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Abstract 

Some specific geometric data envelopment analysis (DEA) models are well known to the researchers 

in DEA through so-called multiplicative or log-linear efficiency models. Valuable properties of these 

models were noted by several authors but the models still remain somewhat obscure and rarely used in 

practice. The purpose of this paper is to show from a mathematical perspective where the geometric 

DEA fits in relation to the classical DEA, and to provide a brief overview of some benefits in using 

geometric DEA in practice of decision making and/or efficiency measurement. 
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1. INTRODUCTION 
  
One of the main concepts addressed by DEA is the concept of technical efficiency, which, in simplest 

terms, can be defined as a relative measure of the success of a Decision Making Unit (DMU) in 

maximizing its desirable outputs while at the same time minimizing its relevant inputs. To make this 

definition practical in terms of measuring and analyzing efficiency, it is necessary to construct some 

kind of a function whose arguments will be all the relevant inputs and all the desirable outputs and 

which has to satisfy two basic properties: to be directly proportional to all the outputs and inversely 

proportional to all the inputs.  Clearly, one could come up with infinitely many different functions 

satisfying these two basic properties. To narrow down the set of possible functions, we need to impose 

further properties that such a function should satisfy until we finally obtain a workable formulation 

that can be used to evaluate the efficiency of a DMU. But before we do, let us see a simple general 

functional form for efficiency measure ek defined for DMU k: 

1 2 1 2

max max

( , , , , , , , )k k k mk k k sk
k

f f Input Input Input Output Output Output
e

f f
 

 
 (1) 

In case of a single relevant input and a single desirable output, the function f is customarily defined in 

the form of a ratio: 
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This function satisfies the basic two properties mentioned earlier and its value tells us how much of 

output has been attained per one unit of input. Organizations, such as business firms, hospitals, 

educational institutions, etc., are frequently using the above ratio form to evaluate productivity of its 

units. Some examples are “sales per salesperson hour”, “inpatients per doctor employed” or “number 

of publications per faculty member”. The measures like these are also known as partial productivity 

measures. The word partial is used here since these measures do not capture productivity based on all 

desirable outputs and all relevant inputs but deal only with one input-output pair. Total factor 

productivity measure is what we would like to name the value of function f in general case and this 

could be some kind of output-to-input ratio value where all desirable outputs and all relevant inputs 

are included. To achieve this, we need to generalize the above ratio for the case when there is more 

than one input and more than one output. One of the most frequently presented generalizations is: 

,
j j

j

i i
i

b y

f
a x





 (3) 

where ai and bj are the weights applied to input xi and output yj, respectively. These weights could not 

be negative since otherwise the basic two properties of function f, mentioned earlier, would not be 

respected.  

The basic idea behind classical DEA is to derive efficiency measure ek of DMUk under the following 

two conditions: 

1. The parameters of function f are not to be specified in advance; instead, they are left to be 

determined by each unit k being assessed so that the selected parameters maximise its efficiency 

score. This is why DEA belongs to the group of nonparametric approaches to efficiency 

measurement and this is also why DEA is said to satisfy strict equity criteria. 

2. The value of fmax in (1) must be obtained using the same function f as for unit under assessment but 

applied to the inputs and outputs of an observed unit. The observed unit normally selected for this 

purpose is the one which will maximise the value of function f using the parameters selected by 

unit k. Note that the observed unit taken for this purpose can also be the unit k itself. For this 

reason, DEA efficiency scores are bound from above by 1. Due to this, it is said that DEA focuses 

on revealed best-practice frontier. 

When the form of function f is specified as in (3), then we have a seed for many classical DEA model. 

Function f in (3) is truly a generalization of (2) since for the single input - single output case they both 
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yield the same values for ek in (1). However, the generalization of (2), as shown in (3) is not the only 

possible generalization. Other possible generalisations will be explored in the next section. One of 

them will be the seed for all the geometric DEA models. For now, let us just observe the formulation 

for the efficiency of DMUk when the above conditions are applied to the single input single output 

case: 

 max max

( , )
min min min

max
p k pk k k k k k k k

k
p p pp p p k k pp p

p

X X Xf f X Y Y X Y X Y
e

f f Y X Y Y X YY X
 

       
 

, 

where unit p is selected among all the observed units. 

