A note on the root subspaces of real semisimple Lie algebras

Hrvoje Kraljević*

Abstract

In this note we prove that for any two restricted roots α, β of a real semisimple Lie algebra \mathfrak{g}, such that $\alpha+\beta \neq 0$, the corresponding root subspaces satisfy $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta}$.

Key words: real semisimple Lie algebra, root systems, reduced roots, root subspaces

AMS subject classifications: 17B20
Received February 26, 2004
Accepted March 31, 2004

Let \mathfrak{g} be a real semisimple Lie algebra, \mathfrak{a} a Cartan subspace of \mathfrak{g} and R the (restricted) root system of the pair ($\mathfrak{g}, \mathfrak{a}$) in the dual space \mathfrak{a}^{*} of \mathfrak{a}. For $\alpha \in R$ denote by \mathfrak{g}_{α} the corresponding root subspace of \mathfrak{g} :

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} ;[h, x]=\alpha(h) x \forall h \in \mathfrak{a}\} .
$$

The aim of this note is to prove the following theorem:
Theorem. Let $\alpha, \beta \in R$ be such that $\alpha+\beta \neq 0$. Then either $\left[x, \mathfrak{g}_{\alpha}\right]=\mathfrak{g}_{\alpha+\beta}$ $\forall x \in \mathfrak{g}_{\beta} \backslash\{0\}$ or $\left[x, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta} \forall x \in \mathfrak{g}_{\alpha} \backslash\{0\}$.

Although the proof is very simple and elementary, the assertion does not seem to appear anywhere in the literature. The argument for the proof is from [2], where it is used to prove $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha}\right]=\mathfrak{g}_{2 \alpha}$ (a fact which is also proved in [3], 8.10.12), as well as that the nilpotent constituent in an Iwasawa decomposition is generated by the root subspaces corresponding to simple roots.

Let B be the Killing form of \mathfrak{g} :

$$
B(x, y)=\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y), \quad x, y \in \mathfrak{g}
$$

Choose a Cartan involution ϑ of \mathfrak{g} in accordance with \mathfrak{a}, i.e. such that $\vartheta(h)=-h$, $\forall h \in \mathfrak{a}$. Denote by $(\cdot \mid \cdot)$ the inner product on \mathfrak{g} defined by

$$
(x \mid y)=-B(x, \vartheta(y)), \quad x, y \in \mathfrak{g} .
$$

[^0]We shall use the same notation $(\cdot \mid \cdot)$ for the induced inner product on the dual space \mathfrak{a}^{*} of \mathfrak{a}. Let $\|\cdot\|$ denote the corresponding norms on \mathfrak{g} and on \mathfrak{a}^{*}. For $\alpha \in R$ let h_{α} be the unique element of \mathfrak{a} such that

$$
B\left(h, h_{\alpha}\right)=\alpha(h) \quad \forall h \in \mathfrak{a} .
$$

Lemma. Let $\alpha, \beta \in R$ be such that $(\alpha \mid \alpha+\beta)>0$. Then

$$
\left[x, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta} \quad \forall x \in \mathfrak{g}_{\alpha} \backslash\{0\} .
$$

Proof. Take $x \in \mathfrak{g}_{\alpha}, x \neq 0$. We can suppose that $\|x\|^{2}\|\alpha\|^{2}=2$. Put

$$
h=\frac{2}{\|\alpha\|^{2}} h_{\alpha} \quad \text { and } \quad y=-\vartheta(x)
$$

Then

$$
[h, x]=2 x, \quad[h, y]=-2 y, \quad[x, y]=h
$$

([3], 8.10.12). Therefore, the subspace \mathfrak{s} of \mathfrak{g} spanned by $\{x, y, h\}$ is a simple Lie algebra isomorphic to $\mathfrak{s l}(2, \mathbb{R})$. From the representation theory of $\mathfrak{s l}(2, \mathbb{R})$ ([1],1.8) we know that if π is any representation of \mathfrak{s} on a real finite dimensional vector space V, then $\pi(h)$ is diagonalizable, all eigenvalues of the operator $\pi(h)$ are integers, and if for $n \in \mathbb{Z} V_{n}$ denotes the n-eigenspace of $\pi(h)$, then

$$
n \geq-1 \quad \Longrightarrow \quad \pi(x) V_{n}=V_{n+2}
$$

Put

$$
V=\sum_{j \in \mathbb{Z}} \mathfrak{g}_{\beta+j \alpha}
$$

Then V is an \mathfrak{s}-module for the adjoint action and

$$
\mathfrak{g}_{\beta+j \alpha}=V_{n+2 j} \quad \text { where } \quad n=2 \frac{(\beta \mid \alpha)}{\|\alpha\|^{2}} \in \mathbb{Z}
$$

Especially,

$$
V_{n}=\mathfrak{g}_{\beta}, \quad V_{n+2}=\mathfrak{g}_{\alpha+\beta}
$$

Now

$$
n+2=2 \frac{(\alpha \mid \alpha+\beta)}{\|\alpha\|^{2}}>0 \quad \Longrightarrow \quad n \geq-1 \quad \Longrightarrow \quad(\operatorname{ad} x) V_{n}=V_{n+2}
$$

Proof of Theorem. It is enough to notice that if $\alpha+\beta \neq 0$ then

$$
0<(\alpha+\beta \mid \alpha+\beta)=(\alpha \mid \alpha+\beta)+(\beta \mid \alpha+\beta)
$$

hence, either $(\alpha \mid \alpha+\beta)>0$ or $(\beta \mid \alpha+\beta)>0$.
Let m_{α} denote the multiplicity of $\alpha \in R\left(m_{\alpha}=\operatorname{dim} \mathfrak{g}_{\alpha}\right)$. An immediate consequence of the Theorem is:

Corollary. If $\alpha, \beta \in R, \alpha+\beta \neq 0$, then $m_{\alpha+\beta} \leq \max \left(m_{\alpha}, m_{\beta}\right)$.

References

[1] J. Dixmier, Algebres enveloppantes, Gauthier-Villars, Paris, 1974.
[2] J. Lepowsky, Conical vectors in induced modules, Trans. Amer. Math. Soc. 208(1975), 219-272.
[3] N. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.

[^0]: *Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: hrk@math.hr

