A-statistical approximation by Jayasri operators

NURHAYAT İSPİR*

Abstract. In this study we investigate the A- statistical approximation properties of a sequence of the Jayasri operators. Also we consider the degree of the A-statistical approximation of the sequence of these operators.

Key words: A-statistical convergence, positive linear operators, approximation, degree of approximation, Korovkin type theorem

AMS subject classifications: 41A25, 41A36

Received January 16, 2003 Ac

Accepted May 21, 2003

1. Introduction

The Jayasri matrix has been introduced and studied by C. Jayasri [10]. The Jayasri matrix is used to construct a sequence of positive linear operators which are called Jayasri operators by J.P. King in [11]. King has proved a Korovkin type theorem and investigated the approximation properties of these operators in [11].

Recently the use of A- statistical convergence in approximation theory has been considered in [2], [8].

The aim of this paper is to investigate a Korovkin type approximation theorem via A-statistical convergence in the space of continuous functions. Especially, using A-statistical convergence, we deal with the approximation properties of the Jayasri operators. We also give some quantitative estimates for A-statistical convergence of approximating operators generated by the Jayasri matrix.

In order to establish the next results, we recall some definitions and notations. Let K be a subset of \mathbb{N} , the set of natural numbers. The density of K is defined by $\delta(K) := \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \chi_{K}(k)$ provided limit exists, where χ_{K} is a characteristic function of K.

Let $A := (a_{jn}), j, n = 1, 2, ...,$ be an infinite summability matrix. For a given sequence $x := (x_n)$, the A-transform of x, denoted by $Ax := ((Ax)_i)$, is given by

$$(Ax)_j = \sum_{n=1}^{\infty} a_{jn} x_n,$$

^{*}Department of Mathematics, Gazi University, 06 500 Teknikokullar, Ankara, Turkey, e-mail: ${\tt nispir@gazi.edu.tr}$

provided the series converges for each j. We say that A is regular if $\lim_{j} (Ax)_{j} = L$ whenever $\lim_{j} x = L$ [9]. Suppose that A is a non-negative regular summability matrix. A sequence $x = (x_{n})$ is called A-statistically convergent to L if for every $\varepsilon > 0$

$$\lim_{j} \sum_{n: |x_n - L| > \varepsilon} a_{jn} = 0.$$

In this case we write $st_A - \lim x = L$ [4], [7], [12], [16].

The case in which $A = C_1$, the Cesáro matrix of order one, reduces to the statistical convergence [3], [5], [6]. Also if A = I, the identity matrix, then it reduces to the ordinary convergence.

We note that if $A = (a_{in})$ is a non-negative regular matrix such that

$$\lim_{j} \max_{n} \left\{ a_{jn} \right\} = 0,$$

then A-statistical convergence is stronger than convergence [12].

It should be noted that the concept of A-statistical convergence may also be given in normed spaces: Assume $(X, \|.\|)$ is a normed space and $u = (u_k)$ is an X-valued sequence. Then (u_k) is said to be A-statistically convergent to $u_0 \in X$ if, for every $\varepsilon > 0$, $\delta_A \{k \in \mathbf{N} : \|u_k - u_0\| \ge \varepsilon\} = 0$ [13], [14].

2. A-statistical approximation by Jayasri operators

Let $J = (q_{nk})$ be the matrix defined by

$$q_{00} = 1, q_{0k} = 0 \text{ for } k > 0,$$

and

$$\prod_{v=1}^{n} (f_v(z)h_v + 1 - h_v) = \sum_{k=0}^{\infty} q_{nk} z^k,$$
(1)

where $\{f_v\}$ is a sequence of entire functions and $\{h_v\}$ is a sequence of complex numbers. The matrix given by (1) is denoted by $J = J(f_v, h_v)$ and called the Jayasri matrix [10].

