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A relation among DS?, T'S? and non-cylindrical
ruled surfaces

B. KARAKAS* AND H. GUNDOGANT

Abstract. TS? is a differentiable manifold of dimension 4. For
every X € TS?, if we set X = (p,x) we have < p,¥ >= 0 since p is
orthogonal to T,S?, therefore || p ||= 1. Those there could exist a one-
to-one correspondence between TS? and DS?. In this paper we gave
and studied a one-to-one correspondence among T'S?, DS? and a non
cylindrical ruled surface. We showed that for a restriction of an anti-
symmetric linear vector field A along a spherical curve a(t) there exists
a non-cylindrical ruled surface which corresponds to a(t) and has the
following parametrization

a(t,\) = a(t) + Ala(t)) + Aa(t)

So it is possible to study non-cylindrical ruled surfaces as the set of
(a(t), A(a(t))), where a(t) € S? and A is an anti-symmetric linear vec-
tor field in R3.
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1. Anti-symmetric linear vector fields

Let A = [ai;] be a fixed real n x n matrix. For each such A we construct a vector
field T4 on R™ by taking its value at each point x € R™ to be the negative of the
result of applying the matrix A to the vector X, i.e.

Ta(X) = —AX (1)

Definition 1. A wvector field T4 is called linear vector field ([3]). If A is an
anti-symmetric (symmetric, orthogonal, etc.) matrixz then Ta is called an anti-
symmetric (symmetric, orthogonal, etc.) linear vector field.
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In this study we use an anti-symmetric linear vector field and S? as R"™, because;

Theorem 1. Let E3 be a three-dimensional Euclidean vector space with the
unit sphere S%. Let an orthonormal base {43, u3,u3} be given in E3. Then a linear
vector field determines a vector field of tangent vectors on the sphere S? if and only
if the matriz which is associated with the linear mapping A relative to the base {u;}
is given by a skew-symmetric matriz ([4]).

2. Skew mappings

Definition 2. Let V be a vector space of dimension n. An endomorphism ¢ of V
1s called skew if

*

Y =—9 ,

where p* denotes the adjoint of ¢ ([3]).
The above condition is equivalent to the relation

<pX),Y>+<X,pY)> =0 X YeV (2)

It follows from (2) that the matrix of a skew mapping relative to an orthonormal
base is skew-symmetric. Substitution of ¥ = X in (1) yields the equation

<X,p(Y)>=0, XeV (3)

showing that every vector is orthogonal to its image vector. Conversely, an endo-
morphism ¢ having this property is skew.

Consider the mapping 1 = 2. For this kind of ¢ there exists an orthonormal
basis {u;}, 1 <1 < n, such that

¢(ul) :A’LU’L7 1= 17 y 1

Furthermore, all eigenvalues \;, 1 < ¢ < n, are negative or zero. In fact, the
equation ¥ (u) = Au implies that

A=< u,h(u) >=<u,p*(u) > = — < p(u),pu) > < 0

Since the rank of ¢ is even and ¢? has the same rank as ¢, the rank of 1) must be
even ([3]). Consequently, the number of negative eigenvalues is even and we can
enumerate the vector u; such that

N o< 0ifi=1,---,2p

N = 0ifi=2p+1,---,n
Define the orthonormal basis e;,i =1,--- ,n by
€2i—1 = Uy,

1
e2i = —p(u;), ==X, i=1---,p
Ci

and
e =1u;, t=2p+1,--- ,n.
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Relative to this basis the matrix of ¢ has the form

0 x 0 0 0
—z 0 0 0 0
0 0 0 0
0 0 —z 0 0

: (4)
0 x, 0 0
—z, 0 0 0
.0 0 0 0 - 0 0 0 0]

3. Tangent bundle T'M

Let M be a differentiable manifold of dimension n. The union of all tangent spaces
of M is called the tangent bundle of M and is denoted by TM. TM admits a
projection 7 : TM — M, defined by

() =medeT, M

If 2 is a chart of M with domain U, any vector ¥ € 7~1(U) can be expressed uniquely
as ., ai%m where a = (a1, -+ ,a,) € R". Therefore we have an injection

() : TM — R*"

defined by ¥ — (x(m), a), whose domain is 7—*(U) and whose range is the open set
Y(U) x R™.

