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A-statistical approximation by Jayasri operators

Nurhayat İspi̇r∗

Abstract. In this study we investigate the A- statistical approxima-
tion properties of a sequence of the Jayasri operators. Also we consider
the degree of the A-statistical approximation of the sequence of these
operators.

Key words: A-statistical convergence, positive linear operators, ap-
proximation, degree of approximation, Korovkin type theorem

AMS subject classifications: 41A25, 41A36

Received January 16, 2003 Accepted May 21, 2003

1. Introduction

The Jayasri matrix has been introduced and studied by C. Jayasri [10]. The Jayasri
matrix is used to construct a sequence of positive linear operators which are called
Jayasri operators by J.P. King in [11]. King has proved a Korovkin type theorem
and investigated the approximation properties of these operators in [11].

Recently the use of A- statistical convergence in approximation theory has been
considered in [2], [8].

The aim of this paper is to investigate a Korovkin type approximation theorem
via A-statistical convergence in the space of continuous functions. Especially, using
A-statistical convergence, we deal with the approximation properties of the Jayasri
operators. We also give some quantitative estimates for A-statistical convergence
of approximating operators generated by the Jayasri matrix.

In order to establish the next results, we recall some definitions and notations.
Let K be a subset of N, the set of natural numbers. The density of K is defined

by δ(K) := lim
n

1
n

n∑
k=1

χK(k) provided limit exists, where χK is a characteristic

function of K.
Let A := (ajn), j, n = 1, 2, ..., be an infinite summability matrix. For a given

sequence x := (xn), the A-transform of x, denoted by Ax := ((Ax)j) , is given by

(Ax)j =
∞∑

n=1

ajnxn,
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provided the series converges for each j. We say that A is regular if lim
j
(Ax)j = L

whenever limx = L [9]. Suppose that A is a non-negative regular summability
matrix. A sequence x = (xn) is called A-statistically convergent to L if for every
ε > 0

lim
j

∑
n: |xn−L|≥ε

ajn = 0.

In this case we write stA − limx = L [4], [7], [12], [16].
The case in which A = C1, the Cesáro matrix of order one, reduces to the

statistical convergence [3], [5], [6]. Also if A = I, the identity matrix, then it
reduces to the ordinary convergence.

We note that if A = (ajn) is a non-negative regular matrix such that

lim
j

max
n

{ajn} = 0,

then A-statistical convergence is stronger than convergence [12].
It should be noted that the concept of A-statistical convergence may also be

given in normed spaces: Assume (X, ‖.‖) is a normed space and u = (uk) is an
X-valued sequence. Then (uk) is said to be A-statistically convergent to u0 ∈ X if,
for every ε > 0, δA {k ∈ N : ‖uk − u0‖ ≥ ε} = 0 [13], [14].

2. A-statistical approximation by Jayasri operators

Let J = (qnk) be the matrix defined by

q00 = 1, q0k = 0 for k > 0,

and
n∏

v=1

(fv(z)hv + 1− hv) =
∞∑

k=0

qnkz
k, (1)

where {fv} is a sequence of entire functions and {hv} is a sequence of complex
numbers. The matrix given by (1) is denoted by J = J(fv, hv) and called the
Jayasri matrix [10].

Another special case of the Jayasri matrix is the Euler matrix A = (qnk) given
by

qnk =



(
n
k

)
rk(1− r)n−k, 0 ≤ k ≤ n.

0, n < k.

where r is a complex constant. The Euler matrix appears in approximation theory
as the kernel of the nth Bernstein polynomial Bn(g), associated with a real function
g defined on [0, 1] . The Bernstein polynomial is defined by

Bn(g)(x) =
n∑

k=0

(
n
k

)
xk(1− x)n−kg

(
k

n

)
, x ∈ [0, 1] .
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It is well known that {Bn(g)} is uniformly convergent to g if g is continuous on
[0, 1] . Therefore the Bernstein polynomials and indirectly the Euler matrix- provide
a constructive proof of the classical Weierstrass approximation theorem. Approxi-
mation properties of the Jayasri operators generated by the Jayasri matrix which
is a generalization of the Euler matrix are studied by J.P. King [11].

In order to study the approximation properties of the Jayasri operators we as-
sume the following ([11]):

Let J(fv, hv) = (qnk) be the Jayasri matrix and let

i) fv be an entire function for v = 1, 2, ...

ii) fv(1) = 1, v = 1, 2, ...

iii) f
( k)
v (0) ≥ 0, v = 1, 2, ... and k = 0, 1, 2, ...

iv) hv = hv(x) be defined on [0, 1] , v = 1, 2, ...

v) 0 ≤ hv(x) ≤ 1, v = 1, 2, ... and 0 ≤ x ≤ 1.

