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Total domination numbers of cartesian products

A.Klobučar
∗

Abstract. Let G✷H denote the cartesian product of graphs G
and H. Here we determine the total domination numbers of P5✷Pn and
P6✷Pn.
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1. Introduction

For any graph G by V (G) and E(G) we denote the vertex-set and the edge-set of
G, respectively. For graph G subset D of the vertex-set of G is called a dominating
set if every vertex x ∈ V \D is adjacent to at least one vertex of D. The domination
number γ(G) is the cardinality of the smallest dominating set.

Set D is a total dominating set if every vertex x ∈ V is adjacent to at least one
vertex of D. The total domination number γt(G) is the cardinality of the smallest
total dominating set.

The cartesian product of graphs G and H is a graph with V (G✷H) =V (G)✷V (H)
and ((g1, h1), (g2, h2)) ∈ E(G✷H), if and only if either g1 = g2 and (h1, h2) ∈ E(H),
or (g1, g2) ∈ E(G) and h1 = h2.

The study of domination numbers of products of graphs was initiated by Vizing
[19]. He conjectured that the domination number of the cartesian product of two
graphs is always greater than or equal to the product of the domination numbers
of the two factors; a conjecture which is still unproven.

Domination numbers of cartesian products were intensively investigated (see e.
g. [1], [2], [3], [6], [7], [11]).

In [3] a link is shown between the existence of tilings in Manhattan metric with
{1}-bowls and minimum total dominating sets of cartesian products of paths and
cycles. It is also proved that γt(P2✷Pn) = 2�(n + 2)/3� and γt(P3✷Pn) = n, and
γt(P4✷Pn) is given without proof. Also, there is a bound for γt(Pk✷Pn) when
k, n ≥ 16.

The next observation will be used in the sequel.
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Observation 1. Let Pn denote the path with n vertices. Then

γt(Pn) =
{

2�n
4 � + 1, n ≡ 1(mod4)
2	n

4 
, otherwise.

Obviously, P1✷Pn = Pn.
Observation 2. Let 1, ..., k and 1, ..., n be the vertices of Pk and Pn, respec-

tively. Then the vertices of Pk✷Pn are denoted by (i, j), where i = 1, ..., k and
j = 1, ..., n.

Definition 1. For a fixed m, 1 ≤ m ≤ n, the set (Pk)m := Pk✷m is called
a column of Pk✷Pn; the set r(Pn) := r✷Pn is called a row of Pk✷Pn. Any set
B = {(Pk)m, (Pk)m+1, ..., (Pk)m+l, |l ≥ 0, m ≥ 1, m + l ≤ n}, of consecutive
columns is called a block of size k× (l+1) of Pk✷Pn. If another block B

′
ends with

the column (Pk)m−1 or begins with the column (Pk)m+l+1, then we say that B
′

is
adjacent to B. Block B is called internal, if it is adjacent to two other blocks. It is
called external, if it is adjacent only to one block.

2. Total domination numbers of Pk✷Pn

In the sequel we give the values of γt(Pk✷Pn) for k ∈ {5, 6}. Here is also the proof
of γt(P4✷Pn).

Proposition 1. Let n ≥ 2. Then

γt(P4✷Pn) =




6�n
5 � + 2, n ≡ 0, 1(mod 5)

6�n
5 � + 4, n ≡ 2(mod 5)
6	n

5 
, n ≡ 3, 4(mod 5)

Proof. We consider the set

S =
{

(2, 1 + 5k), (3, 1 + 5k), (1, 3 + 5k), (1, 4 + 5k), (4, 3 + 5k), (4, 4 + 5k)

| k = 0, 1, ..., �n
5
� − 1

}
.

Figure 1.

a) For n ≡ 1(mod 5) we consider S1 = S ∪ {(2, n), (3, n)}. This set total domi-
nates all vertices on P4✷Pn and it is obviously minimal, because each vertex v is to-
tally dominated by exactly one vertex u �= v. Also, it holds |S1| = |S|+2 = 6�n

5 �+2.
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b) For n ≡ 2(mod 5) we consider S2 = S ∪ {(2, n), (3, n), (2, n− 1), (3, n− 1)}.
This set is a total dominating set and |S2| = 6�n

5 � + 4.
Proof of minimality: Let n ≡ 2(mod 5) and we have all vertices from S on P4✷Pn.
Then each vertex on (P4)1,...,(P4)n−3,(1, n− 2) and (4, n− 2) is totally dominated
by exactly one vertex u �= v. To totally dominate (2, n− 2), (3, n− 2), (P4)n−1 and
(P4)n we need at least 4 vertices. (γt(P2✷P4) = 4)

c) Let n ≡ 3(mod 5). Then we consider

S3 = S ∪ {(2, n− 2), (3, n− 2), (1, n− 1), (2, n− 1), (3, n− 1), (4, n− 1)}.
This set is a total dominating set and |S3| = 6�n

5 � + 6 = 6	n
5 
.

