Weakly Picard pairs of some multivalued operators

Alina Sîntămărian*

Abstract

The purpose of this paper is to present a partial answer to the following problem:

Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow P(X)$ two multivalued operators. Determine the metric conditions which imply that $\left(T_{1}, T_{2}\right)$ is a weakly Picard pair of multivalued operators and T_{1}, T_{2} are weakly Picard multivalued operators.

Key words: fixed point, common fixed point, weakly Picard multivalued operator, weakly Picard pair of multivalued operators

AMS subject classifications: $47 \mathrm{H} 10,54 \mathrm{H} 25$
Received February 11, 2003
Accepted April 2, 2003

1. Introduction

Let X be a nonempty set. We denote by $P(X)$ the set of all nonempty subsets of X, i. e. $P(X):=\{Y \mid \emptyset \neq Y \subseteq X\}$.

Let $T_{1}, T_{2}: X \rightarrow P(X)$ be two multivalued operators. We denote by $G_{T_{1}}$ the graph of T_{1}, i. e. $G_{T_{1}}:=\left\{(x, y) \mid x \in X, y \in T_{1}(x)\right\}$, by $F_{T_{1}}$ the fixed points set of T_{1}, i. e. $F_{T_{1}}:=\left\{x \in X \mid x \in T_{1}(x)\right\}$ and by $(C F)_{T_{1}, T_{2}}$ the common fixed points set of T_{1} and T_{2}.

Let (X, d) be a metric space. Further on we shall need the following notation

$$
P_{c l}(X):=\{Y \mid Y \in P(X) \text { and } Y \text { is a closed set }\}
$$

and the following functionals

$$
\begin{gathered}
D: P(X) \times P(X) \rightarrow \mathbb{R}_{+}, D(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\}, \\
H: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, H(A, B)=\max \left\{\sup _{a \in A} D(a, B), \sup _{b \in B} D(b, A)\right\} .
\end{gathered}
$$

Definition 1 [[6], [7]]. Let (X, d) be a metric space and $T: X \rightarrow P(X) a$ multivalued operator. We say that T is a weakly Picard multivalued operator (briefly w. P. m. o.) iff for each $x \in X$ and for every $y \in T(x)$, there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:

[^0](i) $x_{0}=x, x_{1}=y$;
(ii) $x_{n+1} \in T\left(x_{n}\right)$, for each $n \in \mathbb{N}^{*}$;
(iii) sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent and its limit is a fixed point of T.

Remark 1. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ which satisfies conditions (i) and (ii) from Definition 1 is, by definition, a sequence of successive approximations of T, starting from (x, y).

For examples of w. P. m. o. see for instance [6], [7].
Definition 2 [[7]]. Let (X, d) be a metric space and $T: X \rightarrow P(X)$ a w. P. m. o.. Then we define the multivalued operator $T^{\infty}: G_{T} \rightarrow P\left(F_{T}\right)$ by the formula $T^{\infty}(x, y)=\left\{z \in F_{T} \mid\right.$ there exists a sequence of successive approximations of T, starting from (x, y), that converges to $z\}$, for each $(x, y) \in G_{T}$.

Definition 3 [[7]]. Let (X, d) be a metric space and $T: X \rightarrow P(X)$ a w. P. m. o.. Then T is a c-weakly Picard multivalued operator $(c \in[0,+\infty[)$ (briefly c-w. P. m. o.) iff there exists a selection t^{∞} of T^{∞} such that

$$
d\left(x, t^{\infty}(x, y)\right) \leq c d(x, y)
$$

for each $(x, y) \in G_{T}$.
Examples of c-w. P. m. o. are given in [7].
Definition 4 [[10]]. Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow P(X)$ two multivalued operators. By definition, we say that the pair of multivalued operators $\left(T_{1}, T_{2}\right)$ is a weakly Picard pair of multivalued operators (briefly w. P. p. m. o.) iff for each $x \in X$ and for every $y \in T_{1}(x) \cup T_{2}(x)$, there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:
(i) $x_{0}=x, x_{1}=y ;$
(ii) $x_{2 n-1} \in T_{i}\left(x_{2 n-2}\right)$ and $x_{2 n} \in T_{j}\left(x_{2 n-1}\right)$, for each $n \in \mathbb{N}^{*}$, where $i, j \in\{1,2\}$, $i \neq j$;
(iii) sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent and its limit is a common fixed point of T_{1} and T_{2}.