It is instructive to note that the last formulation for ek in the above line of equalities can be interpreted 

in the following way: efficiency of DMUk is equal to the product between its input factor efficiency 

(Xp/Xk) and its output factor efficiency (Yk/Yp), where the factor efficiencies are obtained with respect 

to a unit p which will minimise the product of two factor efficiencies.  

 
2. MATHEMATICAL INTRODUCTION TO EFFICIENCY 
 
In this section, we will examine alternative forms of function f that could be used in (1) while 

satisfying the property that, for the single input – single output case, it yields the same efficiency as (2) 

when used in (1).  

An average value of a set of positive real numbers, a1, a2,, an , may be defined in a number of ways. 

Some of the common definitions include: 

arithmetic mean:  
n

aaa
aaaAA n

n





 21

21 ,,, , 

geometric mean:   n
nn aaaaaaGG  2121 ,,,  , 

harmonic mean:  1 2

1 2

, , ,
1 1 1

 
  




n

n

n
H H a a a

a a a

. 

It is well known that H  G  A and both inequalities become equalities if and only if a1 = a2 =  = 

an. 

These definitions are usually adequate in applications where the underlying data are of equal 

importance. In some cases, however, the relative importance of the data is essential, and may be 

expressed numerically, in the form of non-negative real values: w1, w2, , wn , called weights. The 

weights can be normalized so that w1 + w2 +  + wn = 1. Under such circumstances, for a given 

weight vector w = (w1, w2,, wn), the weighted arithmetic mean is defined as the value 

  nnnww awawawaaaAA   221121 ,,, . 
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Similarly, the weighted geometric mean is: 

  nw
n

ww
nww aaaaaaGG  21

2121 ,,,  , 

and the weighted harmonic mean is: 

 1 2
1 2

1 2

1
, , ,w w n

n

n

H H a a a
ww w

a a a

 
  





. 

Note that if the underlying data is of equal importance, then w = (1/n, 1/n, , 1/n) , and so Aw = A, Gw 

= G and Hw = H. It is true, in general, that 

w w wH G A   (4) 

Both inequalities become equalities if and only if a1 = a2 =  = an. 

Let T = (tip)mn be a matrix with positive entries, and let Wm be the set of all vectors w = (w1, w2, , 

wn),  in m such that w1 + w2 +  + wn = 1 and wi  0 (i = 1, 2, , m). A convex linear combination 

of the row vectors of T is a vector of the form wT, where wWm. Note that the coordinates of wT are 

simply the weighted arithmetic means of the corresponding coordinates of the row vectors of T. 

Therefore we shall adopt the following notation: 

    
nmpppww tttAwTTA




121 ,,,  . 

If the weighted arithmetic means are replaced by the corresponding weighted geometric means, we 

shall denote the resulting vector as follows: 

    
nmpppww tttGTG




121 ,,,  . 

Similarly, by taking the weighted harmonic means, coordinatewise over the row vectors of the matrix 

T, we shall denote the resulting vector as follows: 

    
nmpppww tttHTH




121 ,,,  . 

Note that, in view of the inequalities (4), the following vector inequalities must hold: 

     w w wH T G T A T  . (5) 

Let us now consider n DMUs, each utilizing m inputs and generating s outputs. Let the input values be 

represented by the matrix X = (xip)mn , and let the output values be represented by the matrix Y = 

(yjp)mn. As a matter of convenience, we shall assume that all entries in the matrices X and Y are 

positive. In practice, this may be accomplished by replacing all zero entries with a sufficiently small 

positive value ε. 
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As per conditions specified in the previous section, standard measure for the efficiency of unit k (1  k 

 n) may be expressed as: 

1 1

, 0
1 1

max min
i j

s s

j jk j jpj j
k m mpa b

i ik i ipi i

b y b y
e

a x a x

 


 


 
 

. (6) 

The above measure of efficiency was first defined by Charnes et al (1978). It is normally denoted as 

CCR efficiency, with the acronym CCR referring to authors’ names. In order to arrive at a more 

convenient expression for the efficiency measure of the k-th DMU, let us transform the matrices X and 

Y as follows. Let X(k) be the matrix obtained from X by replacing each entry xip with xip/xik. In 

particular, the k-th column of the matrix X(k) is a column of ones. Similarly, let Y(k) be the matrix 

obtained from Y by replacing each entry yjp with yjk/yjp. Thus the k-th column of the matrix Y(k) is also 

a column of ones. Furthermore, for any vectors u = (u1, u2, , un),  and v = (v1, v2, , vn), vp  0 (p = 

1, 2, , n), let us write 

  1 2

1 2

: , , , n

n

uu u
u v

v v v

 
  
 

 . 