Another special case of the Jayasri matrix is the Euler matrix $A=(q_{nk})$ given by

$$q_{nk} = \begin{cases} \binom{n}{k} r^k (1-r)^{n-k}, \ 0 \le k \le n. \\ 0, & n < k. \end{cases}$$

where r is a complex constant. The Euler matrix appears in approximation theory as the kernel of the nth Bernstein polynomial $B_n(g)$, associated with a real function g defined on [0,1]. The Bernstein polynomial is defined by

$$B_n(g)(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} g\left(\frac{k}{n}\right), \ x \in [0,1].$$

It is well known that $\{B_n(g)\}$ is uniformly convergent to g if g is continuous on [0,1]. Therefore the Bernstein polynomials and indirectly the Euler matrix- provide a constructive proof of the classical Weierstrass approximation theorem. Approximation properties of the Jayasri operators generated by the Jayasri matrix which is a generalization of the Euler matrix are studied by J.P. King [11].

In order to study the approximation properties of the Jayasri operators we assume the following ([11]):

Let $J(f_v, h_v) = (q_{nk})$ be the Jayasri matrix and let

- i) f_v be an entire function for v = 1, 2, ...
- ii) $f_v(1) = 1, v = 1, 2, ...$
- iii) $f_v^{(k)}(0) \ge 0$, $v = 1, 2, \dots$ and $k = 0, 1, 2, \dots$
- iv) $h_v = h_v(x)$ be defined on [0, 1], v = 1, 2, ...
- v) $0 \le h_v(x) \le 1$, v = 1, 2, ... and $0 \le x \le 1$.

Then the generating functions in (1) will be given by

$$\prod_{v=1}^{n} (f_v(z)h_v(x) + 1 - h_v(x)) = \sum_{k=0}^{\infty} q_{nk}(x)z^k,$$
(2)

with $q_{nk}(x) \ge 0$, k = 0, 1, ..., n = 0, 1, ...

Let the sequences $\{f_v\}$ and $\{h_v\}$ be given as above. Fix $x \in [0,1]$ and let

$$P_n(z) = \prod_{v=1}^n \left(f_v(z) h_v(x) + 1 - h_v(x) \right). \tag{3}$$

The Jayasri operators are defined by

$$J_n(g)(x) = \sum_{k=0}^{\infty} q_{nk}(x)g\left(\frac{k}{n}\right), \quad n = 0, 1, \dots$$
 (4)

where $(q_{nk}(x))$ is given by (2) and g is a real valued function which is bounded on $[0, \infty)$ and continuous on [0, 1]. It is easily seen that the Jayasri operators defined by (4) are linear and positive.

As usual C[0,1] will denote the space of all continuous functions on [0,1]. Recall that C[0,1] is a Banach space with norm

$$||f||_{C[0,1]} = \max_{x \in [0,1]} |f(x)|.$$

In this section we give the A-statistical approximation properties of the Jayasri operators.

Lemma 1. Let $A = (a_{jn})$ be a non-negative regular summability matrix and let $\{J_n(g)\}$ be a sequence of the Jayasri operators defined by (4). If

(a)
$$st_A - \lim_n \left\| \frac{1}{n} \sum_{v=1}^n f'_v(1) h_v(x) - x \right\|_{C[0,1]} = 0,$$

(b)
$$st_A - \lim_n \left\| \frac{1}{n^2} \sum_{v=1}^n f_v^{''}(1) h_v(x) \right\|_{C[0,1]} = 0,$$

(c)
$$st_A - \lim_n \left\| \frac{1}{n^2} \sum_{v=1}^n \left(f'_v(1) h_v(x) \right)^2 \right\|_{C[0,1]} = 0$$

then

$$st_A - \lim_n ||J_n(e_s)(x) - e_s(x)||_{C[0,1]} = 0$$

where $e_s(x) = x^s$ and s = 0, 1, 2; and $\{f_v\}$, $\{h_v\}$ are the sequences satisfying (i)-(iii) and (iv)-(v), respectively.

Proof. The operators J_n defined by (4) are linear and positive because of (iii) and (iv) $J_n(g) \ge 0$ whenever $g \ge 0$.

Obviously that $P_n(1) = 1$ from (3). By (2) and (3) we get

$$J_n(e_0)(x) = 1 = e_0(x).$$

Hence we have

$$st_A - \lim_n \|J_n(e_0)(x) - e_0(x)\|_{C[0,1]} = 0.$$

Considering (3) we write

$$\log P_n(z) = \sum_{v=1}^n \log (f_v(z)h_v(x) + 1 - h_v(x))$$

so that

$$P'_{n}(z) = P_{n}(z) \sum_{v=1}^{n} \frac{f'_{v}(z)h_{v}(x)}{f_{v}(z)h_{v}(x) + 1 - h_{v}(x)}$$
(5)

when the differentiation is with respect to z.

