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Interval method for interval linear program

Radimir Viher
∗

Abstract. In the problem of interval linear programming (i)

max cTx
a ≤ Ax ≤ b

(i)

x, c ∈ Rn; a, b ∈ Rm; A ∈ Rm×n
m (A is of full row rank) we introduce

the new variable t = c1x1 + · · · + ckxk + · · · + cnxn and eliminate the
old variable (ck �= 0)

xk =
1
ck

t− c1
ck

x1 − · · · − ck−1

ck
xk−1 − ck+1

ck
xk+1 − · · · − cn

ck
xn.

So we come to the second form

max t
a+ th ≤ Bx′ ≤ b+ th (ii)

x′ ∈ Rn−1; a, b, h ∈ Rm; B ∈ Rm×(n−1)
m−1 . It is known when c ∈ R(AT )

that problem (i) has an explicit solution. In this article we formulate
the analogous theorem for the second form (ii), and then show the ap-
plication of those results on the problem of sensitivity analyses.
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1. First form of interval linear program (I. L. P.)

Let a, b ∈ Rm; c, x ∈ Rn; A ∈ Rm×n. For the problem of I. L. P.

max cTx
a ≤ Ax ≤ b

(1)
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we say that it is in the first form. Denote by K the set

K = {x ∈ Rn : a ≤ Ax ≤ b}. (2)

Two basic results on the exsistence of solution of (1) and on the representation of
the solution when A ∈ Rm×n

m are as follows (see [1]).
Theorem 1. Let K �= ∅. Then I. L. P. (1) has a bounded optimal solution

iff c ∈ R(AT ), where by R(A) we denote the set {y ∈ Rm : y = Ax for some
x ∈ Rn}.

Theorem 2. Let A ∈ Rm×n
m and c ∈ R(AT ). Accordingly, vector c may be

represented in the form

cT =
m∑

i=1

αiA
i, (3)

where Ai denotes the i-th row of A. Moreover, let the functions βi : R → R
i = 1, 2, . . . ,m be defined by

βi(α) =
{

bi if α ≥ 0
ai if α < 0 (4)

and let I = {i ∈ {1, 2, . . . ,m}; αi �= 0}. Then the optimal value of (1) is

max
x∈K

cTx =
m∑

i=1

αiβi(αi), (5)

and the optimal solution is every vector x which satisfies the next system of equalities
and inequalities

Aix = βi(αi), i ∈ I
ai ≤ Aix ≤ bi, i ∈ {1, 2, . . . ,m} \ I.

(6)

2. Second form of interval linear program

To get the second form from the first form we introduce the new variable

t =
n∑

i=1

cixi. (7)

Let for some k is ck �= 0 (otherwise problem (1) is trivial), then from (7) we express
xk

xk =
1
ck

t−
n∑

i=1
i�=k

ci

ck
xi (8)

and insert it in the system of inequalities (1). Thus, after arranging we come to the
second form of I. L. P.

max t
a+ th ≤ Bx′ ≤ b+ th, (9)
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where it is denoted by

x′ = [x1, . . . , xk−1, xk+1, . . . , xn]
T

h =
[
−a1k

ck
,−a2k

ck
, . . . ,−amk

ck

]T

(10)

B =




a11 − a1kc1
ck

. . . a1k−1 − a1kck−1
ck

a1k+1 − a1kck+1
ck

. . . a1n − a1kcn

ck

...
...

...
...

...
...

am1 − amkc1
ck

. . . amk−1 − amkck−1
ck

amk+1 − amkck+1
ck

. . . amn − amkcn

ck




It is important to note that relation (8) has a double role. First, it has a role of
transition from the first to the second form. Second, when problem (9) is solved by
means of (8) we calculate the value of xk.

Now we want to formulate and prove theorem which is analogous to Theorem 2,
but corresponding to the second form of I. L. P. With that goal in mind we firstly
formulate and prove two auxiliary lemmas (about rank and other connections be-
tween matrices A and B).

Lemma 1.

r



cT

...
A


 = r(B) + 1. (11)

Proof. Multiply the first row of the block-matrix from the left-hand side of
(11) by −aik(ck)−1 and then add to the (i + 1)th row for i = 1, 2, . . . ,m. After
that multiply the kth column by −ci(ck)−1 and then add to the ith column for
i = 1, 2, . . . , k − 1, k + 1, . . . , n. As a result of these calculations we get

D=




0 . . . 0 ck 0 . . . 0
a11 − a1kc1

ck
. . . a1k−1 − a1kck−1

ck
0 a1k+1 − a1kck+1

ck
. . . a1n − a1kcn

ck

...
...

...
...

...
...

