INTRODUCTION 

 
The first study dealing with the problem of fractional linear programming (Charnes and Cooper. 1962) 

gave rise to a large number of papers referring to FLP with one or more objectives. 

In the problem the FLP goal function is fractionally linear and the constraints are linear making a 

convex set. As in the FLP problem the goal function is non-linear it is not possible to apply the 

simplex method for LP, various methods have been developed to solve it: Charnes and Cooper (1961), 

Bitran and Novaes (1973), Martos (1964). 

The multiple objective linear fractional programming problem (MOLFP) is considered in various 

articles, for example: Gupta and Bhatia (2001), Guzel and Sivri (2005), Kornbluth and Steuer (1981), 

Nikowski and Zolkiski (1985), Saad (2007).  
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Solving MOLFP problems entails some calculating difficulties; therefore they are converted into 

single objective LFP problems and then solved using the method of Bitran and Novaes (1973) or 

Charnes and Cooper (1962).  

In a goal programming problem, when the goals are linear fractional functions, the formulation of the 

goal programming problem to be solved is quite complex because of non-linear constraints (R. 

Caballero and M. Hernandez, 2006). In the literature there are very few references to goal 

programming with fractional goals, except for the papers of Hannan (1977, 1981), Soyster end Lev 

(1978), and an article by Kornbluth and Steuer (1981).  

In this paper we seek to find an efficient algorithm to solve MOLFP problems by using goal 

programming techniques. To solve the problem of non-linear functions in the constraints set we 

propose linearization by application of Taylor’s formula around the optimal point of the given function 

on the given set of constraints.  

The proposed methodology is tested on the example of company’s financial structure optimization. 

The first section of this paper considers the theoretical approach to company’s financial structure 

optimization. In the second section we first define the multi-criteria programming model and the main 

four approaches to solving MP models, among which goal programming is the most prominent. The 

third section presents the MOLFP model and the linearization of fractional linear function using 

Taylor series approach. In the fourth section the proposed methodology is tested on the practical 

problem of company’s financial structure optimization. The concluding section presents the most 

important results obtained in the course of research. 

 

2. COMPANY'S FINANCIAL STRUCTURE OPTIMIZATION 

For a long time the effect of company’s financial structure on estimation of its value has been in the 

focus of attention of numerous economists and business people. The reasons for this interest lie in the 

fact that different levels of company indebtedness have different implications. Thus the consequences 

of increased indebtedness level are increased financial risk, reduced credit rating, and increased cost of 

financing.   

There are different theories for company financial structure. According to some of them the company 

value directly depends on its financial structure, while according to some other theories financial 

structure has at all no effect on company value. 

According to the traditional theory represented in this paper, there is direct interdependence of 

financial structure and company value. This results from the exposure to financial risk, and thus 

companies with higher levels of indebtedness are required to offer higher return rates on the issued 
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debt instruments to compensate the risk. In addition to that, there is also the financing cost with the 

own capital, which is higher than the financing cost rate of the borrowed capital.  As the total 

financing cost is calculated as the sum of financing costs by both the own and borrowed capital, which 

are weighted by their shares in value, it is evident that there is an optimal financial structure entailing 

the minimal total cost. This results from the different intensity of the weighted average capital cost 

shares.    

This means that the financial structure has important implications on the company value. Companies 

should choose such financial structure that will ensure minimal debt and minimal ratio of the current 

liabilities and capital, and maximal profitability and turnover (Lai Y. J. and Hwang C. L., 1994). 

Generally, financial structure is determined by financial markets, financial institutions, supply of 

instruments in financial markets, and demand for these instruments in different sectors.  

Company financial structure is determined by the relation of finance resources and company assets. 

Vertical financial structure reveals the relations of different assets, capital, and liabilities. For example, 

the share of liquid assets in total assets, the relation of short-term assets to long-term assets, the share 

of debtors in the total assets, the share of debt in the total capital, etc.  

Horizontal financial structure refers to interrelation of different assets on one side and capital and 

liabilities on the other. For example: liquid assets to current liabilities, long-term liabilities to long-

term assets, capital to long-term assets.   

