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Lines with the butterfly property

7ZvoNKO CERIN*

Abstract. In this paper it is explored which lines have the butterfly
property with respect to quadrangles (inscribed into a given conic curve).
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Let ABCD be a plane quadrangle, w a line intersecting all sides and diagonals

of ABCD (considered as lines), and S a point on w. Let H, K, U, V, X, and Y
denote intersections of w with lines AB, CD, AC, BD, AD, and BC, respectively.

We consider the statements
B(w, ABCD): If the midpoints of any two of the following segments HK,
UV, and XY coincide, then they all coincide.

B(w, S, ABCD): If S is the midpoint of any of the following segments H K,
UV, and XY, then it is the midpoint of them all.

D

Figure 1. Quadrangle ABC'D and six points of intersection of its sides with line w
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The first statement B(w, ABCD) is not very interesting because we have the
following result (see Figure 1).

Theorem 1. The statement B(w, ABCD) is true for every line w and every
quadrangle ABCD.

Proof. Without loss of generality, we can assume that A, B, C, D are points in
the Gauss complex plane with affixes 0 (zero), 1 (one), ¢, and d and that the line w
has the equation z 4+t Z = s, where ¢ is a unimodular complex number and S = (s)
is the point symmetric to the origin with respect to the line w.

This unusual equation for a line in the complex plane is explained on page 76
of the reference [5] and could be seen as follows. Without loss of generality, one
can assume that no vertex of ABCD belongs to w. Then one can consider w as
the perpendicular bisector of segment AS which leads to the equation in the given
form.

The points of intersection have the following affixes h = —2-, k = (td=s)ct(s—ct)d

1+t d—c+t (d—¢) ’
_ _ (s=t)d+td—s _ d _ (e=1)s+(c—c)t 1
U—C_c‘_zt,v— d71+t(d71)’ —ditd,andy—m. NOWhQ—i(h‘Fk’),

Uy = % (u+v), and zg = % (x 4+ y) are the affixes of the midpoints Hs, Us, and Xs
of HK, UV, and XY respectively. Using as denominators for hy — us and ho — x2
just the products of the denominators in the given descriptions of h, k, u, v, x, and
y, one finds that fractions describing he — us and ho — z2 have the same numerator
(possibly up to the sign). From this the conclusion of the theorem follows immedi-
ately. Indeed, if Hs and Us; coincide, then the numerator of he — us vanishes and
so does the numerator of hy — xo implying finally Hy = Xo. O

Remark 1. The hypothesis that the line w intersects all sides and diago-
nals is essential in Theorem 1. In the case of an isosceles trapezium ABCD and
w||AB||CD the midpoints of UV and XY coincide while the points H and K do
not exist.

Our goal now is to prove the following three theorems.

Theorem 2. For every parabola k and every point S there is a unique line w
such that B(w, S, ABCD) is true for every quadrangle ABCD inscribed into k.

Figure2. Parabola k and point S with line w(k, S) and two inscribed quadrangles
having the butterfly property with respect to this line and the point
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Theorem 3. Let O be the centre of either an ellipse or hyperbola k. For
every line w through O the statement B(w, O, ABCD) is true for every quadrangle
ABCD inscribed into k.

Figure 3. Hyperbola k and line w through the centre O with an inscribed quadrangle
such that B(w, O, ABCD) holds

Theorem 4. If k is either an ellipse or a hyperbola with the centre O, then for
every point S different from O there is a unique line w such that B(w, S, ABCD)
is true for every quadrangle ABCD inscribed into k.

Figure4. Ellipse k, point S and line w = w(k, S) through S with inscribed
quadrangles such that B(w, S, ABCD) and B(w, S, A’B'C'D’) hold
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Proof. Before proving these theorems we shall recall some facts from the ana-
lytic geometry of conics. It is well-known that if we take a focus of conic k as the
pole (the origin) and the main axis (the line of symmetry through the focus) p as the
polar axis of a polar coordinate system, then k has the equation o = p/(1 + & cos ),
where p is the polar radius, ¥ is the polar angle, and p and € are nonnegative real
numbers. Hence, in the associated rectangular coordinate system points A, B, C,
and D have coordinates (p cos?/(1+ ¢ cosd),p sin?/(1 + € cos)), where ¢ is «,
B, v, and §. We could continue using trigonometric functions but it is easier at this
point to employ the universal trigonometric substitution to write

1—a? 2a

cosq = —— sinag = ——
14+ a2’ 1+ a2’

and similarly for the remaining three points (and their corresponding letters). We
conclude that points A, B, C, and D have coordinates

p(1—1?) 2pt )

(5(1—t2)+t2+1’5(1—t2)+t2+1

for t equal to a, b, ¢, and d.

Let us assume that line w has the equation fx + gy + h = 0 and that point S
has coordinates (m, n). Since point S belongs to line w it follows that h = — f m — gn.
Line AB has the equation

(able—1)+e+1l)az+(a+bd)y—plab+1)=0.

The other lines CD, AC, BD, AD, and BC have analogous equations. The point
of intersection H of lines w and AB has the coordinates
gp(ab+1)+h(a+d) —h((e—=1)ab+e+1)— fp(ab+1)
gle—1Dab—fla+bd)+ge+1) gle—1ab—f(la+b)+g(e+1)

Notice that the denominators of the above fractions do not vanish since the consid-
ered point of intersection exists by hypothesis. The other points of intersection K,
U,V, X, and Y have similar coordinates.