Therefore, if we denote the column vectors of the matrix X by Xp, then the corresponding column 

vectors of the matrix X(k) are [Xp : Xk], (p = 1, 2, , n). Similarly, if we denote the column vectors of 

the matrix Y by Yp, then the corresponding column vectors of the matrix Y(k) are [Yk : Yp], (p = 1, 2, , 

n). Note that the elements of matrix X(k) can be interpreted as relative input strengths or input factor 

efficiencies of unit k with respect to all other units. Similarly, the elements of matrix Y(k) can be 

interpreted as relative output strengths or output factor efficiencies of unit k with respect to all other 

units. For example, take the value located at i-th row and p-th column of matrix X(k). If this value is 

greater than 1 then unit k is doing better than unit p with respect to input i (i.e, unit k is using less of 

input i than unit p).  Similarly, for a value located at j-th row and p-th column of matrix Y(k): if the 

value is greater than 1 then unit k is doing better than unit p with respect to output j. Values smaller 

than 1 would clearly indicate the opposite. 

According to Theorem 1 in Despic et al. (2007), (6) is equivalent to: 

1, 0

1, 0

: max min
 

 







j jj

j ii

ip
ii

ik
k

pb b jp
a a jj

jk

x
a

x
CCR e

y
b

y

. (7) 

Now, in view of the notation introduced above, (7) can be re-written as: 
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     : max min



   
s

m

k a b
b W
a W

CCR e A X k H Y k , (8) 

Symbol  is used to denote coordinate-wise product of two vectors. 

Another measure for the efficiency, called the harmonic efficiency (HE), was also introduced in 

Despic et al. (2007) as 

1, 0

1, 0

1
: max min

 

 


   j jj

j ii

k
pb b jp ik

a a j ij i
jk ip

HE e
y x

b a
y x

. (9) 

In view of the notation introduced above, (9) can be re-written as: 

     : max min
s

m

k a b
b W
a W

HE e H X k H Y k



    . (10) 

We shall now compare the expressions on the right sides of (8) and (10). By the inequalities in (5), the 

following vector inequality must hold: 

     a aH X k A X k . 

Hence            a b a bH X k H Y k A X k H Y k         , 

and so, by (8) and (10), 

or k ke e HE CCR . (11) 

A third type of a measure for the efficiency of the k-th DMU, called the DEA-R efficiency, was 

introduced in Despic et al. (2007) as the standard efficiency applied to a derived set of input-output 

data. Specifically, the new inputs are represented by the 1n matrix I whose entries are all ones, while 

the new outputs are represented by the (sm)n matrix R, whose entries are all the possible ratios r(i,j)p = 

yjp/xip, where 1  i  m, 1  j  s, and 1  p  n. Each pair of indices (i,j) determines a row of the 

matrix R as the vector [Yj : Xi], where Yj and Xi are the j-th row of the matrix Y and the i-th row of the 

matrix X, respectively. Let us note that the order in which the sm rows of the matrix R are arranged is 

irrelevant, since the resulting formula for the DEA-R efficiency will be the same: 

  
    

,,

,

1

0 ,,

1
ˆ max min

i ji j

i j

k
pc jp ik

c i ji j
jk ip

e
y x

c
y x






 

. (12) 

In view of the notation introduced above, (12) can be called harmonic ratio efficiency and re-written 

as 

  ˆ: max min
sm

k c
c W

HRE e H R k


    . (13) 
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We shall now compare the expressions on the right sides of (10) and (13). Given any weight vector b = 

(b1, b2, , bn) in Ws  and any weight vector a = (a1, a2, , an) in Wm, let us define a vector c in sm by 

setting c(i,j) = aibj for any pair (i,j) with 1  i  m and 1  j  s. Then 

       ,, ,
1i j i ji ji j i j i j

c a b a b      . 