The key factors of financial structure are: business activity, competitiveness, development of financial 

system, management ability, etc.  

The ability of the company to carry out its activities in the market depends on its capital structure 

efficiency. Debt and capital are the two main components of the total company capital. Debt is the 

amount obtained from financial resources such as individuals, banks or other financial institutions. 

Capital is the owners’ share in the company including share capital, share premium, preference share 

capital, reserves, and capital surplus.  

The leverage of capital and debt in the capital structure differs among companies. Capital structure 

also varies according to industry or market situation in which the company operates.  

The main goal of capital structure optimization is selecting the proportion of different forms of 

liabilities and capital which will maximize the company value and minimize the average cost of 

capital. Although this issue has been extensively researched, there is no general formula or theory that 

unquestionably ensures an optimal capital structure for any company.  
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3. MULTICRITERIA FRACTIONAL LINEAR PROGRAMMING 

3.1. Model of multiple objective linear fractional programming (MOLFP) 

Pal et al. (2003) define the general form of MOLFP, in the following way:  

If ( ) ,  k k
k

k k

c x
Z x

d x









,  , ,  , ,n n

k k k kx R c d R R     then 

   Max Z(x) = (z1(x), z2(x), …, zK(x)),     (1) 

  s.t. ,Ax b

 
 
 
  

        (2) 

   x 0, AR
m x n

, bR
m
.      (3) 

3.2. Solving MOLFP model by goal programming 

To solve the model (1) – (3) by the goal programming method we have to find marginal solutions for 

all the goal functions in the given constraints set with goal function values: 
* * *

1 2, ,..., .kz z z  After that we 

form the goal programming model in one of the four possible ways:  

 

(i) The Min – max form:   

(MFG1)  Min max gk(nk, pk)       (4) 

  s.t. ,  1, 2,...,k k
kk k

k k

c x
n p Z k K

d x






   


    (5) 

,Ax b

 
 
 
  

        (6) 

x 0, nk 0, pk 0, nk  pk = 0, k = 1, 2, …, K.    (7) 

Aspiration level Z is determined by the decision maker or is equal to Z*. 

 

(ii) The minimization of the sum of deviations form: 

(MFG2)  Min 
1

( , )
K

k k k

k

g n p


        (8) 

  s.t. constraints (5) – (7)       (9) 

 

(iii) The minimization of the weighted sum of deviations form: 
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(MFG3)  Min 
1

( , )
K

k k k k

k

w g n p


          (10) 

  s.t.  constraints (5) – (7),       (11) 

where wk (k = 1, 2, …, K) are weights determined by the decision maker. 

 

(iv) The preemptive priority form:  

In this form the K objectives are rearranged according to decision maker’s priority levels, the highest 

priority goal is considered first, then the second and so on. The general lexicographical goal program 

is: 

(MFG4)  Min a = ( , ) :  1,2,...,
i

k k k k

k P

w g n p i I


  
 

  
     (12) 

  s.t.  constraints (5) – (7),       (13) 

where I is the number of priority levels and kPi means that the kth goal is in the ith priority level. 

Models (MFG1), (MFG2), (MFG3) and (MFG4) are nonlinear programming models which cannot be 

solved by the simplex method. The non-linear functions in the constraints set are a particular problem, 

which significantly complicates the solving process.  

 

3.3. Linearization of fractional linear function using the Taylor series approach 

In the models (MFG1), (MFG2), (MFG3) and (MFG4) fractional functions zk(x) = k k

k k

c x

d x








 are 

transformed into linear functions by using Taylor series (Toksary, 2008). The fractional functions in 

the constraints of the specified models are replaced with the linearized functions.  

Linearization procedure is carried out in two steps: 

Step 1. Determine 
* * * *

1 2( , ,..., )k k k knx x x x  which is the value that maximizes the FL objective function 

zk(x),  

k = 1, 2, …, K.  

