Further results on I-limit superior and limit inferior

B. K. Lahiri* and Pratulananda Das ${ }^{\dagger}$

Abstract

In this paper we obtain (after the works of Demirci) some further properties of I-limit superior and I-limit inferior and obtain the I-analogue of Cauchy criterion of convergence of a sequence of real numbers.

Key words: ideal, filter, I-limit superior and I-limit inferior, I-convergence, I-boundedness of a sequence

AMS subject classifications: 40A05, 26A03
Received April 28, 2003
Accepted July 8, 2003

1. Introduction

After the work of Fast [5], the theory of statistical convergence of a real sequence has gained much popularity among mathematicians. In this connection more information may be obtained from the papers in the references. As a natural consequence, statistical limit superior and limit inferior came up for considerations which was studied extensively by Fridy and Orhan [8]. Śalát et al. ([14], [9], [10]) investigated the theory of statistical convergence with major contributions not only to this topic but also to the extended idea of I-convergence of a real sequence where I is an ideal of the set of positive integers.

Recently Demirci [4] introduced the definition of I-limit superior and inferior of a real sequence and proved several basic properties. Pursuing the idea of Demirci in this paper we obtain further results on I-limit superior and inferior including an I-analogue of Cauchy's general principle of convergence for a real sequence.

2. Known definitions and theorems

We recall the following definitions and theorems where X represents a set.
Definition 1 [[11], p. 34$]$. Let $X \neq \phi$. A class S of subsets of X is said to be an ideal in X provided

[^0](i) $\phi \in S$,
(ii) $A, B \in S$ imply $A \cup B \in S$,
(iii) $A \in S, B \subset A$ imply $B \in S$.
S is called a non-trivial ideal if $X \notin S$.
Definition 2 [[13], p. 44]. Let $X \neq \phi$. A nonempty class F of subsets of X is said to be a filter in X provided
(i) $\phi \in F$,
(ii) $A, B \in F$ imply $A \cap B \in F$,
(iii) $A \in F, A \subset B$ imply $B \in F$.

The following theorem gives a relation between an ideal and a filter.
Theorem 1 [10]. Let S be a non-trivial ideal in $X, X \neq \phi$. Then the class

$$
F(S)=\{M \subset X: M=X-A \text { for some } A \in S\}
$$

is a filter on X.
We will call $F(S)$ the filter associated with S.
Definition 3 [10]. A non-trivial ideal S in X is called admissible if $\{\alpha\} \in S$ for each $\alpha \in X$.

Let I be a non-trivial ideal in \mathbb{N}, the set of all positive integers.
Definition 4 [10]. A sequence $x=\left\{x_{n}\right\}$ of real numbers is said to be I-convergent to $l \in \mathbb{R}$ where \mathbb{R} is the set of all real numbers if for every $\epsilon>0$, the set $A(\epsilon)=$ $\left\{n:\left|x_{n}-l\right| \geq \epsilon\right\} \in I$. In this case we write $I-\lim x=l$.

Note 1. If I is admissible and x ordinarily converges to b, then x is I-convergent to b.

Definition 5 [4]. Let I be an admissible ideal in \mathbb{N} and let $x=\left\{x_{n}\right\}$ be a real sequence. Let

$$
B_{x}=\left\{b \in \mathbb{R}:\left\{k: x_{k}>b\right\} \notin I\right\}
$$

and

$$
A_{x}=\left\{a \in \mathbb{R}:\left\{k: x_{k}<a\right\} \notin I\right\} .
$$

Then the I - limit superior of x is given by

$$
I-\lim \sup x=\left\{\begin{array}{cl}
\sup B_{x}, & \text { if } B_{x} \neq \phi \\
-\infty, & \text { if } B_{x}=\phi
\end{array}\right.
$$

and the I - limit inferior of x is given by

$$
I-\liminf x=\left\{\begin{array}{cl}
\inf A_{x}, & \text { if } A_{x} \neq \phi \\
\infty, & \text { if } A_{x}=\phi
\end{array}\right.
$$

Definition 6 [9]. A real sequence $x=\left\{x_{k}\right\}$ is said to be $I-$ bounded if there is a number $B>0$ such that $\left\{k:\left|x_{k}\right|>B\right\} \in I$.

Note 2. I - boundedness implies that $I-\limsup$ and $I-\liminf$ are finite [4].

Throughout the paper \mathbb{N} and \mathbb{R} stand for the set of all positive integers and the set of all real numbers. I is a non-trivial admissible ideal of \mathbb{N}. Sequences are always real sequences and the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ etc. will be represented shortly by x, y etc.