Therefore c is a weight vector in Wsm. Furthermore, 

 

       
,

, ,

i j i j ji

ip ik jk jpi j k i j p jk ik jp ip

c a b ba

r r x x y yy x y x

  
      

  
. 

By taking the summation over all indices (i,j), with 1  i  m and 1  j  s, we obtain 

        c a bH R k H X k H Y k    . 

It follows that the maximum taken in (10) is over a subset of the values whose maximum is taken in 

(13). Hence 

ˆ ork ke e HE HRE  . (14) 

Let us observe that each of our measures for the efficiency of the k-th DMU has been expressed via 

suitable weighted arithmetic and/or weighted harmonic means. Also, they all produce the same 

efficiency score in single input – single output case, since they are all proper generalisation of (2) 

when used in (1) for multiple input – multiple output case.  

We now want to introduce a new type of a measure for the efficiency of the k-th DMU, based on the 

weighted geometric means. We shall define the efficiency measure ẽk by replacing the weighted 

harmonic mean in the equation (13) with the corresponding weighted geometric mean. Thus, 

geometric ratio efficiency (GRE) is defined as 

  max min
sm

k c
c W

e G R k


    . (15) 

By (5), it follows that 

ˆ ork ke e HRE GRE  . (16) 

It is interesting to note that there is another way to arrive at the same definition for ẽk. Namely, if we 

replace both weighted means in the equation (8) with the corresponding weighted geometric means, 

we may define geometric efficiency measure ĕk by: 

     : max min
s

m

k a b
b W
a W

GE e G X k G Y k



   


. (17) 

By (5), we know that      a aH X k G X k ,     and          b bH Y k G Y k . 

Hence            a b a bH X k H Y k G X k G Y k         . 
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By (10) and (17), it follows that  

ork ke e HE GE 
. (18) 

It is relatively straightforward to show that geometric efficiency GE is equivalent to geometric ratio 

efficiency GRE. This equivalency is particularly important in applications where we may want to 

impose some restriction on some specific pairs of inputs and outputs in terms of their importance and 

relative contribution to efficiency. If some specific input-output pairs are considered as not 

meaningful, then we can switch from GE model to GRE model and exclude the ratios corresponding to 

those input-output pairs. 

In an analogous way to (10) and (13), it is possible to define arithmetic efficiency (AE), and arithmetic 

ratio efficiency (ARE). When all these different efficiencies are compared using (5), we have the 

following relationships: 

HE HRE GE GRE AE ARE     . (19) 

As for the standard CCR efficiency, we know that it is never smaller than HE and never larger than 

AE. Hence, in addition to (19), we have: 

 HE CCR AE . (20) 

With (19) and (20), we have effectively specified the ordering relationships (in terms of the efficiency 

scores produced) among all those models, each of which represents a different generalisation of (2) 

when used in (1) for multiple input – multiple output case. 

 
3. DEA EFFICIENCY MEASURES AS AGGREGATION OPERATORS  
 
Efficiency measures of unit k obtained using CCR, HE, GE or AE models can be seen as values 

obtained using different aggregation operators applied on the same data set, which is made of two 

matrices: one representing a collection of relative input strengths of unit k, X(k), and the other one 

representing collection of relative output strengths of unit k, Y(k). We can observe that all four models 

are using some specific case of a weighted power mean to aggregate columns of both matrices. 

Focusing on one and the same column in both matrices, it can be stated that each of the four models 

yields a single measure for unit k by forming the product between a weighted power mean taken over 

its relative input strengths and a weighted power mean taken over its relative output strengths. The 

questions we want to consider in this section are: “What is the role of the product between the two 

means?” and “Is there any obvious advantage or disadvantage in using a specific weighted mean to 

aggregate relative strengths of unit k?”  