From (2) we have

$$P'_{n}(z) = \sum_{k=0}^{\infty} kq_{nk}(x)z^{k-1}$$

and

$$J_n(e_1)(x) = \sum_{k=0}^{\infty} q_{nk}(x) \frac{k}{n} = \frac{1}{n} P'_n(1)$$

or

$$J_n(e_1)(x) = \frac{1}{n} \sum_{v=1}^n f_v'(1) h_v(x).$$

By condition (a) we obtain

$$st_A - \lim_n \|J_n(e_1)(x) - e_1(x)\|_{C[0,1]} = st_A - \lim_n \left\| \frac{1}{n} \sum_{v=1}^n f_v'(1)h_v(x) - x \right\|_{C[0,1]} = 0.$$

Since

$$J_n(e_2)(x) = \frac{1}{n^2} \sum_{k=0}^{\infty} k^2 q_{nk}(x)$$

and

$$\sum_{k=0}^{\infty} k^{2} q_{nk}(x) = P_{n}^{''}(1) + P_{n}^{'}(1)$$

we get

$$J_n(e_2)(x) = \frac{1}{n^2} \left(P_n^{''}(1) + P_n^{'}(1) \right).$$

Now (5) yields

$$P_{n}^{'}(1) = P_{n}^{'}(1) \sum_{v=1}^{n} f_{v}^{'}(1) h_{v}(x) + \sum_{v=1}^{n} f_{v}^{'}(1) h_{v}(x) - \sum_{v=1}^{n} \left(f_{v}^{'}(1) h_{v}(x) \right)^{2}.$$

Hence

$$|J_{n}(e_{2})(x) - e_{2}(x)| \leq \left| \left(\sum_{v=1}^{n} f_{v}^{'}(1)h_{v}(x) \right)^{2} - x^{2} \right| + \frac{1}{n^{2}} \sum_{v=1}^{n} f_{v}^{''}(1)h_{v}(x)$$

$$+ \frac{1}{n^{2}} \sum_{v=1}^{n} \left(f_{v}^{'}(1)h_{v}(x) \right)^{2} + \frac{1}{n} \left| \frac{1}{n} \sum_{v=1}^{n} f_{v}^{'}(1)h_{v}(x) - x \right| + \frac{1}{n}x$$

$$= S_{1}(n) + S_{2}(n) + S_{3}(n) + S_{4}(n) + \frac{1}{n}x, \text{ say.}$$

$$(6)$$

Now, for a given $\varepsilon > 0$ define

$$U = \left\{ n : S_1(n) + S_2(n) + S_3(n) + S_4(n) + \frac{1}{n}x \ge \varepsilon \right\},$$

$$U_1 = \left\{ n : S_1(n) \ge \frac{\varepsilon}{5} \right\}, \quad U_2 = \left\{ n : S_2(n) \ge \frac{\varepsilon}{5} \right\},$$

$$U_3 = \left\{ n : S_3(n) \ge \frac{\varepsilon}{5} \right\}, \quad U_4 = \left\{ n : S_4(n) \ge \frac{\varepsilon}{5} \right\},$$

$$U_5 = \left\{ n : \frac{1}{n} \ge \frac{\varepsilon}{5} \right\}.$$

It is easy to see that $U \subseteq U_1 \cup U_2 \cup U_3 \cup U_4 \cup U_5$. Therefore by (6) we have

$$\sum_{n:\,|J_n(e_2)(x)-e_2(x)|\geq \varepsilon} a_{jn} \leq \sum_{n\in U} a_{jn} \leq \sum_{n\in U_1} a_{jn} + \sum_{n\in U_2} a_{jn} + \sum_{n\in U_3} a_{jn} + \sum_{n\in U_3} a_{jn} + \sum_{n\in U_4} a_{jn} + \sum_{n\in U_5} a_{jn}.$$

Taking limit as $j \to \infty$, conditions (a)-(c) give the result. We note that since $\frac{1}{n} \to 0 \ (n \to \infty), \ st_A - \lim_n \frac{1}{n} = 0.$

Now using $Lemma\ 1$ we have the following Korovkin type theorem for the sequence $\{J_n\}$ of the operators given by (4). Recall that some results on approximation properties of positive linear operators may be found in [1], [15].