Proof of minimality: As in b), if we have vertices from S on P4✷Pn, then (2, n−3),
(3, n−3), (P4)n−2, (P4)n−1 and (P4)n are not totally dominated (and all other ver-
tices are totally dominated by exactly one vertex). There is only one case when with
only four vertices we can totally dominate all vertices on (P4)n−2,(P4)n−1,(P4)n.
This is if (1, n− 1),(2, n− 1),(3, n− 1) and (4, n− 1) are total dominating vertices.
But then vertices (2, n − 3) and (3, n − 3) are not totally dominated. To totally
dominate them we need at least 2 more vertices. It follows that for each total dom-
inating set D it holds |D| ≥ 6�n

5 � + 6.

d) Let n ≡ 4(mod 5). Let

S4 = S ∪ {(2, n− 3), (3, n− 3), (1, n− 1), (1, n), (4, n− 1), (4, n)}.
This set is a minimal total dominating set because each vertex v is totally domi-
nated by exactly one total dominating vertex u �= v. And |S4| = 6	n

5 
.

e) Let n ≡ 0(mod 5). Then we consider S0 = S ∪ {(2, n), (3, n)}. This set is a
total dominating set and |S0| = 6n

5 + 2.
Proof of minimality: If we have all vertices from S on P4✷Pn, then (2, n) and (3, n)
are not totally dominated. One vertex can dominate both of these vertices, but to
totally dominate them we need at least one more vertex. ✷

Theorem 1. Let n ≥ 5. Then

γt(P5✷Pn) = �3n + 4
2

�, n �= 6

γt(P5✷P6) = 10.

Proof. We give a total dominating set S of P5✷Pn as follows: Let n ≥ 8. If
n = 8q, then we can partition (split) the set of columns of P5✷Pn into q 5-by-8
blocks Bi, i = 1, · · · , q and dominate each such block by a set isomorphic to set P =
{(1, 3), (1, 4), (1, 7), (2, 1), (2, 7), (3, 1), (3, 4), (3, 5), (5, 2), (5, 3), (5, 6), (5, 7)} (See Fig-
ure 2).

(On each odd block the situation is the same, and on each even block the sit-
uation is symmetrical over axis (3, n).) Then (if the last block is even) in column
(P5)n vertices (2, n) and (3, n) are not totally dominated, and we need at least two
more total dominating vertices.
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(On P5✷P5 let D = {(2, 1), (2, 2), (4, 2), (5, 2), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4)} and
on P5✷P6 let D = {(1, 2), (2, 2), (4, 1), (4, 2), (4, 3), (2, 4), (2, 5), (2, 6), (4, 5), (5, 5)}.
On P5✷P7 a total dominating set is P .)

Figure 2.

If n = 8q + l, 1 ≤ l ≤ 7, then in addition to the blocks Bi i = 1, ..., q we totally
dominate the last 5 × l block B

(l)
q+1 by a set isomorphic to Rl (1 ≤ l ≤ 7), Figure 3.

Figure 3.

To prove minimality of that set we partition graph P5✷Pn into 5✷8 blocks.
Lemma 1. There is no total dominating set D of P5✷Pn such that |D∩E| ≤ 11,

for each external 5✷8 block E.
Proof. Let E = B1. (It contains (P5)1.) Then at most the last column on E can

be totally dominated from the adjacent block. (It remains a 5✷7 block.) To totally
dominate a 5✷4 block we need at least 8 vertices (Proposition 1). If in the fourth
column of a 5✷5 block there are five total dominating vertices, they can totally
dominate all vertices from the fifth column. These five vertices totally dominate
also all vertices on the thirth and fourth column. Then remaining tree vertices must
totally dominate all vertices on the first two columns. But γt(P5✷P2) = 4. It follows
that we need at least one vertex more to totally dominate 5✷5 block. Therefore
γt(P5✷P5) = 9. (If we have 5✷6 block, by the same method it follows that we need
at least 10 vertices.) From the previous it follows that if we have eight vertices on
5 columns, at least one vertex fifth column must be totally dominated from a next
column.(On the second and fourth picture in the Figure 4. there are such cases.)
Then at least one vertex on (P5)5, three vertices on (P5)6 and (P5)7 must be totally
dominated from E. We need at least 4 vertices more for this (γt(P5✷P2) = 4). It
follows that to totally dominate the first seven columns we need at least 12 vertices.