Before we consider the above questions, let us just take a brief look at the full matrix of relative 

strengths RS(k) formed by putting together matrices Y(k) and X(k). 
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Each column of matrix RS(k) contains m+s relative strengths of unit k; column 1 shows its component 

strengths with respect to unit 1, column 2 with respect to unit 2 and so on. All the four models, CCR, 

HE, GE or AE use the same DEA-like approach of choosing the relevant column(s) and the best set of 

weights to aggregate m+s factors into a single one, which is related to the max-min part of the models. 

This is based on a familiar idea of a game played between the unit assessed and the assessor. The unit 

is allowed to choose the weights for aggregating its component strengths while the assessor picks the 

column with the smallest score to be the final efficiency score of the unit. The only thing different 

across the four models is the functional form of the aggregation operator used, which is something 

rarely discussed and questioned in classical DEA analysis.  

Representing all the four models through weighted power mean, as in (21),  

     : max min



   
s

m

k a b
b W
a W

PE E P X k P Y k , (21) 

we can see that the product between the two weighted power means is a common feature for all four 

models. Since the final score is the product between two values, this means that the two values 

represent aggregated scores of two strongly separated categories (in production context these 

categories are input and outputs), each of which is equally valued in terms of its contribution to the 

final score (since iai = jbj = 1). Strong separation between the two categories means that higher 

values of the relative strengths found in one category cannot compensate for lower values of the 

relative strengths found in the other category. Observing this property from a general multi-criteria 

decision making framework, it should not be difficult to see how restrictive this property could be. 

While within certain context it may be quite natural to strongly separate a set of criteria into two 

categories (so to prevent any substitutability of factors across the categories and allow for it within the 

categories), it is also possible to have the case where this separation is either not needed at all or where 

 

1 11 1 12 1 1 1 1
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


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







Croatian Operational Research Review (CRORR), Vol. 4, 2013  

 
 
 

 11

we need to split the set of criteria into more than two strongly separated categories. In addition, the 

requirement to make the categories equally valued (equally important) is certainly overly restrictive in 

general case. Hence, splitting criteria into two categories and forming the product between the two 

will provide a proper model only for a special case when there is natural separation of the criteria into 

two categories (based on considerations of substitutability among the criteria) and when the two 

categories are equally important with respect to the final measure. Clearly, any model that can avoid 

these restrictions should be preferred in practice. 

The way individual relative strengths are aggregated within a single category is different for different 

DEA models. CCR model takes weighted harmonic mean within one category and weighted arithmetic 

mean within the other category.  HE, GE, and AE use weighted harmonic, weighted geometric and 

weighted arithmetic mean within both categories, respectively. From a mathematical point of view, it 

is difficult to justify the use of different means to aggregate relative strengths within different 

categories. Within production context this perhaps makes sense due to the fact that the final measure is 

perceived as the ratio between total virtual output and total virtual input. However, in general context, 

and bearing in mind that the relative strengths formed are dimensionless index-like values, then there 

is no obvious reason why would any weighted mean be preferred over the other. Still, if some special 

cases are considered then the weighted geometric mean is the only one which does not violate some 

desirable properties of the model. To illustrate this, consider a special case where there happens to be a 

mutual agreement about the set of weights to be applied to all n units (i.e., not allowing any variability 

in weights for different units). Using any weighted mean to aggregate relative strengths column-wise, 

we can obtain n different scores for each of n different RS matrices (there is one RS matrix for each 

unit). Since the same set of weights is used within all n matrices, it would be natural to expect that the 

rank ordering of n scores obtained from one RS matrix remain the same for all the other RS matrices. 

Unfortunately, this property is not preserved by any other weighted mean but the weighted geometric 

mean. The property of the weighted geometric mean to preserve this ordering is closely related to the 

similar property of being the resistant to rank reversal problem in Analytic Hierarchy Process (AHP). 

In fact, as we will see in the next section, the use of weighted geometric mean in (21) makes it 

possible to create a much more flexible DEA-like model, which is at the same time nothing else but a 

generalisation of the multiplicative AHP model. 

 
4. GEOMETRIC DEA MODELS AND THEIR PROPERTIES 
 
The GE model, as defined in (17), can be seen as a seed for all other models in geometric DEA, much 

like the CCR model can be seen as a seed for all other classical DEA models. To start with, let us 
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consider linear formulation of the GE and CCR model as well as some of its variations and compare 

the geometric DEA models with their counterparts in the set of classical DEA models. 