...
am1 − amkc1

ck
. . . amk−1 − amkck−1

ck
0 amk+1 − amkck+1

ck
. . . amn − amkcn

ck


. (12)

From (12) it is obvious that

r



cT

...
A


 = r(D) = r(B) + 1.

✷

Lemma 2. Let A ∈ Rm×n
m and c ∈ R(AT ). Whereupon

cT = δ1A
1 + δ2A

2 + · · ·+ δmAm, (13)

where Ai denotes i-th row of A for i = 1, 2, . . . ,m. Then

δ1B
1 + δ2B

2 + · · ·+ δmBm = 0, (14)

where Bi denotes the i-th row of B for i = 1, 2, . . . ,m.



26 R.Viher

Proof. Multiply the first row of B by δ1, the second by δ2 and so on; after that
sum up all rows. Then we get

m∑
j=1

δj

(
aji − ci

ck
ajk

)
=

m∑
j=1

δjaji − ci

ck

m∑
j=1

δjajk = ci − ci

ck
ck = 0, (15)

for i = 1, 2, . . . , k − 1, k + 1, . . . , n. ✷

The next corollary will show that the converse is also true.
Corollary 1. Let conditions of Lemma 2 be fulfilled and let

ε1B
1 + ε2B

2 + · · ·+ εmBm = 0, (16)

where at least one εi is different from zero. Then εi = λδi (λ �= 0) for i =
1, 2, . . . ,m.

Proof. From (16) it follows

m∑
j=1

εj

(
aji − ci

ck
ajk

)
=

m∑
j=1

εjaji − ci

ck

m∑
j=1

εjajk = 0, (17)

for i = 1, 2, . . . , k − 1, k + 1, . . . , n. Now we suppose that

λ =
1
ck

m∑
j=1

εjajk = 0. (18)

Then from (17) it follows immediately

m∑
j=1

εjaji = 0, i = 1, 2, . . . , n, (19)

respectively
m∑

j=1

εjA
j = 0. (20)

From the supposition of corollary (r(A) = m) we conclude that ε1 = ε2 = . . . =
εm = 0 which is the contradiction, hence λ �= 0. From (17) we get

m∑
j=1

εjaji = λci (λ �= 0) i = 1, 2, . . . , n, (21)

respectively
λcT = ε1A

1 + ε2A
2 + · · ·+ εmAm. (22)

From the facts c ∈ R(AT ) and (13) it follows εi = λδi for i = 1, 2, . . . ,m. ✷

Remark 1. From conditions of Corollary1 and from Lemma1 it follows

m = r(A) = r



cT

...
A


 = r(B) + 1, (23)
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hence r(B) = m− 1.
Corollary 2. Let the conditions of Lemma 2 be fulfilled and let

δ = [δ1, δ2, . . . , δm]T . (24)

Moreover, let exactly r components of δ be different from zero. Then, there exist
exactly r submatrices from B of type (m− 1)× (n− 1) which are of full rank (their
rank is m − 1), and which we get from B by throwing out the row Bkj for which
δkj �= 0 (j = 1, 2, . . . , r).

Proof. Immediately from Corollary 1. ✷

Before we formulate and prove the main theorem of this article let us denote by
ηi : R → R for i = 1, 2, . . . ,m the functions

ηi(α) =
{

ai if α ≥ 0
bi if α < 0. (25)

Theorem 3. Let vectors (the rows of B) B2, B3, . . . , Bm be linearly independent
and let

B1 = d2B
2 + d3B

3 + · · ·+ dmBm. (26)

Then we distinguish two cases

(i) −
m∑

i=2

dihi + h1 = 0 (hi = −aik

ck
for i = 1, 2, . . . ,m).

Then c /∈ R(AT ) and problem (1) has no bounded solution (Theorem1).

(ii) −
m∑

i=2

dihi + h1 �= 0.

Then r(A) = m, c ∈ R(AT ) and problem (1) has a bounded solution

t0 = max
x∈K

cTx =




∑m
i=2 diηi(di)− b1

−∑m
i=2 dihi + h1

if −
m∑

i=2

dihi + h1 < 0

∑m
i=2 diβi(di)− a1

−∑m
i=2 dihi + h1

if −
m∑

i=2

dihi + h1 > 0,
(27)

where the optimal solution is every vector x which satisfies the next system of equal-
ities and inequalities

Bix′ =




ηi(di) + t0hi if −
m∑

i=2

dihi + h1 < 0

βi(di) + t0hi if −
m∑

i=2

dihi + h1 > 0
; i ∈ I (28)

ai + t0hi ≤ Bix′ ≤ bi + t0hi; i ∈ {2, 3, . . . ,m} \ I (29)

xk =
t0
ck

− c1
ck

x1 − . . .− ck−1

ck
xk−1 − ck+1

ck
xk+1 − . . .− cn

ck
xn, (30)

where I denotes the set {i ∈ {2, 3, . . . ,m} : di �= 0}.
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Proof. Let vectors B2, B3, . . . , Bm be linearly independent and let