If n ≡ 0(mod 8), and B(n/8) is external, the result is the same, because at most
the first column on B(n/8) can be totally dominated from the adjacent block. ✷
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Lemma 2. If |D ∩ E| = 12, then at least two vertices on E must be totally
dominated from the adjacent block.

Proof. Let E = B1. (From the previous proof it follows that a symmetrical case
is for B(n/8).) From the proof of the previous Lemma it follows that if |D∩E| = 12,
the first 8 vertices can at most totally dominate a 5✷4 bock and 4 vertices on (P5)5.
Then the next 4 vertices must totally dominate remaining vertices on B1. This is
5✷3 block plus 1 vertex more. γt(P5✷P3) = 5, but to totally dominate one vertex
more we need at least one total dominating vertex. Therefore at least two vertices
on E must be totally dominated from the adjacent block. There are four cases
which have only 12 vertices on B1 (see Figure 4). On each of them there are no
totally dominating vertices in (P5)8. ✷

Figure 4.
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Comment. If vertices of S are in E, then only the vertex v = (2, 4) is dominated
by 2 vertices u,w �= v. For other three cases more vertices are dominated by 2
vertices.

Lemma 3. There is no total dominating set D such that |D ∩ I| ≤ 9, for each
internal block I.

Proof. Let I = {(P5)j , ..., (P5)j+7}. At most the first and the last column on I
can be totally dominated from adjacent blocks. It follows that at least all vertices
on 5✷6 block must be totally dominated by vertices from I. From the proof of
Lemma1 it follows that we need for this at least 10 vertices.

Only for the case {(1, j+2), (2, j+2), (3, j+2), (4, j+2), (5, j+2), (1, j+5), (2, j+
5), (3, j + 5), (4, j + 5), (5, j + 5)} ∈ D we have 10 vertices on I (for all other cases
we have more vertices.) ✷

Lemma 4. If |D ∩ Bi| = 10 holds for some internal block Bi, then we have
|D ∩Bi−1| ≥ 14 and |D ∩Bi+1| ≥ 14.

Proof. From Lemma 3 it follows that there exists only one case when there
holds |D ∩ Bi| = 10. For this case the situation on Bi−1 and Bi+1 is symmetrical,
and we will consider only Bi−1. Let Bi = {(P5)j , ..., (P5)j+7}. Because {(1, j +
2), (2, j+2), (3, j+2), (4, j+2), (5, j+2)} ∈ D, all vertices on (P5)j must be totally
dominated from Bi−1. Then {(1, j−1), (2, j−1), (3, j−1), (4, j−1), (5, j−1)} ∈ D.
They also totally dominate all vertices on (P5)j−2. If Bi−1 is internal, the vertices
on the first column can be totally dominated from the adjacent block. Then at least
all vertices on (P5)j−7,...,(P5)j−3 must also be totally dominated by vertices from
Bi−1. This is a 5✷5 block. From the proof of Lemma1 it follows that to totally
dominate them we need at least 9 vertices. It follows that |D ∩Bi−1| ≥ 14. ✷

Observation 3. Let us have some total dominating set D with s blocks with
10 total dominating vertices. From Lemma3 these blocks are internal. Then from
Lemma4 there are at least s + 1 blocks with at least 14 vertices. Then such D on
these 2s+1 blocks has at least 24s+14 total dominating vertices, and S only 24s+12
vertices. It follows that for this case |D| > |S|. So, we will consider only such total
dominating sets for which holds |D ∩Bi| ≥ 11, for i ∈ {1, ..., �n

8 �}.
Lemma 5. If |D ∩ Bi| = 11 holds, then if Bi−1 and Bi+1 are internal |D ∩

Bi−1| ≥ 12 and |D∩Bi+1| ≥ 12 hold. If they are external then |D∩Bi−1| ≥ 14 and
|D ∩ Bi+1| ≥ 14 hold. If Bi−1 is internal, and Bi+1 is external (or reverse) then
holds |D ∩Bi−1| ≥ 12 and |D ∩Bi+1| ≥ 14 (or reverse).