Theorem 2 [4].
(i) $I-\lim \sup x=\beta$ (finite) if and only if for arbitrary $\epsilon>0$,

$$
\left\{k: x_{k}>\beta-\epsilon\right\} \notin I \text { and }\left\{k: x_{k}>\beta+\epsilon\right\} \in I .
$$

(ii) $I-\liminf x=\alpha$ (finite) if and only if for arbitrary $\epsilon>0$,

$$
\left\{k: x_{k}<\alpha+\epsilon\right\} \notin I \text { and }\left\{k: x_{k}<\alpha-\epsilon\right\} \in I .
$$

Theorem 3 [4]. For any real sequence $x, I-\lim \inf x \leq I-\lim \sup x$.
Theorem 4 [4]. An I-bounded sequence x is I - convergent if and only if

$$
I-\lim \sup x=I-\liminf x .
$$

3. I - limit superior and inferior

In this section we prove after [4] some further results on $I-\lim \sup$ and $I-\lim \inf$ of a sequence.

Theorem 5. If x, y are two I-bounded sequences, then
(i) $I-\lim \sup (x+y) \leq I-\limsup x+I-\lim \sup y$.
(ii) $I-\liminf (x+y) \geq I-\liminf x+I-\liminf y$.

Proof. (i) Let $l_{1}=I-\limsup x$ and $l_{2}=I-\limsup y$. Let $\epsilon>0$ be given. Because of Note 2 both l_{1} and l_{2} are finite. We can also assume that $B_{(x+y)}$ is not void. Now

$$
\left\{k: x_{k}+y_{k}>l_{1}+l_{2}+\epsilon\right\} \subset\left\{k: x_{k}>l_{1}+\epsilon / 2\right\} \cup\left\{k: y_{k}>l_{2}+\epsilon / 2\right\}
$$

and by Theorem 2(i) both sets on the right-hand side belong to I. So

$$
\left\{k: x_{k}+y_{k}>l_{1}+l_{2}+\epsilon\right\} \in I .
$$

If $c \in B_{(x+y)}$, then from Definition 5, $\left\{k: x_{k}+y_{k}>c\right\} \notin I$. We show that $c \leq l_{1}+l_{2}+\epsilon$. If $c>l_{1}+l_{2}+\epsilon$, then

$$
\left\{k: x_{k}+y_{k}>c\right\} \subset\left\{k: x_{k}+y_{k}>l_{1}+l_{2}+\epsilon\right\}
$$

and therefore $\left\{k: x_{k}+y_{k}>c\right\} \in I$, a contradiction. Hence $c \leq l_{1}+l_{2}+\epsilon$. As this is true for all $c \in B_{(x+y)}$, it readily follows that

$$
I-\lim \sup (x+y)=\sup B_{(x+y)} \leq l_{1}+l_{2}+\epsilon
$$

Since $\epsilon>0$ is arbitrary, this proves (i). The proof of (ii) is analogous. This proves the theorem.

Note 3. One may easily construct x and y such that strict inequality may hold in Theorem 5.

We need the following definition for Theorem 6 .
Definition 7. A sequence x is said to be I - convergent to $+\infty$ (or $-\infty$) if for every real number $G>0,\left\{k: x_{k} \leq G\right\} \in I\left(\right.$ or $\left.\left\{k: x_{k} \geq-G\right\} \in I\right)$.

Theorem 6. If $I-\limsup x=l$, then there exists a subsequence of x that is $I-$ convergent to l.

Proof. Since $\phi \in I$ and I is admissible, we can assume that x is a non-constant sequence having infinite number of distinct elements. We divide the proof into three cases.
Case (i) : l=-m. Then from definition, $B_{x}=\phi$. Hence, if $M>0$, then $\left\{k: x_{k}>-2 M\right\} \in I$. Since