B1 = d2B
2 + d3B

3 + · · ·+ dmBm. (31)

Now we prove statement (i). Suppose that

0 = −
m∑

i=2

dihi + h1 =
1
ck

m∑
i=2

diaik − a1k

ck
(32)

and that r(A) = m. From relation (31) it follows r(B) = m− 1 and from Lemma 1
it follows c ∈ R(AT ). From Lemma2 and Corollary 1 we conclude that di = − δi

δ1
for i = 2, 3, . . . ,m. We insert the expression for di in relation (32) and get

−
m∑

i=2

δiaik

ckδ1
− a1k

ck
= − 1

δ1

m∑
i=1

δiaik

ck
= − 1

δ1
= 0, (33)

which is a contradiction. Hence r(A) = m− 1, and from Lemma1 it follows

r



cT

...
A


 = r(B) + 1 = m, (34)

whereupon we conclude that c /∈ R(AT ). It follows from Theorem 1 that problem
(1) has no bounded solution.

Now we prove statement (ii). Let

−
m∑

i=2

dihi + h1 �= 0. (35)

It will be shown that problem (9) has a bounded solution (maximum), hence
problem (1) has too, and from Theorem 1 it follows that c ∈ R(AT ) respectively
r(A) = m. At the end the equivalence between formulas (27) and (5) will be proved.
With that goal in mind we write a system of inequalities in problem (9)

a1 + th1 ≤ B1x′ ≤ b1 + th1

a2 + th2 ≤ B2x′ ≤ b2 + th2

· · ·
am + thm ≤ Bmx′ ≤ bm + thm,

(36)

where hi = −aik

ck
for i = 1, 2, . . . ,m. From (31) and (36) we get

a1 + th1 ≤ B1x′ ≤ b1 + th1

m∑
i=2

diηi(di) + t

m∑
i=2

dihi ≤ B1x′ ≤
m∑

i=2

diβi(di) + t

m∑
i=2

dihi. (37)

We introduce the following abbreviations

p1 =
m∑

i=2

diηi(di), q1 =
m∑

i=2

diβi(di), r1 =
m∑

i=2

dihi. (38)
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With the help of these abbreviations we form intervals1

At = [a1 + th1, b1 + th1]
Bt = [p1 + tr1, q1 + tr1].

(39)

By observing inequalities (37) we conclude that the necessary condition for the
existence of the bounded solution of problem (9) is the existence of t ∈ R for which

At ∩Bt �= ∅. (40)

A sufficient condition for the existence of the bounded solution of problem (9) is
the boundedness (from above) of the set

{t ∈ R : At ∩Bt �= ∅}. (41)

It is easy to see that set (41) is bounded (from above) iff there exist the solutions
of equations

a1 + th1 = q1 + tr1
b1 + th1 = p1 + tr1.

(42)

Equations (42) have a solution iff condition (35) is fulfilled. In that case the solution
of equations (42) are

t1 =
q1 − a1

−r1 + h1
; t2 =

p1 − b1
−r1 + h1

. (43)

It remains to prove the equivalence between formulas (27) and (5). First we suppose
that −r1 + h1 < 0, then by means of relations (33), (38) and (43) we get

t2 =
p1 − b1
−r1 + h1

= δ1

[
b1 −

m∑
i=2

diηi(di)

]
= δ1b1 +

m∑
i=2

δiηi

(−δi

δ1

)

= δ1b1 +
m∑

i=2

δiβi(δi) =
m∑

i=1

δiβi(δi) = max
x∈K

cTx.

Fourth and fifth equalities are the consequence of the fact that in this case δ1 > 0.
Now we suppose that −r1 + h1 > 0 and we get

t1 =
q1 − a1

−r1 + h1
= δ1

[
a1 −

m∑
i=2

diβi(di)

]
= δ1a1 +

m∑
i=2

δiβi

(−δi

δ1

)

= δ1a1 +
m∑

i=2

δiβi(δi) =
m∑

i=1

δiβi(δi) = max
x∈K

cTx.

Fourth and fifth equalities are the consequence of the fact that in this case δ1 < 0.
The equivalence between relations (28), (29) and (30) and relation (6) follows

immediately from the linear independence of the vectors B2, B3, . . . , Bm. ✷

1That is the main reason for the name of the method (interval method).
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Remark 2. From the proof of Theorem3 and from Corollary2 we conclude that
on the left-hand side of relation (31) there can be any vector Bj if δj �= 0.