Remark 2. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ which satisfies conditions (i) and (ii) from Definition 4 is a sequence of successive approximations for the pair $\left(T_{1}, T_{2}\right)$, starting from (x, y).

For examples of w. P. p. m. o. see [10].
Definition 5 [[10]]. Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow P(X)$ two multivalued operators which form a w. P. p. m. o.. Then we define the multivalued operator $\left(T_{1}, T_{2}\right)^{\infty}: G_{T_{1}} \cup G_{T_{2}} \rightarrow P\left((C F)_{T_{1}, T_{2}}\right)$ by the formula $\left(T_{1}, T_{2}\right)^{\infty}(x, y)=$ $\left\{z \in(C F)_{T_{1}, T_{2}} \mid\right.$ there exists a sequence of successive approximations for the pair $\left(T_{1}, T_{2}\right)$, starting from (x, y), that converges to $\left.z\right\}$, for each $(x, y) \in G_{T_{1}} \cup G_{T_{2}}$.

Definition 6 [[10]]. Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow P(X)$ two multivalued operators which form a w. P. p. m. o.. Then $\left(T_{1}, T_{2}\right)$ is a c-weakly Picard pair of multivalued operators ($c \in[0,+\infty[$) (briefly $c-w$. P. p. m. o.) iff there exists a selection $\left(t_{1}, t_{2}\right)^{\infty}$ of $\left(T_{1}, T_{2}\right)^{\infty}$ such that

$$
d\left(x,\left(t_{1}, t_{2}\right)^{\infty}(x, y)\right) \leq c d(x, y)
$$

for each $(x, y) \in G_{T_{1}} \cup G_{T_{2}}$.
Examples of c-w. P. p. m. o. are given in [10].
The purpose of this paper is to study the following problem.
Problem 1. Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow P(X)$ two multivalued operators. Determine the metric conditions which imply that $\left(T_{1}, T_{2}\right)$ is a weakly Picard pair of multivalued operators and T_{1}, T_{2} are weakly Picard multivalued operators.

2. Weakly Picard pairs of some multivalued operators

The following theorem was established by Sîntămărian in [10] and it is a partial answer to Problem 1.

Theorem 1 [[10]]. Let (X, d) be a complete metric space and $T_{1}, T_{2}: X \rightarrow$ $P_{c l}(X)$ two multivalued operators for which there exists $a \in[0,1 / 2[$ such that

$$
H\left(T_{1}(x), T_{2}(y)\right) \leq a\left[D\left(x, T_{1}(x)\right)+D\left(y, T_{2}(y)\right)\right]
$$

for each $x, y \in X$.
Then $F_{T_{1}}=F_{T_{2}} \in P_{c l}(X),\left(T_{1}, T_{2}\right)$ is $c-w . P$. p. m. o. and T_{1} and T_{2} are $c-w$. P. m. o., with $c=(1-a) /(1-2 a)$.

Another partial answer to Problem 1 is the following result.
Theorem 2. Let (X, d) be a complete metric space and $T_{1}, T_{2}: X \rightarrow P_{c l}(X)$ two multivalued operators. We suppose that:
(i) there exists $a_{1} \in\left[0,1 / 2\left[\right.\right.$ such that for each $x \in X$, any $u_{x} \in T_{1}(x)$ and for all $y \in X$, there exists $u_{y} \in T_{2}(y)$ so that

$$
d\left(u_{x}, u_{y}\right) \leq a_{1}\left[d\left(x, u_{x}\right)+d\left(y, u_{y}\right)\right] ;
$$

(ii) there exists $a_{2} \in\left[0,1 / 2\left[\right.\right.$ such that for each $x \in X$, any $u_{x} \in T_{2}(x)$ and for all $y \in X$, there exists $u_{y} \in T_{1}(y)$ so that

$$
d\left(u_{x}, u_{y}\right) \leq a_{2}\left[d\left(x, u_{x}\right)+d\left(y, u_{y}\right)\right] .
$$

Then $F_{T_{1}}=F_{T_{2}} \in P_{c l}(X)$ and $\left(T_{1}, T_{2}\right)$ is $c-w . P$. p. m. o., with $c=(1-a) /(1-2 a)$, where $a=\max \left\{a_{1}, a_{2}\right\}$.