Proof. If |D∩Bi| = 11 holds, from the fact that to totally dominate 5✷7 block
we need at least 12 vertices it follows that some vertices on (P5)j and (P5)j+7 are
totally dominated by vertices from adjacent blocks. From the proof of Lemma 2
it follows that in at least one of columns (P5)j and (P5)j+7 there are no total
dominating vertices. Let |D ∩ (P5)j+7| = 0. Then from Lemma2 also holds that at
least two vertices on (P5)j+7 are not totally dominated by vertices from Bi.

Now we consider (P5)j . It holds |D ∩ (P5)j | < 3, while if more vertices from
(P5)j are in D, all vertices on (P5)j are totally dominated by vertices from Bi.
If |D ∩ (P5)j | = 2, remaining 9 total dominating vertices from Bi must dominate
at least all vertices on 5✷5 block and three vertices from (P5)j+1. But to totally
dominate them we need at least 10 vertices. It follows that |D∩(P5)j | ≤ 1 holds. So,
if |D ∩Bi| = 11 holds, and this total dominating set has one dominating vertex in
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the first column ((P5)j), noon total dominating vertex in the last column ((P5)j+7),
and only two vertices on (P5)j+7 are totally dominated from Bi+1, then this set is
optimal.

Such set comes if (1, j+4), (1, j+5), (2, j+1), (2, j+2), (3, j+6), (4, j+3), (4, j+
4), (4, j + 6), (5, j), (5, j + 1), (5, j + 6) ∈ D. Only one vertex on Bi is totally
dominated by two vertices. Two vertices on (P5)j must be totally dominated from
Bi−1 and only two vertices on (P5)j+7 must be totally dominated from Bi+1. Also
one vertex from Bi−1 is totally dominated.

We will consider situation on the block Bi−1, because here we must totally
dominate one less vertex, but the proof for Bi+1 is similar. To totally dominate two
vertices on (P5)j we need at least two vertices from (P5)j−1 (vertices (1, j−1), (3, j−
1)). To totally dominate them we need at least one more vertex ((2, j − 1)), but
in this case we can totally dominate only 7 vertices on Bi−1. If we take one more
vertex, these 4 vertices can totally dominate (P5)j−1, 4 vertices on(P5)j−2 and some
vertices on (P5)j−3. Vertices on (P5)j−3 ,...,(P5)j−7 must be totally dominated by
vertices from Bi−1. This is 5✷4 block. From Propostion 1, to totally dominate them
we need at least 8 vertices. It follows that |D ∩Bi−1| ≥ 12 (if Bi−1 is internal). If
it is external we need at least two vertices more. ✷

Lemma 6. If |D ∩ Bi| = 11 and |D ∩ Bi−1| = 12 hold, then |D ∩ Bi−2| ≥ 12
holds for Bi−2 internal. If it is external then |D ∩Bi−2| ≥ 14.

Proof. From Lemma 2, and from the construction of Lemma5 and structure P ,
it follows that if |D ∩Bi| = 11 and |D ∩Bi−1| = 12 hold, then there is no one total
dominating vertex on the first column of Bi−1, and at least two vertices on this
column must be totally dominated by vertices from Bi−2. By the previous Lemma
it follows the result. ✷

Observation 4. By Lemma6 and induction it follows that |D ∩Bi| = 11 and
|D ∩Bk| = 12 k ∈ {i− 1, i− 2, ..., i− l} hold, then |D ∩Bi−l−1| ≥ 12 holds. Also it
is obvious that the same result as in Lemma 6 holds for Bi+1 and Bi+2.

Lemma 7. Let |D ∩ Bi| = 13 holds. Then if Bi−1 and Bi+1 are internal
|D ∩ Bi−1| ≥ 11 and |D ∩ Bi+1| ≥ 12 hold (or reverse). (If they are external then
|D ∩Bi−1| ≥ 12 and |D ∩Bi+1| ≥ 13 hold.)