Except this, it is easily seen that βi(−di) can stay instead of ηi(di) in formula
(27).

Example 1. The next problem will be solved first by the application of Theo-
rem2 and then by the application of Theorem3

max( −y + 4z)
−3 ≤ 2x− y + 3z ≤ 4
−2 ≤ −x+ 2y − 3z ≤ 5
−4 ≤ 3x+ y − z ≤ 2.

(44)

Since 
 0
−1
4


 = 2


 2
−1
3


 +


−1

2
−3


 −


 3

1
−1


 (45)

respectively cT = 2A1 +A2 −A3 and from Theorem2 we get

max = 2 · 4 + 1 · 5 + (−1)(−4) = 17.

If we want to use Theorem3 we need to transform (44) on the second form of
I. L. P. with the help of the substitution t = −y + 4z and elimination of variable
y = 4z − t; in such a manner we get

max t
−3− t ≤ 2x− z ≤ 4− t

−2 + 2t ≤ −x+ 5z ≤ 5 + 2t
−4 + t ≤ 3x+ 3z ≤ 2 + t.

(46)

From (45), (46) and from Lemma 2 it follows

2
[

2
−1

]
+

[−1
5

]
−

[
3
3

]
=

[
0
0

]
. (47)

From (47) we get
B2 = −2B1 +B3. (48)

From (48) and (27), since it is −(−2)(−1)− (1)(1) + 2 = −1 < 0, we get

max =
(−2)(4) + 1(−4)− 5

−(−2)(−1)− (1)(1) + 2
=

−17
−1

= 17. (49)

It will be shown that we can do the sensitivity analysis of the problem rather easily

max cTx
a ≤ Ax ≤ b,

(50)

with the help of formula (27) where A is a regular matrix. As an example we take
problem (44) but when a21 = −1 + s. It is easy to see that the second form of
I. L. P. seems to be the same as (46) but only b21 = −1 + s.



Interval method for interval linear program 31

By means of (46) we can form the following tableau

B1 B2 B3

E1 2 −1 + s 3
E2 −1 5 3

, (51)

with the purpose that by forming a new base one Bk is expressed as a linear com-
bination of the remaining two, but with minimal problems about parameter s. That
is best to do in the following way:

B1 B2 B3 B2 B3 B2

B3 �E1 2 −1 + s 3 9 + s 9 1 + s
9

B1 �E2 -1 5 3 −5 −3 −2 + s
3

. (52)

To be able to apply formula (27), we must first calculate the denominator

−(−1)
(
−2 +

s

2

)
−

(
1 +

s

9

)
+ 2 = −1 +

2s
9
.

With the help of this we get

max(s) =

(−2 + s
3

)
η1

(−2 + s
3

)
+

(
1 + s

9

)
η3

(
1 + s

9

) − 5
−1 + 2s

9

, if s <
9
2

max(s) =

(−2 + s
3

)
β1

(−2 + s
3

)
+

(
1 + s

9

)
β3

(
1 + s

9

)
+ 2

−1 + 2s
9

, if s >
9
2
.

If we want to get the final form of the function max(s), we need to examine a
behavior (with respect to the sign) of expressions −2 + s

3 and 1 + s
9 . The zeros of

these expressions are s = 6 and s = −9, so we get

max(s) =




(−2 + s
3

) · 4 + (
1 + s

9

) · 2− 5
−1 + 2s

9

, if s ≤ −9(−2 + s
3

) · 4 + (
1 + s

9

) · (−4)− 5
−1 + 2s

9

, if −9 < s < 9
2(−2 + s

3

) · (−3) +
(
1 + s

9

) · 2 + 2
−1 + 2s

9

, if 9
2 < s ≤ 6(−2 + s

3

) · 4 + (
1 + s

9

) · 2 + 2
−1 + 2s

9

, if 6 < s

for s = 4.5 the problem has no bounded solution. Finally, this function can be
represented in the following way

max(s) =




−11 + 14s
9

−1 + 2s
9

, if s ≤ −9

−17 + 8s
9

−1 + 2s
9

, if −9 < s < 9
2

10− 7s
9

−1 + 2s
9

, if 9
2 < s ≤ 6

−4 + 14s
9

−1 + 2s
9

, if 6 < s.

(53)
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From (53) we conclude that the function max(s) has a vertical asymptote for s = 9
2

and a horizontal asymptote for max = 7. Also we see that it consists of four linear
fractional transformations of the form a+bs

c+ds . The graph of this function is presented
in the next figure.

Figure 1.

General remark. The second form of I. L. P. and formula (27) can generalize
the suboptimization method for interval linear programming (SUBOPT) see [4] and
[5].
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