For M = S? we have the tangent bundle 7'S?. Furthermore, for every point
p € S2, p'is orthogonal to the vector space T},52. So we can take p for the normal
of TpSQ. This relation gives us the permission to construct a one-to-one correspon-
dence DS? and T'S?.

4. The dual unit sphere DS?
Let R be the set of real numbers. We have on R? = R x R, for every

X = (z,2%),Y = (y,y*) €R® and AER

XeY = (z+y2"+y")
AX = Az, ")
XoY = (zy,zy* +zx*y).

The mathematical structure (R?,@,®) is a ring. The ring is denoted by D and
called the ring of dual numbers. Every X € D is called a dual number. The element
(0,1) has the property

(0,1) ® (0,1) = (0,0)
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and is denoted by €. Thus we have €2 = 0. Therefore by using the notation &, we
can write
X =x+ex"

for every X = (z,2*) € D, where z = (z,0) , z* = (0,z2%).
Let D3 be D x D x D. For every X,Y € D3 such that X(a1,az,a3), Y =
(b1,b2,b3), a;=z;+exf, b=y, +ey’,i=123.
Define
X +Y = (a1 + b1,a2 + ba,as + b3) (sum)

3
<X,)Y >= Zai - b; (dot product).

i=1

Then we can write
< XY >=<z,y>+e(<z,y* >+ <a*,y>),

where z = (z1,72,73), v° = (27,25,73), ¥ = (y1,¥2,¥3) and y* = (y7,¥3,¥3). So
we have the norm of a vector X € D3 as
<z, x*>

|||

For X € D3 if || X ||= (1,0) then X is called a dual unit vector. The set

X =l || +e

{XeD?: X|=(1,0) € D}

is called the dual unit sphere and is denoted by DS?. ([5]).
Theorem 2. There exists a one-to-one correspondence between the oriented
lines in R3 and the points of the dual unit sphere ([5]).

5. TS?, DS? and non-cylindrical ruled surfaces

Let X be an element of T'S? where T'S? = U, T,,S%. Then X = (21, xa, z3, ¥}, 25, 23).
Thus if we set © = (21,22, 23), * = (x], 25, 2%) then it is clear that

[z] = 1
<z,xz"*> = 0

So we can write X = (x,2*) € DS?, isomorphically. Conversely, for every X =
(x,2*) € DS? we have
|z |=1<az2z">=0.

So X = (1,79, 3,75, 75, 25) € TS? Thus we have the following :

Theorem 3. There is a one-to-one correspondence T'S? and DS?.

We know that every curve on DS? can be associated to a ruled surface in R?
([1]). Now we will ask how a curve on T'S? can be associated to a ruled surface in
R3 and answer the question.
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Let P = (p,p*) € TS?, then p is orthogonal p*. It is well known from vector
algebra that the equation

pxz=p"pazp R

with < p,p* >= 0 has the set of solutions

1 *

The solution x(\) represents a straight line in the direction of the vector p. Since
” p H: 1, s0
x(A)=—pxp"+Ap .

Let a be a curve on S? such that o : I C R — 5%t — «(t) and A be an
antisymmetric vector field. The restriction of A on «(I) will be denoted by A,,
Aq = Ao(a(l)). For every ty € I. We have the straight line

21, (A) = alto) X Aa(alto)) + Aalto).
So the equation
2e(A\) = a(t) x Aq(a(t)) + Aa(t), telLAeR
describes a surface. We set
o(t, A) = a(t) x Aa(a(t)) + Aa(t), telI,NeR. (5)

Equation (5) defines a non-cylindrical ruled surface.
Conversely, let a non-cylindrical ruled surface in R? be given by the equation

o(u,d) = B(u) + dd(u).
The spherical representation of the unit direction vectors d(u) describes a curve on
S2.
Suppose that this curve is denoted by o, o : I — S2%, we can define a mapping
A along the curve « by the following equation,

Aa(u)) = —afu) x B(u),

where the sign x denotes the wedge product in R3. It is clear that A(a(u)) is an
anti-symmetric vector field. Therefore we have

[au) ] = 1,
< au),Ala(u)) > = 0

and so < @(u), A(a(u)) > € DS?. That is to say < d@(u), A(a(u)) > is an element
of T'S?. So we have

Theorem 4. There exists a one-to-one correspondence between a restriction of
an anti-symmetric vector field along a spherical curve and a non-cylindrical ruled
surface in R3.
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