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The series of thermal analysis measurements of high temperature phase transformations of real grain oriented elec-
trical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM) were 
carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis). The diff erent weight of 
samples was used (200 mg, 23 g). The stability/reproducibility of results obtained by used methodologies was veri-
fi ed. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 
80 °C/min) were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and 
end of solidifi cation process of studied steel grade.
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INTRODUCTION

Steel production is one of the most important indus-
tries. However, for a steel company to succeed in tough 
competition, it is necessary to constantly optimize the 
production process itself. The optimization should lead 
not only to improvement in the quality of the fi nal prod-
uct, but also to increase productivity and reduce overall 
production costs. The precise identifi cation of the par-
ticular physical and thermo-physical properties is the 
one of the possible methods of steel production optimi-
zation. Physical properties of substances in the course 
of reactions taking place in the operating conditions can 
often differ from theoretically determined (calculated/
tabulated) values. In this case, it is not possible to guar-
antee the optimal course of the optimization process. 
Improper process management, in the worst case, can 
also lead to signifi cant losses.

In the refi ning processes, optimizing the slag re-
gimes [1], thermal and chemical homogenization of the 
melt [2] or fi ltration of steel [3] is very important to 
solve. Works toward optimizing the process of solidifi -
cation of heavy forging ingots [4] are currently being 
implemented in the casting and solidifi cation of steel 
studies.

The methods of study of metallurgical processes are 
also based on knowledge of thermodynamic properties 
of materials occurring in a given technology nodes. 
Knowledge of solidus and liquidus temperatures of the 
studied steels is one of the most important factors - es-

pecially in dealing with the processes involved in the 
casting and solidifi cation. These temperatures are criti-
cal parameters for proper adjustment of models (physi-
cal or numerical) or in the fi nal stage of applied research 
of the real process. It is signifi cantly affecting the fi nal 
quality of the as-cast steel (billets or ingots).

Therefore, this paper is devoted to discussion of 
fi ndings obtained during the utilization of dynamic ther-
mal analysis methods [5-8] to identify the solidus and 
liquidus temperatures of selected steel grade. Generally, 
it is not so easy to identify the phase transformations 
occurring in such multicomponent systems like steels 
[9-12].

THERMAL ANALYSIS 
METHODS AND STEEL SAMPLES

New Laboratory for Modelling of Processes in the 
Liquid and Solid Phases within the project RMSTC was 
formed at the Faculty of Metallurgy and Materials En-
gineering at the VŠB-Technical University of Ostrava 
in Czech Republic.

This Laboratory has also acquired new equipment 
for high-temperature thermal analysis – Netzsch STA 
449 F3 Jupiter (Figure 1).

The conditions for initiation of intensive research 
activities in the fi eld of dynamic thermal analysis meth-
ods for steel are based on years of experience of team 
members with the issue of laboratory studies of metal-
lurgical processes and the ability to use other equipment 
of this type – Setaram SETSYS 18TM (Figure 2) create.

This paper discusses methods and results of thermal 
analysis of samples (Table 1) taken from the grain ori-
ented electrical steel, with very low carbon content 
(0,04 wt. %) and high content of [Si] = 3 wt. %. 
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Two methods for dynamic thermal analysis were 
used to measure the solidus (TS) and liquidus (TL) tem-
peratures:

•  Differential Thermal Analysis (DTA) – Setaram 
SETSYS 18TM,

•  Direct Thermal Analysis - Netzsch STA 449 F3 Ju-
piter.

The principles of both methods are described for ex-
ample in [13].

RESULTS AND DISCUSSION

Both above mentioned dynamic thermal analysis 
methods were used to determine the TS and TL close to 
equilibrium in the frame of studied grain oriented elec-
trical steel grade.

Three direct thermal analysis was realized on the big 
steel samples (about 23 g) and the TS and TL were ob-
tained by analysing of the heating curves (heating rate 
30 °C/min). The four measurements for close to equilib-
rium TS and TL temperatures were also realized by dif-
ferential thermal analysis on small steel samples (about 
200 mg) during their heating by heating rate 10 °C/min). 
Liquidus temperatures were then corrected according to 
generally accepted methods [14]. Measured TS and TL 
are summarized in the Table 2.