If in addition we have that $2 \max \left\{a_{1}, a_{2}\right\}+\min \left\{a_{1}, a_{2}\right\}<1$, then T_{i} is $c_{i}-w$. P. m. o., with $c_{i}=\left(1-a_{1}\right)\left(1-a_{2}\right) /\left(1-2 a_{i}-a_{j}\right), i, j \in\{1,2\}, i \neq j$.

Proof. First of all, we notice that from Theorem 4.2 given by Latif-Beg in [1] it follows that $(C F)_{T_{1}, T_{2}} \neq \emptyset$.

From Theorem 2.2 given by Sîntămărian in [8] we have that $F_{T_{1}}=F_{T_{2}} \in P_{c l}(X)$ and the fact that $\left(T_{1}, T_{2}\right)$ is c-w. P. p. m. o. follows from Theorem 2.7 given by Sîntămărian in [10].

Furthermore, we suppose that $2 \max \left\{a_{1}, a_{2}\right\}+\min \left\{a_{1}, a_{2}\right\}<1$ and we shall prove that T_{i} is c_{i}-w. P. m. o., $i \in\{1,2\}$.

Let $i, j \in\{1,2\}, i \neq j$. Let $x_{0} \in X$ and $x_{1} \in T_{i}\left(x_{0}\right)$. It follows that there exists $y_{1} \in T_{j}\left(x_{1}\right)$ such that

$$
d\left(x_{1}, y_{1}\right) \leq a_{i}\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, y_{1}\right)\right]
$$

and there exists $x_{2} \in T_{i}\left(x_{1}\right)$ such that

$$
d\left(y_{1}, x_{2}\right) \leq a_{j}\left[d\left(x_{1}, y_{1}\right)+d\left(x_{1}, x_{2}\right)\right]
$$

From these, using the triangle inequality, we obtain

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq d\left(x_{1}, y_{1}\right)+d\left(y_{1}, x_{2}\right) \\
& \leq d\left(x_{1}, y_{1}\right)+a_{j}\left[d\left(x_{1}, y_{1}\right)+d\left(x_{1}, x_{2}\right)\right] \\
& =\left(1+a_{j}\right) d\left(x_{1}, y_{1}\right)+a_{j} d\left(x_{1}, x_{2}\right) \\
& \leq\left(1+a_{j}\right) a_{i} /\left(1-a_{i}\right) d\left(x_{0}, x_{1}\right)+a_{j} d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

So

$$
d\left(x_{1}, x_{2}\right) \leq a_{i}\left(1+a_{j}\right) /\left[\left(1-a_{i}\right)\left(1-a_{j}\right)\right] d\left(x_{0}, x_{1}\right)
$$

Now, there exists $y_{2} \in T_{j}\left(x_{2}\right)$ such that

$$
d\left(x_{2}, y_{2}\right) \leq a_{i}\left[d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{2}\right)\right]
$$

and there exists $x_{3} \in T_{i}\left(x_{2}\right)$ such that

$$
d\left(y_{2}, x_{3}\right) \leq a_{j}\left[d\left(x_{2}, y_{2}\right)+d\left(x_{2}, x_{3}\right)\right]
$$

From these we have that

$$
d\left(x_{2}, x_{3}\right) \leq a_{i}\left(1+a_{j}\right) /\left[\left(1-a_{i}\right)\left(1-a_{j}\right)\right] d\left(x_{1}, x_{2}\right)
$$

By induction, we obtain that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of successive approximations of T_{i}, starting from $\left(x_{0}, x_{1}\right)$, with the property that

$$
d\left(x_{n}, x_{n+1}\right) \leq a_{i}\left(1+a_{j}\right) /\left[\left(1-a_{i}\right)\left(1-a_{j}\right)\right] d\left(x_{n-1}, x_{n}\right)
$$

for each $n \in \mathbb{N}^{*}$.
It follows that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence, because (X, d) is a complete metric space and $a_{i}\left(1+a_{j}\right) /\left[\left(1-a_{i}\right)\left(1-a_{j}\right)\right]<1$. Let $x^{*}=\lim _{n \rightarrow \infty} x_{n}$.