 

Step 2. Transform zk(x) by using first-order Taylor polynomial series (Toksari, 2008). Consequently: 

* * *

* * * *

1 1 2 2

1 2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ... ( )k k k k k k k k

kk k k k k n kn

k k n

c x Z x Z x Z x
z x z x Z x x x x x x x

d x x x x





    
          

    
     (14) 
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In this way obtained models (MFG1), (MFG2) and (MFG3)  are linear programming models 

that can be solved by the simplex method, and the model (MFG4) can be solved by the 

multiphase simplex method (Lee, 1972) or the sequential simplex method (Ignizio, 1982). 

 

4. PRACTICAL APPLICATION: FINANCIAL PLANNING 

4.1. The problem 

Consider a firm which is expected to reach US$ 60.0 million of capital in the next year. In order to 

increase the firm value, the firm’s financial manager wants to improve the financial condition of the 

company by optimally constructing the financial structure. Based on the expected sales for the next 

year, it is desired to maximize the manager’s satisfaction with some financial ratios. The Table 1 

shows the variables which are considered. The manager’s preferences of key financial ratios are 

summarized in the Table 2. The four conflicting fractional goals are as follows: (1) minimization of 

the current ratio, (2) minimization of the debt ratio, (3) maximization of the turnover ratio and (4) 

maximization of the profitability ratio. 

 

Table 1: Definition of variables in the balance sheet (B/S) 

Assets Variable Expected values   Liabilities and 

equality 

Variable Expected values 

Current 

assets 

x11 150 ≤ x11 ≤ 250 Current 

liabilities 

x21 75 ≤ x21≤ 300 

Fixed assets x12 x12 ≤ 300 Long-term 

liabilities 

x22 x21 + x22 ≥ 250 

100 ≤ x22 ≤ 300 

Total assets x11+x12 x11 + x12 ≥ 350 Shareholders  

equity 

x23 75 ≤ x23 ≤ 125 

   Retained 

earning added 

x24 100 ≤ x24 ≤ 140 

   Total liabilities 

and equity 

x21+x22+x23+x24  

 

4.2. MOFLP model 

 

The above data are the basis for the following MOFLP model: 
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 Min z1(x) = 11

21

,
x

x
  {Current ratio}      (15) 

 Min z2(x) = 21 22

23 24

x x

x x




 ,  {Debt ratio}      (16) 

 Max z3(x) = 
11 12

60

x x
  {Turnover ratio}     (17) 

 Max z4(x) = 24

60

x
  {Profitability ratio}     (18) 

 s.t.  x11 + x12 = x21 + x22 + x23 + x24,       (19) 

  150 x11 250,         (20) 

  x12 300,         (21) 

  x11 + x12 350,         (22) 

  75 x21 300,         (23) 

  100 22x  300,        (24) 

  x21 + x22 250,         (25) 

  75 x23 125,         (26) 

  100 x24 140,         (27) 

  x11, x12, x21, x22, x23, x24 0.       (28) 

 

4.3. The model solving 
 

Marginal solutions, obtained by maximizing each of the four objective functions individually on a 

given set of constraints, are presented in table 2. 

The functions z1, z2 and z3 are not linear. The linearization of the function z1(x) by application of the 

first order Taylor’s formula looks like this:  

* * *
* * * *11 1 1 1 1 1 1

1 1 1 11 11 12 12 21 21

21 11 12 21

* * *
* * *1 1 1 1 1 1

22 22 23 23 24 24

22 23 24

11 12

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

      

( ) ( ) ( )
( ) ( ) ( ) 0.8571

( 150) 0.0057 ( 300)

x z x z x z x
z x z x x x x x x x

x x x x

z x z x z x
x x x x x x

x x x

x x

  
        

  

  
       

  

     21 22

23 24 11 21

0 ( 175) ( 0.0049) ( 100) 0

( 75) 0 ( 100) 0 = 0.005714285 0.004897959 0.857142857

x x

x x x x

        

        

 (29) 
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Table 2: Marginal solutions 