The GE model in (17) can be transformed into linear programming problem using the following 

transformations: 

max max 1
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After taking the log of the last formulation, the following linear programming formulation for GE 

model is obtained: 
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, (22) 

where θk = ln(ωk). Efficiency score ωk is obtained by solving the model in (22), which yields optimal 

value for θ, which is then used to calculate efficiency score ωk = exp(θk).  

Following similar transformations, CCR model in (7) can be transformed as follows: 
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The last expression can be then converted into the following linear programming model: 

 

s.t.
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   1, 0
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 (23) 
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where βj = ωk  bj. 

The linear programming formulation of the CCR model, as shown in (23), is not frequently seen in 

literature. However, it can be obtained directly from the classical CCR input-oriented envelopment 

formulation, first by dividing all input related constraints by xik and all output related constraints by yjk. 

Taking the dual form of such a transformed problem would lead us directly to the form shown in (23). 

There are several things worth noting when comparing the models (22) and (23). First, it is important 

to understand that CCR, given in (7), could be inverted and reformulated as 

1, 0

1, 0

1
min max .

j jj

j ii

jp
jj

jk

pb b ipk
a a ii

ik

y
b

y

xe
a

x
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






 

Using the same transformation steps as in the process of obtaining (22) and (23), the above 

formulation would lead us to the CCR output-oriented model similar to the one in (23). The main 

difference would be that in the output-oriented model we would be minimising ωk, subject to the same 

set of constraints but with Σαi = ωk and Σbj = 1, and where ωk = 1/ek and αi = ωk  aj. Inverting the GE 

formulation, on the other hand, yields the model which is identical to (22). In other words the optimal 

values for weights ai and bj would be the same for both models. This is because the GE model 

essentially treats inputs as inverted outputs and/or outputs as inverted inputs. If, for example, we invert 

all the inputs and treat them as outputs, but still keeping them in a separate group from the original set 

of outputs, we would then only need to change minus signs in (22) into plus signs and the results 

obtained would be identical to the results we had before. CCR model, on the other hand, does not offer 

any foreseeable way of converting inputs into outputs or outputs into inputs without making changes 

to the optimal solutions.  

As we will see later, this property of the GE model to treat inputs as inverted outputs will be very 

convenient in formulating a geometric DEA model when faced with multiple categories and multiple 

levels. This will essentially enable us to easily deal with any hierarchical structure and not only the 

standard one level – two categories structure that fits the classical division of factors into a set of 

inputs and set of outputs.  

Before we present some important variations of the models in (22) and (23), it will be very useful to 

better understand the weights in these models. The weights ai and bj in model (22) and ai and βj in 

model (23) have similar interpretation and they are directly related to what is known as virtual inputs 

and virtual outputs in classical DEA. Looking at model (23), we can see that the input weights add up 

to 1 while the output weights add up to the efficiency score of unit k, just as the virtual inputs add up 

to 1 and virtual outputs add up to the efficiency score of unit k in the standard multiplier formulation 
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of the CCR input-oriented model. The weights in (22) and (23) are dimensionless and hence, just like 

virtual inputs and outputs in classical DEA, they reveal the relative contribution of each input and 

output to the efficiency score of the unit assessed. Clearly, the true interpretation is not quite as simple. 

It is somewhat simpler in case of the GE model (22) since both sets of weights add up to 1. The sum to 

unity is convenient to have since the value of each weight can really be treated as a true proportion of 

the contribution of the corresponding factor to the efficiency score of the unit assessed. But, what are 

the factors to which the weights are attached? They are not simply inputs and outputs of unit k. They 

are relative input and output values compared to the input and output values of another unit. Earlier, 

we called these ratios relative input strengths and relative output strengths of the unit under 

assessment. However, it is important to realise that the weights will be determined only when the 

relative input and relative output strengths are formed with respect to unit(s) from the best practice 

frontier. Those best practice units will be picked from that portion of the frontier which represents the 

set of production plans that are most similar to the current production plan of the unit assessed (similar 

in terms of relative intensities of inputs and outputs). In other words, relative strengths of inputs and 

outputs can be seen as relative values taken with respect to some ideal values and where the ideal 

values come from the observed best practices. Hence, the weights can be understood as the 

proportional importance of the input and output values normalised by the corresponding input and 

output values of the best unit observed. While this may sound a bit complicated, it is in fact very 

natural for the assessed unit to attach more weights to those inputs or outputs where its relative 

performance is high (even if there are many units performing better on the same dimensions).  

