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Lines with the butterfly property

Zvonko Čerin∗

Abstract. In this paper it is explored which lines have the butterfly
property with respect to quadrangles (inscribed into a given conic curve).
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Let ABCD be a plane quadrangle, w a line intersecting all sides and diagonals
of ABCD (considered as lines), and S a point on w. Let H , K, U , V , X , and Y
denote intersections of w with lines AB, CD, AC, BD, AD, and BC, respectively.
We consider the statements

B(w, ABCD): If the midpoints of any two of the following segments HK,
UV , and XY coincide, then they all coincide.

B(w, S, ABCD): If S is the midpoint of any of the following segments HK,
UV , and XY , then it is the midpoint of them all.

Figure 1. Quadrangle ABCD and six points of intersection of its sides with line w
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The first statement B(w, ABCD) is not very interesting because we have the
following result (see Figure 1).

Theorem 1. The statement B(w, ABCD) is true for every line w and every
quadrangle ABCD.

Proof. Without loss of generality, we can assume that A, B, C, D are points in
the Gauss complex plane with affixes 0 (zero), 1 (one), c, and d and that the line w
has the equation z + t z̄ = s, where t is a unimodular complex number and S = (s)
is the point symmetric to the origin with respect to the line w.

This unusual equation for a line in the complex plane is explained on page 76
of the reference [5] and could be seen as follows. Without loss of generality, one
can assume that no vertex of ABCD belongs to w. Then one can consider w as
the perpendicular bisector of segment AS which leads to the equation in the given
form.

The points of intersection have the following affixes h = s
1+t , k =

(t d̄−s) c+(s−c̄ t) d

d−c+t (d̄−c̄)
,

u = c s
c+c̄ t , v =

(s−t) d+t d̄−s

d−1+t (d̄−1)
, x = s d

d+t d̄
, and y = (c−1) s+(c̄−c) t

(c̄−1) t+c−1 . Now h2 = 1
2 (h+ k),

u2 = 1
2 (u+ v), and x2 = 1

2 (x+ y) are the affixes of the midpoints H2, U2, and X2

of HK, UV , and XY respectively. Using as denominators for h2 − u2 and h2 − x2

just the products of the denominators in the given descriptions of h, k, u, v, x, and
y, one finds that fractions describing h2 − u2 and h2 − x2 have the same numerator
(possibly up to the sign). From this the conclusion of the theorem follows immedi-
ately. Indeed, if H2 and U2 coincide, then the numerator of h2 − u2 vanishes and
so does the numerator of h2 − x2 implying finally H2 = X2. ✷

Remark 1. The hypothesis that the line w intersects all sides and diago-
nals is essential in Theorem1. In the case of an isosceles trapezium ABCD and
w‖AB‖CD the midpoints of UV and XY coincide while the points H and K do
not exist.

Our goal now is to prove the following three theorems.
Theorem 2. For every parabola k and every point S there is a unique line w

such that B(w, S, ABCD) is true for every quadrangle ABCD inscribed into k.

Figure 2. Parabola k and point S with line w(k, S) and two inscribed quadrangles
having the butterfly property with respect to this line and the point
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Theorem 3. Let O be the centre of either an ellipse or hyperbola k. For
every line w through O the statement B(w, O, ABCD) is true for every quadrangle
ABCD inscribed into k.

Figure 3. Hyperbola k and line w through the centre O with an inscribed quadrangle
such that B(w, O, ABCD) holds

Theorem 4. If k is either an ellipse or a hyperbola with the centre O, then for
every point S different from O there is a unique line w such that B(w, S, ABCD)
is true for every quadrangle ABCD inscribed into k.

Figure 4. Ellipse k, point S and line w = w(k, S) through S with inscribed
quadrangles such that B(w, S, ABCD) and B(w, S, A′B′C′D′) hold
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Proof. Before proving these theorems we shall recall some facts from the ana-
lytic geometry of conics. It is well-known that if we take a focus of conic k as the
pole (the origin) and the main axis (the line of symmetry through the focus) µ as the
polar axis of a polar coordinate system, then k has the equation � = p/(1 + ε cosϑ),
where � is the polar radius, ϑ is the polar angle, and p and ε are nonnegative real
numbers. Hence, in the associated rectangular coordinate system points A, B, C,
and D have coordinates (p cosϑ/(1 + ε cosϑ), p sinϑ/(1 + ε cosϑ)), where ϑ is α,
β, γ, and δ. We could continue using trigonometric functions but it is easier at this
point to employ the universal trigonometric substitution to write

cosα =
1− a2

1 + a2
, sinα =

2 a
1 + a2

,

and similarly for the remaining three points (and their corresponding letters). We
conclude that points A, B, C, and D have coordinates

(
p (1− t2)

ε (1− t2) + t2 + 1
,

2 p t
ε (1− t2) + t2 + 1

)

for t equal to a, b, c, and d.
Let us assume that line w has the equation f x+ g y + h = 0 and that point S

has coordinates (m, n). Since point S belongs to line w it follows that h = −f m− g n.
Line AB has the equation

(a b (ε− 1) + ε+ 1)x+ (a+ b) y − p (a b+ 1) = 0.