Then the generating functions in (1) will be given by

n∏
v=1

(fv(z)hv(x) + 1− hv(x)) =
∞∑

k=0

qnk(x)zk, (2)

with qnk(x) ≥ 0, k = 0, 1, ..., n = 0, 1, ....
Let the sequences {fv} and {hv} be given as above. Fix x ∈ [0, 1] and let

Pn(z) =
n∏

v=1

(fv(z)hv(x) + 1− hv(x)) . (3)

The Jayasri operators are defined by

Jn(g)(x) =
∞∑

k=0

qnk(x)g
(
k

n

)
, n = 0, 1, ... (4)

where (qnk(x)) is given by (2) and g is a real valued function which is bounded on
[0,∞) and continuous on [0, 1] . It is easily seen that the Jayasri operators defined
by (4) are linear and positive.

As usual C [0, 1] will denote the space of all continuous functions on [0, 1] . Recall
that C [0, 1] is a Banach space with norm

‖f‖C[0,1] = max
x∈[0,1]

|f(x)| .

In this section we give the A-statistical approximation properties of the Jayasri
operators.

Lemma 1. Let A = (ajn) be a non-negative regular summability matrix and let
{Jn(g)} be a sequence of the Jayasri operators defined by (4). If



88 N. İspi̇r

(a) stA − lim
n

∥∥∥∥ 1
n

n∑
v=1

f
′
v(1)hv(x)− x

∥∥∥∥
C[0,1]

= 0,

(b) stA − lim
n

∥∥∥∥ 1
n2

n∑
v=1

f
′ ′
v (1)hv(x)

∥∥∥∥
C[0,1]

= 0,

(c) stA − lim
n

∥∥∥∥ 1
n2

n∑
v=1

(
f

′
v(1)hv(x)

)2
∥∥∥∥

C[0,1]

= 0

then
stA − lim

n
‖Jn(es)(x) − es(x)‖C[0,1] = 0

where es(x) = xs and s = 0, 1, 2; and {fv}, {hv} are the sequences satisfying (i)-(iii)
and (iv)-(v), respectively.

Proof. The operators Jn defined by (4) are linear and positive because of (iii)
and (iv) Jn(g) ≥ 0 whenever g ≥ 0.

Obviously that Pn(1) = 1 from (3). By (2) and (3) we get

Jn(e0)(x) = 1 = e0(x).

Hence we have
stA − lim

n
‖Jn(e0)(x) − e0(x)‖C[0,1] = 0.

Considering (3) we write

logPn(z) =
n∑

v=1

log (fv(z)hv(x) + 1− hv(x))

so that

P
′
n(z) = Pn(z)

n∑
v=1

f
′
v(z)hv(x)

fv(z)hv(x) + 1− hv(x)
(5)

when the differentiation is with respect to z.
From (2) we have

P
′
n(z) =

∞∑
k=0

kqnk(x)zk−1

and

Jn(e1)(x) =
∞∑

k=0

qnk(x)
k

n
=

1
n
P

′
n(1)

or

Jn(e1)(x) =
1
n

n∑
v=1

f
′
v(1)hv(x).

By condition (a) we obtain

stA − lim
n

‖Jn(e1)(x) − e1(x)‖C[0,1] = stA − lim
n

∥∥∥∥∥ 1n
n∑

v=1

f
′
v (1)hv(x) − x

∥∥∥∥∥
C[0,1]

= 0.
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Since

Jn(e2)(x) =
1
n2

∞∑
k=0

k2qnk(x)

and ∞∑
k=0

k2qnk(x) = P
′ ′
n (1) + P

′
n(1)

we get

Jn(e2)(x) =
1
n2

(
P

′ ′
n (1) + P

′
n(1)

)
.

Now (5) yields

P
′ ′
n (1) = P

′
n(1)

n∑
v=1

f
′
v (1)hv(x) +

n∑
v=1

f
′ ′
v (1)hv(x)−

n∑
v=1

(
f

′
v(1)hv(x)

)2

.

Hence

|Jn(e2)(x) − e2(x)| ≤
∣∣∣∣∣∣
(

n∑
v=1

f
′
v (1)hv(x)

)2

− x2

∣∣∣∣∣∣+
1
n2

n∑
v=1

f
′ ′
v (1)hv(x)

+
1
n2

n∑
v=1

(
f

′
v(1)hv(x)

)2

+
1
n

∣∣∣∣∣ 1n
n∑

v=1

f
′
v (1)hv(x) − x

∣∣∣∣∣+ 1
n
x

= S1(n) + S2(n) + S3(n) + S4(n) +
1
n
x, say. (6)

Now, for a given ε > 0 define

U =
{
n : S1(n) + S2(n) + S3(n) + S4(n) +

1
n
x ≥ ε

}
,

U1 =
{
n : S1(n) ≥ ε

5

}
, U2 =

{
n : S2(n) ≥ ε

5

}
,

U3 =
{
n : S3(n) ≥ ε

5

}
, U4 =

{
n : S4(n) ≥ ε

5

}
,

U5 =
{
n :

1
n
≥ ε

5

}
.