As noted by Sarrico and Dyson (2004), it is easier to elicit from management virtual weights 

restrictions. The same is true for the weights in the models (22) and (23). Also, with respect to the 

model in (23), it is argued by Sarrico and Dyson (2004) that it makes more sense to impose 

proportional virtual weights restrictions only on the virtual inputs for an input-oriented model and only 

to the virtual outputs for an output-oriented model (this is essentially because the other set of weights 

do not add up to unity and is directly related to the efficiency score). This problem is not present in 

model (22) since both sets of weights add up to unity. Setting proportional virtual weights restrictions 

in classical DEA models is equivalent to setting simple restrictions on the weights in the models 

considered here. They would appear as ai  ki (or ai  ki) and bj  lj (or bj  lj) directly imposing lower 

or upper bounds to the proportional importance of the corresponding relative inputs and relative 

outputs. Due to the fact that both sets of weights in model (22) add up to 1, it is easy to convert any 

such simple restrictions into virtual assurance regions of type I, which are the most advocated forms of 

restrictions in Sarrico and Dyson (2004). The difference is only in appearance. For example, simple 

restriction ai  ki can be easily converted into a1 + a2 + … + (1 – 1/ki)ai + … + am  0. It is also 
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possible to convert simple restrictions linking output weights and input weights into virtual assurance 

regions of type II. For example, ai + bj   t can be converted into the following form: a1 + a2 + … + 

(1–1/t)ai + … + am – bj/t   0   or   b1 + b2 + … + (1–1/t)bi + … + bs – ai/t  0.  

Let us now look at the variations of the basic models that allow for variable returns to scale. Clearly, 

CCR and GE are both constant returns to scale models. For CCR this is a well-know property and for 

GE this is obvious from its formulation in (17). Models (24) and (25) can be seen as input-oriented 

variable returns to scale variations of (22) and (23), respectively. 

 ,

s.t.

ln ln 0 ,

1, 0

0

k

jp ip
j i kj i

jk ik

i ii

j

Max

y x
b a p

y x

a a

b




   

          
 



 



 (24) 

0

0

 

s.t.

0 .

1, 0

, 0

k

jp ip
j ij i

jk ik

i ii

j k jj

Max

y x
a p

y x

a a



 

   

   
          

 

  

 




 (25) 

We can recall from the classical DEA theory that model (25) identifies increasing returns to scale for 

the unit assessed (k) if and only if β0 > 0 for all optimal solutions and decreasing returns to scale if and 

only if β0 < 0. These two conditions translate into Σβj < ωk and Σβj > ωk, respectively. In a similar 

manner, the returns of scale in model (24) are increasing if and only if Σbj < 1 and decreasing if and 

only if Σbj > 1 for all optimal solutions. This can be also intuitively understood. For example, Σbj < 1 

means that if all the current output levels of the assessed unit are multiplied by some scalar u then this 

will require multiplying all its input levels by u(Σbj) to keep its efficiency score intact. But since Σbj < 1 

then u(Σbj) < u, which means that the unit operates in conditions where an increase in outputs require 

less then proportionate increase in inputs, hence we have increasing returns to scale. 

Relations of parameters ai and bj in model (22) and (24) to the main concepts from production theory, 

such as returns to scale, scale elasticities, rates of substitutions and marginal products are very 

interesting and important for using these models in practice. However, these issues will not be 

considered any further in this paper since they are all well covered in the existing literature on 
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multiplicative models Banker et al. (2004), Banker and Maindiratta (1986). Banker and Maindiratta 

(1986) discuss production characteristics of models (22) and (24), which are presented in a slightly 

different form. Model (22) is referred to as the most productive scale size model in Banker and 

Maindiratta (1986) and is presented in its dual formulation. Model (24) is presented using output-

orientation and with a slightly modified objective function. The forms used here are most suitable to 

understand their other advantageous properties such as their flexibility in modelling and their 

promising potential in ex-ante types of problems.  