The other lines CD, AC, BD, AD, and BC have analogous equations. The point
of intersection H of lines w and AB has the coordinates[

g p (a b+ 1) + h (a+ b)
g (ε− 1) a b− f (a+ b) + g (ε+ 1)

,
−h ((ε− 1) a b+ ε+ 1)− f p (a b+ 1)
g (ε− 1) a b− f (a+ b) + g (ε+ 1)

]
.

Notice that the denominators of the above fractions do not vanish since the consid-
ered point of intersection exists by hypothesis. The other points of intersection K,
U , V , X , and Y have similar coordinates.

Let H2(h2, k2), U2(u2, v2), and X2(x2, y2) be the midpoints of the segments
HK, UV , and XY . Then h2 −m = g MH

2 NH PH
and k2 − n = − f MH

2 NH PH
, where

PH = (c+ d)f + cd(1 − ε)g − (1 + ε)g, NH = (a+ b)f + ab(1− ε)g − (1 + ε)g,

MH = mQH + nRH + p SH , QH = −Z ε2 + (Pf + 2Ug)ε+ Dg −R,
RH = Sf + (R−Pε)g, SH = Z − Pf − Ug,

with Z = 2 (a b+ 1)(c d+ 1), D = 2 (a b− 1)(c d− 1), S = 2 (a+ b)(c+ d),
U = 2 (a b c d− 1), P = a b c+ a b d+ a c d+ b c d+ a+ b+ c+ d, and
R = a b c +a b d+ a c d+ b c d− a− b− c− d.

Notice that

MH −MU = 2 (d− a) (b− c)(n f + [m (ε2 − 1)− p ε] g)
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and
MH −MX = 2 (d− b) (a− c)(n f + [m (ε2 − 1)− p ε] g).

Without loss of generality, we now assume H2 = S, i. e., thatMH = 0. Then we
have to look for conditions on line w implying U2 = X2 = S, i. e., MU =MX = 0.

When k is a parabola, then ε = 1 so that we distinguish two possibilities: (a)
n = 0 and (b) n 	= 0.

In the first case, point S belongs to axis µ of k and it follows

MU =MX = 0 ⇔ g = 0.

But g = 0 means that w is the line perpendicular to the axis of the parabola passing
through point S.

In the second case, point S is not on axis µ of k and points U2, and X2 coin-
cide with point S if and only if f = p g

n (i. e., if and only if w has the equation
p x+ n y = mp+ n2). This proves Theorem 2.

When k is either an ellipse or a hyperbola, then ε 	= 1 and its centre is at point
O( p ε

ε2−1 , 0). Now we distinguish four cases: (i) (m, n) = ( p ε
ε2−1 , 0) (i. e., S = O),

(ii) n = 0 and m 	= p ε
ε2−1 , (iii) n 	= 0 and m = p ε

ε2−1 and (iv) n 	= 0 and m 	= p ε
ε2−1 .

In case (i), we have MU =MX = 0 so that B(w, O, ABCD) is true for every
line w which goes through the center O of either an ellipse or a hyperbola k and
for every quadrangle ABCD inscribed into it. This proves Theorem 3.

In case (ii), point S is on the principal axis µ of k and points H2, U2, and X2

coincide with point S if and only if g = 0 (i. e., if and only if w is perpendicular to
µ at point S).

In case (iii), point S is on the secondary axis ν of k and points H2, U2, and X2

coincide with point S if and only if f = 0 (i.e., if and only if w is the perpendicular
to ν at point S).

Finally, in case (iv), point S is not on either axis of k and points H2, U2, and
X2 coincide with point S if and only if

f =
(p ε−m (ε2 − 1)) g

n

(with g 	= 0), i.e., if and only if w has the equation

(p ε−m (ε2 − 1))x+ n y = m (p ε−m (ε2 − 1)) + n2.