Theorem 1. Let $A = (a_{jn})$ be a non-negative regular summability matrix. If

$$st_A - \lim_{n} ||J_n(e_s)(x) - e_s(x)||_{C[0,1]} = 0, \ s = 0, 1, 2$$
 (7)

then

$$st_A - \lim_n ||J_n(g)(x) - g(x)||_{C[0,1]} = 0$$

for every function $g \in C[0,1]$ which is bounded on $[0,\infty)$.

Proof. From Lemma 1 we have conditions (7). So the result follows from Theorem 1 in [8] (see also [2]). We note that Theorem 1 in [8] is given for statistical convergence but the proof also works for A-statistical convergence. \Box

If we take A = I, the identity matrix, then we have Theorem 2.1 in [11]. We recall that Theorem 2.1 deals with pointwise convergence of $\{J_n(g)\}$ to g but Theorem 2.1 also gives uniform convergence provided the convergence hypotheses hold uniformly.

Corollary 1. If $0 \le f_v^{'}(1) \le f_v^{'}(1) \le 1$, v = 1, 2, ..., in addition to (i), (ii), (iii) and (iv), then

$$st_A - \lim_{n} ||J_n(g)(x) - g(x)||_{C[0,1]} = 0$$

for $x \in [0,1]$ provided only

(a)
$$st_A - \lim_n \left\| \frac{1}{n} \sum_{v=1}^n f_v'(1) h_v(x) - x \right\|_{C[0,1]} = 0.$$

Proof. Since $0 \le f_v^{''}(1) \le f_v^{'}(1) \le 1, \ v = 1, 2, ...$ we write

$$0 \le \frac{1}{n^2} \sum_{v=1}^n f_v^{''}(1) h_v(x) \le \frac{1}{n^2} \sum_{v=1}^n f_v^{'}(1) h_v(x) = \frac{1}{n} \left(\frac{1}{n} \sum_{v=1}^n f_v^{'}(1) h_v(x) - x \right) + \frac{1}{n} x. \tag{8}$$

For a given $\varepsilon > 0$ define

$$U = \left\{ n : \frac{1}{n^2} \sum_{v=1}^n f_v^{'}(1) h_v(x) \ge \varepsilon \right\}$$

$$U_1 = \left\{ n : \frac{1}{n} \left(\frac{1}{n} \sum_{v=1}^n f_v^{'}(1) h_v(x) - x \right) \ge \varepsilon/2 \right\}$$

$$U_2 = \left\{ n : \frac{1}{n} x \ge \varepsilon/2 \right\}.$$

Since $U \subset U_1 \cup U_2$, (8) implies that

$$\sum_{n\in U}a_{jn}\leq \sum_{n\in U_1}a_{jn}+\sum_{n\in U_2}a_{jn}.$$

Taking limit as $j \to \infty$ we obtain

$$st_A - \lim_n \left\| \frac{1}{n^2} \sum_{v=1}^n f_v^{''}(1) h_v(x) \right\|_{C[0,1]} = 0.$$

Thus hypothesis (b) of Lemma 1 holds. Also we have

$$0 \le \frac{1}{n^2} \sum_{v=1}^{n} \left(f_v'(1) h_v(x) \right)^2 \le \frac{1}{n^2} \sum_{v=1}^{n} f_v'(1) h_v(x).$$

So hypothesis (c) of Lemma 1 also holds and the corollary is proved.