Based on data in the Table 2, it can be stated that 
there is low variability between individual results for 
close to equilibrium temperatures (standard deviations: 
2,5 °C for TS and 1,6 °C for TL) independently on used 

Figure 1 Netzsch STA 449 F3 Jupiter

Figure 2 Setaram SETSYS 18TM

Table 1 Steel samples with dimensions specifi ed for each analysis

Sample for method: NETZSCH STA 449 F3 Jupiter SETARAM Setsys 18TM

Dimensions:

Ø14 mm 

20
 

m
m

 

method and mass of samples. It means that methodolo-
gy of measurement is set correctly and results are fully 
reproducible. Based on mean values, the TS and TL were 
for selected steel grades were identifi ed: 1 479 °C and 
1 496 °C.

From the viewpoint of technology of continuous 
casting of studied steel grade, it should be useful to 
know the phase transformation temperatures during so-
lidifi cation process taking place under non equilibrium 
conditions – intensively cooled bloom caster and sec-
ondary cooling zone. The solidifi cation of continuously 
cast steel starts and ends under such non equilibrium 
conditions.

Thus, based on requirements of industrial partner, 
the TS and TL during cooling were studied. Differential 
thermal analysis on small steel samples was used (cool-
ing rates 20 and 80 °C/min) – Table 3. 

Table 2  Experimental settings and measured TS and TL for 
close to equilibrium conditions

Method, Measure-
ment No.

Sample 
mass / mg

Heating rate 
/ °C/min TS / °C TL / °C

Direct thermal, 1 22 913,3 30 1 476,0 1 496,7
Direct thermal, 2 23 691,2 30 1 475,3 1 497,0
Direct thermal, 3 23 539,4 30 1 477,8 1 493,4

DTA, 1 198,3 10 1 480,8 1 495,5
DTA, 2 206,4 10 1 481,1 1 495,9
DTA, 3 205,6 10 1 481,0 1 498,5
DTA, 4 207,9 10 1 480,5 1 496,4
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Table 3 shows that the fi nal values of TS and TL for 
twice repeated measurements for the same cooling rate 
are comparable. So, the results are fully reproducible.

Table 3  Experimental settings and measured TS and TL for 
non-equilibrium conditions (cooling)

Method, 
Measurement No.

Sample 
mass / mg

Cooling rate 
/ °C/min TS / °C TL / °C

DTA, 1 198,3 20 1 472,0 1 480,8

DTA, 2 206,4 20 1 471,6 1 483,8

DTA, mean 1, 2 --- 20 1 472 1 482

DTA, 3 205,6 80 1 465,0 1 480,3

DTA, 4 207,9 80 1 466,4 ---*

DTA, mean 3, 4 --- 80 1 466 1 480

* Unable to identify from cooling curve.

Figure 3 summarizes all determined TS and TL for 
studied steel.

The start of solidifi cation is very similar for both 
cooling rates and such TL are lower than TL for close to 
equilibrium conditions. But, non-equilibrium condi-
tions during cooling down the steel sample led to sig-
nifi cant differences between the slower and faster cool-
ing rates. Faster cooling down of the steel during its 
solidifi cation leads to the lower TS.

It can be seen (Figure 3) the decreasing the TL and TS 
for increasing cooling rate against the close to equilib-
rium conditions. These differences could be critical for 
correct setting of superheat of selected steel grade be-
fore its continuous casting.

CONCLUSION

The series of thermal analysis measurements of high 
temperature phase transformations of real grain oriented 
electrical steel grade under conditions of two analytical 
devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 
18TM) were carried out. Two thermo analytical methods 
were used (DTA and Direct thermal analysis). The cru-

cial temperatures (liquidus and solidus) for solidifi ca-
tion process under different heating/cooling conditions 
were studied.

It was shown that methodologies of both used meth-
ods are set correctly: results are reproducible and com-
parable for both used analytical devices for identifi ca-
tion of TL and TS close to equilibrium. These tempera-
tures were determined for studied steel grade:

TS = 1 479 °C; 
TL = 1 496 °C.
Focused on industrial conditions – continuous cast-

ing of steel, it could be useful for optimizing the super-
heat to identify the start and end of solidifi cation proc-
ess under different cooling rates. The DTA results for 
these non-equilibrium liquidus and solidus temperatures 
determination were used. These temperatures differ 
against equilibrium values.

Cooling rate 20 °C/min:
TL = 1 482 °C;
TS = 1 472 °C.
Cooling rate 80 °C/min:
TL = 1 480 °C;
TS = 1 466 °C.
Thermal analysis is very useful method for determi-

nation of high temperatures phase transformations in 
steel.
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