This proves Theorem 4.
Line w from Theorems 2 and 4 is denoted also as w(k, S). The above proof

establishes also the following corollary which is the main result in [3] and [2].
Corollary 1. Let k be a conic and let S be a point different from the centre of

k (if the centre exists). Line w(k, S) is perpendicular to axis z of k if and only if
S lies on z.

Our second corollary shows that the main result in [10] is also covered by the
above theorems.

Corollary 2. Let k be a conic and let 1 be a line in the same plane. If S is the
point of intersection of 1 with the diameter of k conjugate to 1 and S is different
from the centre of k (when the centre exists), then w(k, S) = 1.
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Proof. We know that line w(k, S) has the equation

(p ε−m (ε2 − 1))x+ n y −m (p ε−m (ε2 − 1))− n2 = 0

where (m, n) are coordinates of S. In order to find these coordinates, let us assume
that line 1 has the equation f x+ g y + h = 0. In the rectangular coordinate sys-
tem k has the equation (ε2 − 1)x2 − y2 − 2 ε p x+ p2 = 0. When we compute the
midpoint of the points of intersections of k and 1 and eliminate parameter h we
obtain the equation (ε2 − 1) g x+ f y − ε p g = 0 of the diameter of k conjugate to
the given line 1. It intersects line 1 at the point

S

(
− ε p g2 + f h

f2 + g2 (1− ε2)
,
g (ε p f + h (ε2 − 1))
f2 + g2 (1 − ε2)

)
.

By substituting the coordinates of S for m and n on the left-hand side of the above
equation of w(k, S) we shall get

(
ε p f + h (ε2 − 1)

)
(f x+ g y + h)

f2 + g2 (1− ε2)
.

This clearly concludes the proof. ✷

The next result shows the connection of our theorems with the version of the
original Butterfly Theorem from [7] and the Three-Winged Butterfly Problem from
[8] for conics.

Theorem 5. If S is the midpoint of chord PQ of conic k, then w(k, S) is line
PQ.

Proof. From the proof of Theorems 2–4 we know that line w(k, S) has the
equation f x+ g y = f m+ g n where (m, n) are coordinates of S and

f n+ g (m (ε2 − 1)− p ε) = 0. (1)

We assume that P and Q have coordinates

( p (1− t2)
ε (1− t2) + t2 + 1

,
2 p t

ε (1− t2) + t2 + 1

)

for t equal to u and v. It follows that by substituting for m and n the coordinates
of the midpoint of the segment PQ into (1) we obtain

p ((ε− 1) u v − ε− 1)(− (u+ v) f + (u v (ε− 1) + ε+ 1) g)
((ε− 1)u2 − ε− 1)((ε− 1) v2 − ε− 1)

= 0.

Since the equation of line PQ is (u v (ε− 1) + ε+ 1)x+ (u+ v) y = p (u v + 1) it is
obvious that w(k, S) = PQ. ✷

Remark 2. Line w(k, S) has the following simple construction. When k is
a parabola with directrix d, then the perpendicular through S to d intersects k at
point P and w(k, S) is the parallel through S to the tangent at P to k. When k
is an ellipsis or a hyperbola and S is different from the centre O of k, then line
OS intersects k at point P (which could be imaginary) and w(k, S) is the parallel
through S to the tangent at P to k.
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Remark 3. This paper (without Corollary2) was written in August 2001. In the
meantime, [10] has appeared which is similar in that for a given line w it searches
for a point S on it such that B(w, S, ABCD) is true while our approach is to find
a line w through a given point S such that B(w, S, ABCD) holds.
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[3] Z. Čerin, A generalization of the butterfly theorem from circles to conics,
Mathematical Communications 6(2001), 161–164.

[4] S.R.Conrad, Another Simple Solution of the Butterfly Problem, Math. Mag.
46(1973), 278–280.

[5] L.Hahn, Complex numbers and geometry, Math. Assoc. America, Washington,
1994.

[6] R. Honsberger, The Butterfly Problem and Other Delicacies from the Noble
Art of Euclidean Geometry, College Math. J., 14(1983), 2–8 and 154–158.

[7] S.Mitchell, J. Rosenbaum, W.E.Buker, R. Steinberg, E. P. Starke,
J. H. Butchart, Problem E571, Amer. Math. Monthly 51(1944), 91–92.

[8] Problem 1187, Math. Mag. 58(1985), 115.

[9] V.Volenec, A generalization of the butterfly theorem, Mathematical Com-
munications 5(2000), 157–160.

[10] V.Volenec, The butterfly theorem for conics, Mathematical Communications
7(2002), 35–38.