Corollary 2. If $f'_v(1) = 1$, $v = 1, 2, ..., \{f'_v(1)\}$ is a bounded sequence and if (i), (ii), (iii) and (iv) hold then

$$st_A - \lim_n ||J_n(g)(x) - g(x)||_{C[0,1]} = 0$$

provided

$$st_A - \lim_n \frac{1}{n} \sum_{v=1}^n h_v(x) = x, \ x \in [0, 1].$$
 (9)

Proof. From (9) and $f'_v(1) = 1$, v = 1, 2, ... we get condition (a) of Lemma 1. Since $\{f''_v(1)\}$ is a bounded sequence there exists some M such that $|f''_v(1)| \leq M$ so that by (9)

$$0 \le st_A - \lim_n \frac{1}{n^2} \sum_{v=1}^n f_v^{\prime\prime}(1) h_v(x) \le st_A - \lim_n M \frac{1}{n^2} \sum_{v=1}^n h_v(x) = 0.$$

Hence (b) and similarly (c) hold. Therefore the hypotheses of $Lemma\ 1$ hold and so $Corollary\ 2$ is proved.

Remark 1. We now present an example of a sequence of positive linear operators satisfying the conditions of Theorem 1 but that does not satisfy the conditions of Theorem 2.1 of King [11].

Assume now that $\{u_n\}$ is an A-statistically null sequence but not convergent. Notice that, if $A = (a_{jn})$ is a non-negative regular matrix such that $\lim_{j \to n} \max_{n} \{a_{jn}\} = 0$, then A-statistical convergence is stronger than convergence [12]. Without loss of generality we may assume that $\{u_n\}$ is non-negative; otherwise we would replace $\{u_n\}$ by $\{|u_n|\}$. Now define $\{P_n\}$ on C[0,1] by

$$P_n(g)(x) = (1 + u_n)J_n(g)(x)$$

where $\{J_n\}$ is the sequence of Jayasri operators. Now observe that $\{J_n\}$ being convergent and $\{u_n\}$ being A-statistical null, their product will also be A-statistical null. Hence $\{P_n\}$ will not be convergent to g but A-statistically convergent to g.

3. Degree of A-statistical approximation

The modulus of continuity of the function f in C[0,1] is defined as

$$\omega(f, \delta) = \sup_{|x-y| < \delta} |f(x) - f(y)|, \ x, y \in [0, 1].$$

It is well known that a necessary and sufficient condition for a function $f \in C\left[0,1\right]$ is

$$\lim_{\delta \to 0} \omega(f, \delta) = 0.$$

It is also well known that for any constant $\lambda > 0, \ \delta > 0$

$$\omega(f, \lambda \delta) \le (1 + \lambda)\omega(f, \delta). \tag{10}$$

Let $A = (a_{nk})$ be a non-negative regular summability matrix and let (a_n) be a positive non-increasing sequence. Following [2] we say that the sequence $x = (x_k)$ is A-statistical convergent to number L with the rate of $o(a_n)$ if for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{a_n} \sum_{k: |x_k - L| > \varepsilon} a_{nk} = 0.$$

In this case we write

$$x_k - L = st_A - o(a_n), \text{ (as } k \to \infty).$$

The following Lemma may be found in [2], but it could also be proved directly. **Lemma 2 [2].** Let $x = (x_k)$ and $y = (y_k)$ be two sequences. Assume that $A = (a_{nk})$ is a non-negative regular summability matrix. Let (a_n) and (b_n) be positive non-increasing sequences. If for some real numbers L_1 , L_2 , we have $x_k - L_1 = st_A - o(a_k)$ and $y_k - L = st_A - o(b_k)$ as $k \to \infty$, then the following holds:

(I)
$$(x_k - L_1) \pm (y_k - L_2) = st_A - o(c_k)$$

(II)
$$(x_k - L_1)(y_k - L_2) = st_A - o(c_k)$$
, where $c_n = \max\{a_n, b_n\}$.

Now we find the degree of A-statistical approximation for the sequence of positive linear operators $\{J_n\}$ given by (4).