One of the most important properties of the geometric DEA is that it can easily deal with factors 

grouped into many categories, each of which may be structured into any number of hierarchical levels. 

To start with, it is relatively straightforward to visualise expansion of model (17) into any number of 

categories. Transforming such a model into a linear programming problem follows exactly the same 

steps as we used to obtain model (22). Weather a factor is of maximising or minimising nature should 

not play any role when grouping the factors into categories. We have already observed that GE model 

can treat inputs (normally minimising factors) as inverted outputs (normally maximising factors). 

Hence, it is plausible to invert all the minimising factors into maximising ones and then split the 

factors into categories based on the principle of substitutability. When faced with a decision making 

problem with many maximising and minimising criteria, we can collect similar factors into their own 

group irrespective of their maximising or minimising orientation. In this way, it is possible to put, for 

example, all environmental factors, all financial factor and all socially related factors into their own 

group. This is very natural since it makes much more sense to allow substitutability among the factors 

representing similar issues rather than to allow substitutability among the factors based on their 

measurement orientation (maximising or minimising). If in addition we want to alter the relative 

importance of any specific group, all what needs to be done is to alter the condition requiring that the 

sum of weights within each group is equal to 1. These sum-to-unity requirements for each group are 

equivalent to setting equal relative importance of each group in its contribution to the overall 

performance/desirability of the unit assessed.  

The simplicity of the GE model and its weights are also the main reason why any criterion can be 

further split into a number of sub-criteria. To clearly see this, let us consider the hierarchical structure 

in Figure 1. 
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Figure 1. A hierarchy of criteria and sub-criteria with n units to be assessed (A1, … An) 

 

Without any loss in generality, we will assume that all the criteria are of the maximising type. Criteria 

are denoted as B1, B2, …, B8 and their corresponding weights as b1, b2, …, b9. B0 is just the name of 

the overall goal or overall performance and does not require any weight. Units assessed are A1, A2, … 

An. Performances of all units are measured directly with respect to the criteria not being split further 

into sub-criteria. So, taking unit Ak, we have the following set of measures: y8k, y9k, y5k, y6k, y7k and y3k. 

Applying model (17) to calculate the overall performance of unit Ak, we have: 
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normalisation of weights within each group: b8 + b9 = 1, b4 + b5 = 1, b6 + b7 = 1, and b1 + b2 + b3 = 1. 
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where the weights wj are the global weights of the end criteria. They are formed as the products 

between the corresponding bj weights. In our example, w3 = b3, w5 = b1b5, w6 = b6b2, w7 = b7b2, w8 = 

b8b4b1 and w9 = b9b4b1. The wj weights obtained in this way still have the same relative values when 

compared to the weights from its own group (the weights corresponding to the criteria belonging to the 

same parent criterion), so that we can take wj weights to have the same meaning as the weights bj for 

the end criteria. Normalisation of weights wj follows directly from the normalisation of bj weights 

within their own group. Now, any desired restrictions on weights bj can be easily converted into the 
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corresponding restrictions on wj weights. For example, b4 ≥ 2b5 translates into: w8 + w9 ≥ 2w5. So, 

expanding GE model to deal with any hierarchical structure, we are effectively getting a flexible 

multiplicative version of analytical hierarchy process (AHP) where the weights of criteria do not 

necessarily need to be specified in advance and can be specified through ranges if at all. Using more 

than two categories in classical DEA is treated mainly through a very specific problem where in 

addition to standard inputs and outputs we also have undesirable outputs (for detailed discussion on 

this issue see Thanassoulis et al., 2008). As for the treatment of factors in multiple levels, so far there 

was only treatment of the two-level DEA model (Meng et al., 2008; Kao, 2008).   

Through this brief exposition of models and properties of the geometric DEA, it is the authors’ hope 

that the flexibility and power of geometric DEA is made more apparent and that further research in the 

area as well as the use of these models in practice is well worth consideration. 
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