$$
\left\{k: x_{k} \geq-M\right\} \subset\left\{k: x_{k}>-2 M\right\}
$$

we have $\left\{k: x_{k} \geq-M\right\} \in I$ and so $I-\lim x=-\infty$.
Case (ii): $l=+\infty$. Then $B_{x}=\mathbb{R}$. So for any $b \in \mathbb{R},\left\{k: x_{k}>b\right\} \notin I$. Let $x_{n_{1}}$ be an arbitrary member of x and let $A_{n_{1}}=\left\{k: x_{k}>x_{n_{1}}+1\right\}$. Since $\phi \in I, A_{n_{1}}$ is not void and also $A_{n_{1}} \notin I$. We claim that there is at least one $k \in A_{n_{1}}$ such that $k>n_{1}+1$. For, otherwise $A_{n_{1}} \subset\left\{1,2, . ., n_{1}, n_{1}+1\right\}$ which is a member of I (since I is admissible) and so $A_{n_{1}} \in I$, a contradiction. We call this k as n_{2}. Thus $x_{n_{2}}>x_{n_{1}}+1$. Proceeding in this way we obtain a subsequence $\left\{x_{n_{k}}\right\}$ of x with $x_{n_{k}}>x_{n_{k-1}}+1$ for all $k>1$. Since for any $M>0,\left\{n_{k}: x_{n_{k}} \leq M\right\}$ is a finite set, it must belong to I, because I is admissible and so $I-\lim x_{n_{k}}=+\infty$.
Case (iii) : $-\infty<l<+\infty$. By Theorem 2(i) $\left\{k: x_{k}>l-1\right\} \notin I$ so that $\left\{k: x_{k}>l-1\right\} \neq \phi$. We observe that there is at least one element, say n_{1}, in this set for which $x_{n_{1}} \leq l+1 / 2$, for otherwise $\left\{k: x_{k}>l-1\right\} \subset\left\{k: x_{k}>l+1 / 2\right\} \in I$ which is a contradiction. Hence we have

$$
l-1<x_{n_{1}} \leq l+1 / 2<l+1
$$

Next we proceed to choose an element $x_{n_{2}}$ from $x, n_{2}>n_{1}$ such that $l-1 / 2<x_{n_{2}}<$ $l+1 / 2$. We observe first that there is at least one $k>n_{1}$ for which $x_{k}>l-1 / 2$, for otherwise $\left\{k: x_{k}>l-1 / 2\right\} \subset\left\{1,2, \ldots, n_{1}\right\}$ and so is a member of I which contradicts (i) of Theorem 2. Hence $\left\{k: k>n_{1}\right.$ and $\left.x_{k}>l-1 / 2\right\}=E_{n_{1}}$ (say) $\neq \phi$. Now if $k \in E_{n_{1}}$ always implies $x_{k} \geq l+1 / 2$, then

$$
E_{n_{1}} \subset\left\{k: x_{k} \geq l+1 / 2\right\} \subset\left\{k: x_{k}>l+1 / 4\right\} .
$$

By (i) of Theorem 2, the right-hand set belongs to I and so $E_{n_{1}} \in I$. Since I is admissible, $\left\{1,2, \ldots, n_{1}\right\} \in I$ and thus

$$
\left\{k: x_{k}>l-1 / 2\right\} \subset\left\{1,2, \ldots, n_{1}\right\} \cup E_{n_{1}}
$$

So $\left\{k: x_{k}>l-1 / 2\right\} \in I$, a contradiction to Theorem 2.
The above analysis therefore shows that there is $n_{2}>n_{1}$ such that $l-1 / 2<$ $x_{n_{2}}<l+1 / 2$. Proceeding in this way we obtain a subsequence $\left\{x_{n_{k}}\right\}$ of $x, n_{k}>n_{k-1}$
such that $l-1 / k<x_{n_{k}}<l+1 / k$ for each k. The subsequence $\left\{x_{n_{k}}\right\}$ therefore ordinarily converges to l and is thus $I-$ convergent to l by Note 1 . This proves the theorem.

Theorem 7. If $l=I-\liminf x$, then there is a subsequence of x which is $I-$ convergent to l.

The proof is analogous to Theorem 6 and so omitted.

4. I- analogue of Cauchy's principle of convergence

Theorem 8. A necessary and sufficient condition that x is I - convergent to a finite real number is that corresponding to arbitrary $\epsilon>0$, there is $A(\epsilon) \in I$ such that $\left|x_{m}-x_{n}\right| \geq \epsilon$ implies that at least one of m and n belongs to $A(\epsilon)$.

Proof. Necessity : Suppose that x is I - convergent to a finite real number l. Let $\epsilon>0$ be given and $A(\epsilon)=\left\{k:\left|x_{k}-l\right| \geq \epsilon / 2\right\}$. Then from definition $A(\epsilon) \in I$. The inequality $\left|x_{m}-x_{n}\right| \leq\left|x_{n}-l\right|+\left|x_{m}-l\right|$ gives that if $\left|x_{m}-x_{n}\right| \geq \epsilon$, then at least one of $\left|x_{m}-l\right| \geq \epsilon / 2$ and $\left|x_{n}-l\right| \geq \epsilon / 2$ holds so that at least one of m and n belongs to $A(\epsilon)$. Hence the condition is necessary.