Theorem 2. Let $A = (a_{jn})$ be a non-negative regular summability matrix. If the sequence of positive linear operators $\{J_n\}$ satisfies the conditions

(a)
$$J_n(e_0)(x) - e_0(x) = st_A - o(a_n(x))$$
 with $e_0(x) = 1$,

(b)
$$\omega(g;\alpha_n(x)) = st_A - o(b_n(x))$$
 with $\alpha_n(x) = \sqrt{J_n(\varphi_x(y))}$ and $\varphi_x(y) = (y-x)^2$,

where $(a_n(x))$ and $(b_n(x))$ are non-increasing sequences, then

$$J_n(g)(x) - g(x) = st_A - o(c_n(x))$$

where $c_n(x) = \max \{a_n(x), b_n(x)\}.$

Proof. Considering (10) we can write

$$|J_n(g)(x) - g(x)| \le \sum_{k=0}^{\infty} q_{nk}(x) \left| (g) \left(\frac{k}{n} \right) - g(x) \right|$$

$$\le \omega(g; \delta_n) \sum_{k=0}^{\infty} q_{nk}(x) \left[1 + \frac{\left| \frac{k}{n} - x \right|}{\delta_n} \right]$$

$$= \omega(g; \delta_n) \left[J_n(e_0)(x) + \frac{1}{\delta_n} \sum_{k=0}^{\infty} q_{nk}(x) \left| \frac{k}{n} - x \right| \right].$$

Applying the Cauchy-Schwartz inequality to $\sum_{k=0}^{\infty} q_{nk}(x) \left| \frac{k}{n} - x \right|$ we obtain

$$|J_n(g)(x) - g(x)| \le \omega(g; \delta_n) \left[J_n(e_0)(x) + \frac{1}{\delta_n} \left(\sum_{k=0}^{\infty} q_{nk}(x) \left(\frac{k}{n} - x \right)^2 \right)^{1/2} \right]$$
$$= \omega(g; \delta_n) \left[J_n(e_0)(x) + \frac{1}{\delta_n} \sqrt{J_n((y-x)^2)(x)} \right].$$

Choosing $\delta_n = \sqrt{J_n((y-x)^2)(x)} = \alpha_n(x)$ we have

$$|J_n(g)(x) - g(x)| \le \omega(g; \alpha_n(x)) [J_n(e_0)(x) + 1]$$

$$\le 2\omega(g; \alpha_n(x)) + \omega(g; \alpha_n(x)) |J_n(e_0)(x) - (e_0)(x)|.$$

This implies that

$$\frac{1}{c_n(x)} \sum_{n: |J_n(g)(x) - g(x)| \ge \varepsilon} a_{jn} \le \frac{1}{b_n(x)} \sum_{n: 2\omega(g; \alpha_n(x)) \ge \varepsilon/2} a_{jn} + \frac{1}{c_n(x)} \sum_{n: \omega(g; \alpha_n(x)) |J_n(e_0)(x) - (e_0)(x)| \ge \varepsilon/2} a_{jn}.$$

Now conditions (a), (b) and Lemma 2 yield the proof.

References

- [1] F. Altomare, M. Campiti, Korovkin Type Approximation theory and its Application, Walter de Gryter Publ. Berlin, 1994.
- [2] O. Duman, M. K. Khan, C. Orhan, A-statistical convergence of approximating operators, Math. Ineq. Appl., submitted for publication.
- [3] H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
- [4] A. R. Freedman, J. J. Sember, *Densities and summability*, Pacific J. Math. **95**(1981), 293-305.
- [5] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.

- [6] J. A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125(1997), 3625-3631.
- [7] J. A. Fridy, H. L. Miller, A matrix characterization of statistical convergence, Analysis 11(1991), 59-66.
- [8] A. D. Gadjiev, C. Orhan, Some Approximation theorems via statistical convergence, Rocky Mountain J. Math. **32**(2002), 129-138.
- [9] G. H. HARDY, Divergent series, Oxford Univ. Press, London, 1949.
- [10] C. Jayasri, On generalized Lototsky summability, Indian J. Pure Apll. Math. 13(1982), 795-805.
- [11] J. P. King, *Jayasri summability*, Indian J. Pure Apll. Math. 33(2002), 797-806.
- [12] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13(1993), 77-83.
- [13] E. Kolk, Statistically convergent sequences in normed spaces, Reports of convergence, in: Methods of algebra and analysis, Tartu, 1998, 63-66.
- [14] E. Kolk, *The statistical convergence in Banach spaces*, Acta Et Commentationes Tartuensis **928**(1991), 41-52.
- [15] P. P. KOROVKIN, Linear operators and Theory of Approximation, India, New Delhi, 1960.
- [16] H. I. MILLER, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347(1995), 1811-1819.