It is easy to see that U ⊆ U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5. Therefore by (6) we have∑
n: |Jn(e2)(x)−e2(x)|≥ε

ajn ≤
∑
n∈U

ajn ≤
∑

n∈U1

ajn +
∑

n∈U2

ajn

+
∑

n∈U3

ajn +
∑

n∈U4

ajn +
∑

n∈U5

ajn.

Taking limit as j → ∞, conditions (a)-(c) give the result. We note that since
1
n → 0 (n → ∞), stA − lim

n

1
n = 0. ✷
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Now using Lemma1 we have the following Korovkin type theorem for the se-
quence {Jn} of the operators given by (4). Recall that some results on approxima-
tion properties of positive linear operators may be found in [1], [15].

Theorem 1. Let A = (ajn) be a non-negative regular summability matrix. If

stA − lim
n

‖Jn(es)(x) − es(x)‖C[0,1] = 0, s = 0, 1, 2 (7)

then
stA − lim

n
‖Jn(g)(x) − g(x)‖C[0,1] = 0

for every function g ∈ C [0, 1] which is bounded on [0,∞) .
Proof. From Lemma 1 we have conditions (7). So the result follows from The-

orem 1 in [8] (see also [2] ). We note that Theorem 1 in [8] is given for statistical
convergence but the proof also works for A-statistical convergence. ✷

If we takeA = I, the identity matrix, then we have Theorem2.1 in [11]. We recall
that Theorem2.1 deals with pointwise convergence of {Jn(g)} to g but Theorem2.1
also gives uniform convergence provided the convergence hypotheses hold uniformly.

Corollary 1. If 0 ≤ f
′ ′
v (1) ≤ f

′
v(1) ≤ 1, v = 1, 2, ..., in addition to (i), (ii),

(iii) and (iv), then

stA − lim
n

‖Jn(g)(x) − g(x)‖C[0,1] = 0

for x ∈ [0, 1] provided only

(a) stA − lim
n

∥∥∥∥∥ 1n
n∑

v=1

f
′

v (1)hv(x) − x

∥∥∥∥∥
C[0,1]

= 0.

Proof. Since 0 ≤ f
′ ′
v (1) ≤ f

′
v(1) ≤ 1, v = 1, 2, ... we write

0 ≤ 1
n2

n∑
v=1

f
′ ′
v (1)hv(x) ≤ 1

n2

n∑
v=1

f
′
v (1)hv(x) =

1
n

( 1
n

n∑
v=1

f
′
v (1)hv(x)− x

)
+

1
n
x. (8)

For a given ε > 0 define

U =

{
n :

1
n2

n∑
v=1

f
′ ′
v (1)hv(x) ≥ ε

}

U1 =

{
n :

1
n

(
1
n

n∑
v=1

f
′
v (1)hv(x) − x

)
≥ ε/2

}

U2 =
{
n :

1
n
x ≥ ε/2

}
.

Since U ⊂ U1 ∪ U2, (8) implies that∑
n∈U

ajn ≤
∑

n∈U1

ajn +
∑

n∈U2

ajn.
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Taking limit as j → ∞ we obtain

stA − lim
n

∥∥∥∥∥ 1
n2

n∑
v=1

f
′ ′
v (1)hv(x)

∥∥∥∥∥
C[0,1]

= 0.

Thus hypothesis (b) of Lemma 1 holds. Also we have

0 ≤ 1
n2

n∑
v=1

(
f

′
v(1)hv(x)

)2

≤ 1
n2

n∑
v=1

f
′
v(1)hv(x).

So hypothesis (c) of Lemma1 also holds and the corollary is proved. ✷

Corollary 2. If f
′
v(1) = 1, v = 1, 2, ...,

{
f

′ ′
v (1)

}
is a bounded sequence and if

(i), (ii), (iii) and (iv) hold then

stA − lim
n

‖Jn(g)(x) − g(x)‖C[0,1] = 0

provided

stA − lim
n

1
n

n∑
v=1

hv(x) = x, x ∈ [0, 1] . (9)

Proof. From (9) and f
′
v(1) = 1, v = 1, 2, ... we get condition (a) of Lemma1.

Since
{
f

′ ′
v (1)

}
is a bounded sequence there exists some M such that

∣∣∣f ′ ′
v (1)

∣∣∣ ≤ M

so that by (9)

0 ≤ stA − lim
n

1
n2

n∑
v=1

f
′ ′
v (1)hv(x) ≤ stA − lim

n
M

1
n2

n∑
v=1

hv(x) = 0.