Let Ha(ha, k2), Us(usg, v2), and Xa(z2, y2) be the midpoints of the segments

HEK, UV, and XY. Then hy —m = 5%~ and ky —n = — 44— where

Pyp=(c+d)f+cd(l—e)g—(1+¢e)g, Ng=(a+b)f+ab(l—¢e)g—(1+¢)g,

Mg =mQu +nRy+pSuy, Qu=—-Z2e*+ (Pf+2Ug)e +Dg—R,
Ry =S8Sf+(R—-Pe)g, Su=Z-Pf—-Ug,

with  Z2=2(ab+1)(cd+1), D=2(ab—1)(cd—1), S=2(a+b)(c+d),
U=2(abed—1), P=abc+abd+acd+bcd+a+b+c+d, and
R=abc+abd+acd+bcd—a—-b—c—d.

Notice that

My — My =2(d—a)(b—c)(nf+[m(?—1)—pelg)
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and
My —Mx =2(d—b)(a—c)(nf+[m(*—1)—pelg).

Without loss of generality, we now assume Hy = S, i. e., that My = 0. Then we
have to look for conditions on line w implying Us = Xo = S, i. e., My = Mx = 0.

When k is a parabola, then € = 1 so that we distinguish two possibilities: (a)
n =0 and (b) n # 0.

In the first case, point S belongs to axis p of k and it follows

My=Mx =0« g=0.

But g = 0 means that w is the line perpendicular to the axis of the parabola passing
through point S.

In the second case, point S is not on axis p of k and points Us, and X, coin-
cide with point S if and only if f =22 (i. e., if and only if w has the equation
px +ny=mp+n?). This proves Theorem 2.

When £ is either an ellipse or a hyperbola, then € # 1 and its centre is at point
O(#£=7, 0). Now we distinguish four cases: (i) (m, n) = (£, 0) (i. e., = 0),
(ii) n = 0 and m # £=, (iii) n # 0 and m = £= and (iv) n # 0 and m # F=.

In case (i), we have My = Mx = 0 so that B(w, O, ABCD) is true for every
line w which goes through the center O of either an ellipse or a hyperbola k& and
for every quadrangle ABCD inscribed into it. This proves Theorem 3.

In case (ii), point S is on the principal axis u of k and points Ha, Us, and X»
coincide with point S if and only if ¢ =0 (i. e., if and only if w is perpendicular to
& at point S).

In case (iii), point S is on the secondary axis v of k and points Hs, Us, and X»
coincide with point S if and only if f = 0 (i.e., if and only if w is the perpendicular
to v at point S).

Finally, in case (iv), point S is not on either axis of k and points Hs, Uy, and
Xy coincide with point S if and only if

(pe—m(e®—1))g

f=

(with g # 0), i.e., if and only if w has the equation
(pe—m(e? =1)z+ny=m(pe—m(e 1)) +n”

This proves Theorem 4.

Line w from Theorems 2 and / is denoted also as w(k, S). The above proof
establishes also the following corollary which is the main result in [3] and [2].

Corollary 1. Let k be a conic and let S be a point different from the centre of
k (if the centre exists). Line w(k, S) is perpendicular to azis z of k if and only if
S lies on z.

Our second corollary shows that the main result in [10] is also covered by the
above theorems.

Corollary 2. Let k be a conic and let £ be a line in the same plane. If S is the
point of intersection of ¢ with the diameter of k conjugate to £ and S is different
from the centre of k (when the centre exists), then w(k, S) = £.
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Proof. We know that line w(k, S) has the equation
(pe—m (> 1))z +ny—mpe—m(®—1))—n*>=0

where (m, n) are coordinates of S. In order to find these coordinates, let us assume
that line ¢ has the equation fxz + gy + h = 0. In the rectangular coordinate sys-
tem k has the equation (¢2 — 1)2% — y?> —2epx + p? =0. When we compute the
midpoint of the points of intersections of k and ¢ and eliminate parameter h we
obtain the equation (¢2 —1)ga + fy —epg = 0 of the diameter of k conjugate to
the given line ¢. It intersects line ¢ at the point

s<_ epg®+ [h g(apf+h(62—1)))
fPrg-e) fPrgr(-e) )

By substituting the coordinates of S for m and n on the left-hand side of the above
equation of w(k, S) we shall get

(epf+h(E—=1)(fz+gy+h)
g (1=

This clearly concludes the proof. O

The next result shows the connection of our theorems with the version of the
original Butterfly Theorem from [7] and the Three-Winged Butterfly Problem from
(8] for conics.

Theorem 5. If S is the midpoint of chord PQ of conic k, then w(k, S) is line
PQ.

Proof. From the proof of Theorems 2-4 we know that line w(k, S) has the
equation fx + gy = fm+ gn where (m, n) are coordinates of S and

fn+g(m(®—1)—pe)=0. (1)

We assume that P and ) have coordinates

( p(1—t?) 2pt )
e(1-t)+t24+17e(1—-83)+t2+1

for t equal to u and v. It follows that by substituting for m and n the coordinates
of the midpoint of the segment P into (1) we obtain
p(e=1Nuv—e—=1)(—(u+v) f+(uv(Ee—-1)+ec+1)g)
(e—=1Duz—e-1)((e—1v2—e-1)

=0.

Since the equation of line PQ is (uv(e — 1) +e+ Dz + (u+v)y=p(uv+1)itis
obvious that w(k, S) = PQ. O

Remark 2. Line w(k, S) has the following simple construction. When k is
a parabola with directriz d, then the perpendicular through S to d intersects k at
point P and w(k, S) is the parallel through S to the tangent at P to k. When k
is an ellipsis or a hyperbola and S is different from the centre O of k, then line
OS intersects k at point P (which could be imaginary) and w(k, S) is the parallel
through S to the tangent at P to k.
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Remark 3. This paper (without Corollary 2) was written in August 2001. In the
meantime, [10] has appeared which is similar in that for a given line w it searches
for a point S on it such that B(w, S, ABCD) is true while our approach is to find
a line w through a given point S such that B(w, S, ABCD) holds.
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