From $x_{n} \in T_{i}\left(x_{n-1}\right)$ we have that there exists $u_{n} \in T_{j}\left(x^{*}\right)$ such that

$$
d\left(x_{n}, u_{n}\right) \leq a_{i}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x^{*}, u_{n}\right)\right],
$$

for all $n \in \mathbb{N}^{*}$.
Using the triangle inequality we obtain

$$
d\left(x^{*}, u_{n}\right) \leq\left(1-a_{i}\right)^{-1}\left[d\left(x^{*}, x_{n}\right)+a_{i} d\left(x_{n-1}, x_{n}\right)\right],
$$

for all $n \in \mathbb{N}^{*}$.
This implies that $d\left(x^{*}, u_{n}\right) \rightarrow 0$, as $n \rightarrow \infty$. Since $u_{n} \in T_{j}\left(x^{*}\right)$, for all $n \in \mathbb{N}^{*}$ and $T_{j}\left(x^{*}\right)$ is a closed set, it follows that $x^{*} \in T_{j}\left(x^{*}\right)$. So $x^{*} \in F_{T_{j}}=F_{T_{i}}$.

It is not difficult to verify that
$d\left(x_{n}, x^{*}\right) \leq\left[a_{i}\left(1+a_{j}\right)\left(1-a_{i}\right)^{-1}\left(1-a_{j}\right)^{-1}\right]^{n}\left(1-a_{i}\right)\left(1-a_{j}\right) /\left(1-2 a_{i}-a_{j}\right) d\left(x_{0}, x_{1}\right)$,
for each $n \in \mathbb{N}$.
For $n=0$ we have

$$
d\left(x_{0}, x^{*}\right) \leq\left(1-a_{i}\right)\left(1-a_{j}\right) /\left(1-2 a_{i}-a_{j}\right) d\left(x_{0}, x_{1}\right),
$$

which means that T_{i} is c_{i}-w. P. m. o., with $c_{i}=\left(1-a_{i}\right)\left(1-a_{j}\right) /\left(1-2 a_{i}-a_{j}\right)$.

References

[1] A. Latif, I. Beg, Geometric fixed points for single and multivalued mappings, Demonstratio Math. 30(1997), 791-800.
[2] I. A. Rus, Approximation of common fixed point in a generalized metric space, Anal. Numér. Théor. Approx. 8(1979), 83-87.
[3] I. A. Rus, Basic problems of the metric fixed point theory revisited (II), Studia Univ. Babeş-Bolyai, Mathematica 36(1991), 81-99.
[4] I. A. Rus, Picard operators and applications, Seminar on Fixed Point Theory, "Babeş-Bolyai" Univ., Preprint Nr. 3(1996).
[5] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[6] I. A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed points set of multivalued weakly Picard operators, Studia Univ. Babeş-Bolyai, Mathematica, 46(2001), 111-121.
[7] I. A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis TMA 52(2003), 1947-1959.
[8] A. Sîntămărian, Common fixed point theorems for multivalued mappings, Seminar on Fixed Point Theory Cluj-Napoca, 1(2000), 93-102.
[9] A. SîntĂmărian, Picard pairs and weakly Picard pairs of operators, Studia Univ. Babeş-Bolyai, Mathematica, 47(2002), 89-103.
[10] A. SîntĂmĂRian, Weakly Picard pairs of multivalued operators, Mathematica, Tome 43(2003), to appear.

[^0]: *Department of Mathematics, Technical University of Cluj-Napoca, Str. C. Daicoviciu Nr. 15 3400 Cluj-Napoca, Romania, e-mail: Alina.Sintamarian@math.utcluj.ro