Sufficiency : Let $\epsilon>0$ be given. There exists a set $A(\epsilon) \in I$ such that $\left|x_{m}-x_{n}\right| \geq \epsilon$ implies that at least one of m and n belongs to $A(\epsilon)$. Since $A(\epsilon) \neq$ \mathbb{N} (because I is non-trivial), choose an element $n_{0} \in \mathbb{N}-A(\epsilon)$. Then for all $k \in \mathbb{N}-A(\epsilon),\left|x_{k}-x_{n_{0}}\right|<\epsilon$. Since $\left\{k:\left|x_{k}\right|<\left|x_{n_{0}}\right|+\epsilon\right\} \supset \mathbb{N}-A(\epsilon)$, we have $\left\{k:\left|x_{k}\right|<\left|x_{n_{0}}\right|+\epsilon\right\} \in F(I)$ because $\mathbb{N}-A(\epsilon) \in F(I)$ and $F(I)$ is the filter associated with I. Thus $\left\{k:\left|x_{k}\right| \geq\left|x_{n_{0}}\right|+\epsilon\right\} \in I$ and so $\left\{k:\left|x_{k}\right|>\left|x_{n_{0}}\right|+\epsilon\right\} \in I$ which shows that x is I - bounded. Therefore by Note 2 both $I-\limsup x$ and $I-\lim \inf x$ are finite.

By Theorem $3 I-\lim \inf x \leq I-\limsup x$. If possible, let $I-\lim \inf x<$ $I-\lim \sup x$. Then $(I-\lim \sup x)-(I-\lim \inf x)=\eta$ (say) >0. By the given condition there is $A(\eta / 2) \in I$ such that $\left|x_{m}-x_{n}\right| \geq \eta / 2$ implies that at least one of m and $n \in A(\eta / 2)$. By (i) of Theorem 2

$$
\begin{equation*}
\left\{k: x_{k}>I-\lim \sup x-\eta / 4\right\} \notin I . \tag{1}
\end{equation*}
$$

We note that $\left\{k: x_{k}>I-\lim \sup x-\eta / 4\right\} \cap(\mathbb{N}-A(\eta / 2)) \neq \phi$, for otherwise $\left\{k: x_{k}>I-\limsup x-\eta / 4\right\} \subset A(\eta / 2) \in I$ which contradicts (1). Therefore there is $k_{1} \in \mathbb{N}-A(\eta / 2)$ for which $x_{k_{1}}>I-\lim \sup x-\eta / 4$.
Again by Theorem 2 (ii)

$$
\left\{k: x_{k}<I-\lim \inf x+\eta / 4\right\} \notin I
$$

and so, since I is admissible,

$$
\left\{k: x_{k}<I-\liminf x+\eta / 4, k \neq k_{1}\right\} \notin I .
$$

Hence proceeding as before, we can choose $k_{2} \in \mathbb{N}-A(\eta / 2), k_{2} \neq k_{1}$ such that $x_{k_{2}}<I-\lim \inf x+\eta / 4$. Therefore we have

$$
\left|x_{k_{1}}-x_{k_{2}}\right|>\eta / 2
$$

where none of k_{1}, k_{2} belong to $A(\eta / 2)$. This contradicts the above. Hence $I-\lim \inf$ $x=I-\lim \sup x$ and so by Theorem $4 x$ is $I-$ convergent to a finite real number.

Theorem 9. Every I - bounded sequence x has a subsequence which is $I-$ convergent to a finite real number.

The proof follows from Note 2 and Theorem 6.

References

[1] J. Connor, The statistical and strong $p-$ Cesaro convergence of sequences, Analysis 8(1988), $47-63$.
[2] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32(1989), 194 - 198.
[3] J. Connor, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197(1996), 389 - 392.
[4] K. Demirci, I- limit superior and limit inferior, Mathematical Communications 6(2001), $165-172$.
[5] H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241 - 244.
[6] J. A. Fridy, On statistical convergence, Analysis 5(1985), 301 - 313.
[7] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118(1993), 1187 - 1192.
[8] J. A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125(1997), 3625 - 3631.
[9] P. Kostyrko, M. Maćaj, T. Śalát, $I-$ convergence, Real Anal. Exchange 26(2000/2001), 669 - 686.
[10] P. Kostyrko, M. Maćaj, T. Śalát, Statistical convergence and I - convergence, to appear in Real Anal. Exchange.
[11] C. Kuratowski, Topologie I, PWN, Warszawa, 1958.
[12] H. I. Miller, A measure theoretical subsequence characterisation of statistical convergence, Trans. Amer. Math. Soc. 347(1995), 1811 - 1819.
[13] J. Nagata, Modern General Topology, North - Holland Publ. Comp., Amsterdam - London, 1974.
[14] T. Śalát, On statistically convergent sequences of real numbers, Math. Slovaca 30(1980), 139 - 150.

[^0]: *B-1/146 Kalyani,West Bengal-741235, India, e-mail: ilahiri@vsnl.com
 ${ }^{\dagger}$ Department of Mathematics, Jadavpur University, Kolkata - 700 032, India, e-mail : pratulananda@yahoo.co.in