Hence (b) and similarly (c) hold. Therefore the hypotheses of Lemma 1 hold and
so Corollary 2 is proved. ✷

Remark 1. We now present an example of a sequence of positive linear opera-
tors satisfying the conditions of Theorem1 but that does not satisfy the conditions
of Theorem 2.1 of King [11].

Assume now that {un} is an A-statistically null sequence but not convergent.
Notice that, if A = (ajn) is a non-negative regular matrix such that lim

j
max

n
{ajn} =

0, then A-statistical convergence is stronger than convergence [12]. Without loss of
generality we may assume that {un} is non-negative; otherwise we would replace
{un} by {|un|} . Now define {Pn} on C [0, 1] by

Pn(g)(x) = (1 + un)Jn(g)(x)

where {Jn} is the sequence of Jayasri operators. Now observe that {Jn} being
convergent and {un} being A-statistical null, their product will also be A-statistical
null. Hence {Pn} will not be convergent to g but A-statistically convergent to g.
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3. Degree of A-statistical approximation

The modulus of continuity of the function f in C [0, 1] is defined as

ω(f, δ) = sup
|x−y|<δ

|f(x)− f(y)| , x, y ∈ [0, 1] .

It is well known that a necessary and sufficient condition for a function f ∈ C [0, 1]
is

lim
δ→0

ω(f, δ) = 0.

It is also well known that for any constant λ > 0, δ > 0

ω(f, λδ) ≤ (1 + λ)ω(f, δ). (10)

Let A = (ank) be a non-negative regular summability matrix and let (an) be a
positive non-increasing sequence. Following [2] we say that the sequence x = (xk)
is A-statistical convergent to number L with the rate of o(an) if for every ε > 0,

lim
n

1
an

∑
k: |xk−L|≥ε

ank = 0.

In this case we write

xk − L = stA − o(an), (as k → ∞).

The following Lemma may be found in [2], but it could also be proved directly.
Lemma 2 [2]. Let x = (xk) and y = (yk) be two sequences. Assume that A =

(ank) is a non-negative regular summability matrix. Let (an) and (bn) be positive
non-increasing sequences. If for some real numbers L1, L2, we have xk − L1 =
stA − o(ak) and yk − L = stA − o(bk) as k → ∞, then the following holds:

(I) (xk − L1)± (yk − L2) = stA − o(ck)

(II) (xk − L1) ( yk − L2) = stA − o(ck), where cn = max {an,bn} .
Now we find the degree of A-statistical approximation for the sequence of posi-

tive linear operators {Jn} given by (4).
Theorem 2. Let A = (ajn) be a non-negative regular summability matrix. If

the sequence of positive linear operators {Jn} satisfies the conditions

(a) Jn(e0)(x) − e0(x) = stA − o(an(x)) with e0(x) = 1,

(b) ω(g;αn(x)) = stA−o(bn(x)) with αn(x) =
√

Jn(ϕx(y)) and ϕx(y) = (y−x)2,

where (an(x)) and (bn(x)) are non-increasing sequences, then

Jn(g)(x)− g(x) = stA − o(cn(x))

where cn(x) = max {an(x), bn(x)} .
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Proof. Considering (10) we can write

|Jn(g)(x) − g(x)| ≤
∞∑

k=0

qnk(x)
∣∣∣∣(g)

(
k

n

)
− g(x)

∣∣∣∣
≤ ω(g; δn)

∞∑
k=0

qnk(x)

[
1 +

∣∣ k
n − x

∣∣
δn

]

= ω(g; δn)

[
Jn(e0)(x) +

1
δn

∞∑
k=0

qnk(x)
∣∣∣∣ kn − x

∣∣∣∣
]
.

Applying the Cauchy-Schwartz inequality to
∞∑

k=0

qnk(x)
∣∣ k

n − x
∣∣ we obtain

|Jn(g)(x) − g(x)| ≤ ω(g; δn)


Jn(e0)(x) +

1
δn

( ∞∑
k=0

qnk(x)
(
k

n
− x

)2
)1/2




= ω(g; δn)
[
Jn(e0)(x) +

1
δn

√
Jn((y − x)2)(x)

]
.

Choosing δn =
√

Jn((y − x)2)(x) = αn(x) we have

|Jn(g)(x) − g(x)| ≤ ω(g;αn(x)) [Jn(e0)(x) + 1]
≤ 2ω(g;αn(x)) + ω(g;αn(x)) |Jn(e0)(x)− (e0)(x)| .

This implies that

1
cn(x)

∑
n: |Jn(g)(x)−g(x)|≥ε

ajn ≤ 1
bn(x)

∑
n: 2ω(g;αn(x))≥ε/2

ajn

+
1

cn(x)

∑
n: ω(g;αn(x))|Jn(e0)(x)−(e0)(x)|≥ε/2

ajn.

Now conditions (a), (b) and Lemma2 yield the proof. ✷
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