Marginal 

solution 

Variable values z1 z2 z3 z4 

*

1x  x11 = 150 x12 = 300 0.8571 1.5714 0.1333 1.6667 

x21 = 175  x22 = 100  

x23 = 75  x24 = 100 

*

2x  x11 = 215 x12 = 300 1.4333 0.9434 0.1165 2.3333 

x21 = 150 x22 = 100 

x23= 125 x24 = 140 

*

3x  x11 = 220 x12 = 205 2.9333 1.4286 0.1412 1.6667 

x21 = 75 x22 = 175 

x23 = 75 x24 = 100 

*

4x  x11 = 250 x12 = 300 3.3333 1.5581 0.1091 2.3333 

x21 = 75 x22 = 260 

x23 = 75 x24 = 140 

 

The functions z2 and z3 are linearized analogously. Thus:   

 

21 22
2 21 22 23

23 24

24

( ) 0.003773584 0.003773584 0.00359985

                             0.003559985 0.9434

x x
z x x x x

x x

x


    



 

  (30) 

 3 11 12

11 12

60
( ) 0.000332179 0.000332179 0.282352575z x x x

x x
    


  (31) 

Based on this calculation we can form the linear goal programming model:  

(i) The Min-Max form: 

 Min max gk(nk, pk), k = 1, 2, 3, 4.       (32) 

 s.t. 111 21 1 1 0.0057 0.0049 0.8571x x n p z          (33) 

 221 22 23 24 2 20.0038 0.0038 0.0036 0.0036 0.9434x x x x n p z          (34) 

 311 12 3 30.00033 0.00033 0.2824x x n p z           (35) 

 24
44 4

60

x
n p z             (36) 
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constraints (19) – (28),          (37) 

nk  0, pk  0, nk  pk = 0, k = 1, 2,3,4,        (38) 

where g1(n1, p1) = p1, g2(n2, p2) = p2, g3(n3, p3) = n3, g4(n4, p4) = n4, and *
k kz z , k = 1, 2, 3, 4.  

The model (32) – (38) is converted to a linear program as follows: 

  Min            (39) 

 s.t. constraints (33) – (38)        (40) 

  ( , ),  1,2,3,4.k k kg n p k          (41) 

Model (39) – (41) is solved by the simplex method. 

(ii) The minimization of the sum of deviations form:  

  Min 
4

1

( , )k k k

k

g n p


         (42) 

 s.t.  constraints (33) – (38),        (43) 

where g1(n1, p1) = p1, g2(n2, p2) = p2, g3(n3, p3) = n3, and g4(n4, p4) = n4. This model can be solved using 

the simplex method. 

(iii) The minimization of the weighted sum of deviations form: 

  Min 
4

1

( , )k k k k

k

w g n p


         (44) 

 s.t. constraints (33) – (38),        (45) 

where g1(n1, p1) = p1, g2(n2, p2) = p2, g3(n3, p3) = n3, g4(n4, p4) = n4, and wk (k = 1, 2, 3, 4) are 

determined by the decision maker. In our model we put w1 = 0.4, w2 = 0.3, w3 = 0.2 and  

w4 = 0.1. The model (44) – (45) is solved by using the simplex method.  

(iv) The preemptive priority form: The four objectives are ranked according to their priority: the 

goal 1 has priority 1, the goal 2 has priority 2, the goal 3 has priority 3, and the goal 4 has priority 4. 

The general lexicographical goal program is: 

  Min a = ( , ) : 1,2,3,4
i

k k k k

k P

w g n p i


  
 

  
      (46) 

 s.t.  constraints (33) – (38),        (47) 



Croatian Operational Research Review (CRORR), Vol. 3, 2012  

 

 

 

 159 

where kPi means that kth goal is in the ith priority level. In our model the weights are the same as in 

the previous case. The model (46) – (47) is solved by using the sequential simplex method. 

 

4.4. The solutions 

The solutions of the models (39) – (41), (42) – (43), (44) – (45) and (46) – (47) are showed in the 

Table 3.  