Proof. Because for structure P from Figure 2 only one vertex is totally domi-
nated by two other vertices, and |P | = 12 we will take this structure on Bi plus one
vertex more. We will consider the case P ∪ (5, j + 7) (then the maximal number of
vertices is totally dominated). For this case we have two total dominating vertices
on the first column of Bi and all vertices on this column are totally dominated. It
follows that on the last column on Bi−1 we must not have any total dominating
vertices, and it can be |D ∩ Bi−1| ≥ 11. On the last column on Bi there is only
one total dominating vertex, and one vertex is not total dominated. By the same
methods as in previous Lemmas it follows that then |D ∩Bi+1| ≥ 12. If blocks are
external we need at least one vertex more on each. ✷

n ≡ 0(mod 8)
We first assume that n ≥ 24.
Let D be any dominating set. |D∩Bk| ≥ 11 holds for each block Bk, 1 ≤ k ≤ n

8 ,
by Lemma4 and Observation 3. Let’s assume that there are s 5 × 8 blocks which
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contain only 11 vertices of D. By Lemma 1 these blocks are internal. Then, by
Lemma6 and Lemma7, there are at least s 5 × 8 blocks which contain at least 13
vertices of D. Let Bij , 1 ≤ j ≤ 2s denote these blocks which either contain 11 or
13 vertices. Then B =

⋃2s
j=1 Bij contains at least 24s vertices of D. By the above

description of S, the set B contains at most 24s vertices of S. Hence |D| ≥ |S| holds
for any dominating set D.

Let n=16. |D ∩ Bk| ≥ 12 holds for each block Bk k=1,2 by Lemma 1. If
|D ∩ B1| = 12, at least two vertices of B1 are dominated by vertices of B2. Then
|D ∩B2| ≥ 14 is obviously, and therefore |D| ≥ |S|.

It is easy to see that γt(P5✷P8) = 14.

n ≡ 1(mod 8)
If on each block there are 12 total dominating vertices, then from the previous

case it follows that at least two vertices on (P5)n−1 and all vertices on (P5)n are
not totally dominated. To do that we need at least three vertices more.

n ≡ 2(mod 8)
We assume that on each block B1,...,B�n

8 � we have 12 vertices. Then two vertices
on (P5)n−2 and all vertices on (P5)n−1 and (P5)n are not totally dominated. To do
that we need at least 5 vertices.

For n ≡ 3, ..., 7(mod 8) the proof of minimality is the same. ✷

Theorem 2. Let n ≥ 6. Then

γt(P6✷Pn) = �12n + 21
7

�

Proof. We give a total dominating set S of P6✷Pn as follows: Let n ≥ 7. If
n = 7q then we can partition (split) the set of columns of P6✷Pn into q 6-by-7
blocks Bi, i = 1, · · · , q and dominate each such block by a set isomorphic to set
P = {(2, 1), (3, 1), (6, 1), (6, 2), (1, 3), (1, 4), (4, 3), (4, 4), (6, 5), (6, 6), (2, 6), (3, 6)}.

(On each odd block the situation is the same, and on each even block the situ-
ation is symmetrical (instead (2, 1) we have (5, 1), and on so on) (see Figure 5).

Figure 5.

The structure P on 6✷7 block is obviuosly minimal because each vertex y is
totally dominated with exactly one vertex x ∈ D, x �= y. The structure is optimal
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for the case n ≡ 6(mod 7), because the all vertices on graph are totally dominated.
For other n some vertices in last columns are not totally dominated when we have
only vertices from P .

It follows that we must only see the situation for the cases n ≡ k(mod 7), k �= 6,
on the last k+1 columns. (We assume that all those vertices from S are on P6✷Pn,
and that last 6✷7 block is even.)

a) n ≡ 0(mod 7) In the column (P6)n vertices (2, n),(3, n) and (6, n) are not
totally dominated. Because on (P6)n−1 the vertices (1, n−1),(4, n−1) and (5, n−1)
are in D, we need at least three more total dominating vertices (see Figure 4).

b) n ≡ 1(mod 7) It follows from the fact that γt(P6) = 4.
c) n ≡ 2(mod 7) It is easy to see that if we have on each 6✷7 block structure

P , and four aditional vertices in two last columns, at least (1, n) and (4, n) are not
totally dominated. Then we need at least two more vertices (all together 6).

d) n ≡ 3(mod 7) It is easy to see that if we have on each 6✷7 block structure
P , and 6 aditional vertices in three last columns, at least (1, n) and (4, n) are not
totally dominated. Then we need at least two more vertices (all together 8).

For the cases n ≡ 4(mod 7) and n ≡ 5(mod 7) same as in the previous four
cases. ✷
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