Table 3: Goal programming solutions 

Goal 

programming 

solution 

Variable values z1 z2 z3 z4 

(i) x11 = 161.75 x12 = 300.00 

1.0783 1.1806 0.1299 2.1438 x21 = 150.00  x22 = 100.00  

x23 = 83.12  x24 = 128.63 

(ii) x11 = 165.00 x12 = 300.00 

1.1000 1.1628 0.1290 2.3333 x21 = 150.00 x22 = 100.00 

x23= 75.00 x24 = 140 

(iii) x11 = 165.00 x12 = 300.00 

1.1000 1.1628 0.1290 2.3333 x21 = 150.00 x22 = 100.00 

x23 = 75.00 x24 = 140.00 

(iv) x11 = 183.59 x12 = 300.00 

1.0590 1.3000 0.1241 2.2539 x21 = 173.35 x22 = 100.00 

x23 = 75.00 x24 = 135.23 

 

Table 4: Solution after the first phase 

Goal 

programming 

solution 

Variable values z1 z2 z3 z4 

(iv)-1 x11 = 150.00 x12 = 300.00 

0.8571 1.5714 0.1333 1.6667 x21 = 175.00  x22 = 100.00  

x23 = 75.00 x24 = 100.00 
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Let us explain the model (46) – (47) solving procedure by the sequential simplex method. First we 

solve the following model: 

  Min 0.4 p1         (48) 

 s.t.  constraints (33) – (38).        (49) 

 

The obtained solution is in table 4.  

In order to allow the improvement of the function z2, in the second phase we solve the following 

problem: 

  min 0.3 p2         (50) 

 s.t.  constraints (33) - (38)        (51)

  0.005714285 x11 – 0. 004897959 x21 = 0 + 0.2     (52) 

The obtained solution is as follows:  

 

Table 5: Solution after the second phase 

Goal 

programming 

solution 

Variable values z1 z2 z3 z4 

(iv)-2 x11 = 163.57 x12 = 300.00 

1.0905 1.1706 0.1294 2.3095 x21 = 150.00  x22 = 100.00  

x23 = 75.00 x24 = 138.57 

 

In the third phase the following LP model is solved: 

  min n3          (53) 

 s.t.  constraints (33) – (38)        (54) 

  0.005714285 x11 – 0. 004897959 x21 = 0 + 0.2     (55) 

  0.003773584 x21 + 0.003773584 x22 – 0.003559985 x23  

– 0.003559985 x24 = 0.183084999 + 0.05.     (56) 

 

The obtained solution is in table 6. 

In the fourth phase the following LP model is solved: 

   min n4          (57) 

  s.t. constraints (55) – (60)       (58) 

  0.005714285 x11 – 0. 004897959 x21 = 0 + 0.2     (59) 

  0.003773584 x21 + 0.003773584 x22 – 0.003559985 x23 – 
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– 0.003559985 x24 = 0.183084999 + 0.05      (60) 

– 0.000332179 x11 – 0.000332179 x12 = – 0.149321104    (61) 

 

Table 6: Solution after the third phase 

Goal 

programming 

solution 

Variable values z1 z2 z3 z4 

(iv)-3 x11 = 163.57 x12 = 285.95 

1.0905 1.2529 0.1335 2.0755 x21 = 150  x22 = 100.00  

x23 = 75.00 x24 = 124.53 

 

The obtained solution is identical to the solution presented in the Table 6. The obtained solution 

cannot be further improved even with the reduced level of the goal 3 without reducing the value of the 

goals 1 and 2.  

5. CONCLUSION 

This paper proposes the methodology of fractional linear goal functions linearization by use of 

Taylor's formula to solve MOLFP problem by goal programming methods.  

The proposed methodology is tested on the problem of company's financial structure optimization.  

The obtained results reveal the possibility of an efficient application of the proposed methodology in 

solving the given problem.  

The paper presents four approaches to the goal programming problem for solving company's optimal 

financial structure. The proposed methodology allows the use of lexicographic simplex method in the 

process of obtaining the preferred solution with active participation of the decision maker. 

Further research will involve finding valid analytical proofs that linearization of fractional linear goal 

functions and subsequent solving of multi-criteria fractional linear programming model by using goal 

programming techniques leads to satisfactory solutions. We have shown numerically in the examples 

solved in this paper that the solutions obtained in this way are identical to the solutions obtained by 

applying methods without linearization. 
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