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Uniform distribution of sequences involving divisor function
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Abstract. Wemodify the recent method of J.-M. Deshouillers and H. Iwaniec in the theory
of uniform distribution to show that the sequence with general term an = 1

n

∑
m≤n σ(m)

is uniformly distributed modulo 1. We also study uniform distribution modulo 1 of some
sequences related by the functions σ and ϕ.
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1. Introduction

In 2008, J.-M. Deshouillers and H. Iwaniec [1] introduced a method for studying
uniform distribution modulo 1 of means of some certain Euler function - type
sequences. Their method implies uniform distribution modulo 1 of the sequence
( 1
n

∑
m≤n ϕ(m))n≥1, where ϕ is the Euler function. Our main goal in this paper is

to prove a similar result for the sequence with general term

an =
1

n

∑
m≤n

σ(m), (1)

where σ(m) =
∑
d|m d is the sum of positive divisors of m. More precisely, we show

the following result.

Theorem 1. The sequence (an)n≥1 with a general term defined by (1) is uniformly
distributed modulo 1.

In comparison with the Euler function, we note that ϕ(m)/m is strongly mul-
tiplicative, but σ(m)/m is not. Also, in the case of the Euler function, because of
the connection to the Möbius µ function, Deshouillers and Iwaniec use the prime
number theorem with error term, but for the σ function we do not need such tools,
albeit the method of Deshouillers and Iwaniec is applicable in this case, too.

Before starting the proof of Theorem 1, let us explain non-triviality of its truth.
We write

an =
π2

12
n+R(n).

If we may reduce the remainder termR(n) up to o(1), then uniform distribution mod-
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ulo 1 of an becomes trivial by means of Weyl criterion [4]. But, the best known [3]

approximation for R(n) is O(log2/3 n), and it is known [2] that R(n) 6= o(log log n).
Therefore, we need a careful analysis on remainder term R(n).

2. Analysis of the remainder term

Let ψ be the saw function defined by ψ(x) = {x} − 1/2, where {x} = x− bxc is the
fractional part of x. For real z ≥ 2, we set

P (z) =
∏
p<z

pb(log z)/(log p)c,

which will be simply also shown by P . We take D with P < D < n and we let

ρn(z) =
∑
d|P

1

d
ψ
(n
d

)
, (2)

and

ρn(D, z) =
∑
d≤D

1

d
ψ
(n
d

)
− ρn(z). (3)

Also, we take

α =
π2

12
.

Lemma 1. We have

an = αn− ρn(z)− ρn(D, z)− 1

2
+O

(D
n

+
n2

D3

)
. (4)

Proof. We write

an =
1

n

∑
ad≤n

a =
1

n

∑
d≤D

∑
a≤n

d

a+
1

n

∑
a≤ n

D

∑
D<d≤n

a

a := A1 +A2,

say. We have

A1 =
1

n

∑
d≤D

∑
a≤n

d

a =
1

2n

∑
d≤D

⌊n
d

⌋(⌊n
d

⌋
+ 1
)

=
1

2n

∑
d≤D

(n
d
− ψ

(n
d

)
− 1

2

)(n
d
− ψ

(n
d

)
+

1

2

)
=
n

2

∑
d≤D

1

d2
−
∑
d≤D

1

d
ψ
(n
d

)
+O

(D
n

)
.

Using the Euler–Maclaurin summation formula, we have

−n
2

∑
d>D

1

d2
= − n

2D
+O

( n

D2

)
.
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Thus

A1 = αn− ρn(z)− ρn(D, z)− n

2D
+O

(D
n

+
n

D2

)
.

To approximate A2, first we change the order of summation to get

A2 =
1

n

∑
D<d≤n

∑
a≤n

d

a.

Now, we observe that since we do not take D small, thus d is large and there are
many values of d for which bnd c takes the same values. Let indeed k be an integer.
The inequality n

k+1 < d ≤ n
k holds if and only if bnd c = k. We let K = b nD c, and we

consider the following splitting

(D,n] =
(
D,

n

K

]
∪
( n
K
,

n

K − 1

]
∪ · · · ∪

(n
2
, n
]
,

to write

A2 =
1

n

∑
D<d≤ n

K

∑
a≤K

a+
1

n

K−1∑
k=1

∑
n

k+1<d≤
n
k

∑
a≤k

a := A′2 +A′′2 ,

say. We have

A′2 =
1

n

∑
D<d≤ n

K

∑
a≤K

a =
K(K + 1)

2n

(⌊ n
K

⌋
− bDc

)
=
K(K + 1)

2n

( n
K
−D +O(1)

)
=
K + 1

2
− K(K + 1)D

2n
+O

(K2

n

)
.

Since K2

n ≤
n
D2 <

n2

D3 , and also, since K = b nD c = n
D − {

n
D}, we finally have

A′2 =
1

2

{ n
D

}
+O

(D
n

+
n2

D3

)
.

We now treat the second term in A2. We have

A′′2 =
1

n

K−1∑
k=1

∑
n

k+1<d≤
n
k

∑
a≤k

a =
1

2n

K−1∑
k=1

k(k + 1)
(⌊n
k

⌋
−
⌊ n

k + 1

⌋)
=
K − 1

2
+O

( n2
D3

)
=

n

2D
− 1

2

{ n
D

}
− 1

2
+O

( n2
D3

)
.

This gives

A2 =
n

2D
− 1

2
+O

(D
n

+
n2

D3

)
.

We put approximations of A1 and A2 together to obtain (4), hence completing the
proof.
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3. Proof of Theorem 1

Recall that e(x) = e2πix. We use Weyl criterion to prove uniform distribution modulo
1 of the sequence an. Indeed, we show validity of∑

n≤X

e(han) = o(X), as X →∞, (5)

for any positive integer h. We choose arbitrary small constant ε > 0, and we consider
the trivial estimate ∣∣∣ ∑

n≤X

e(han)
∣∣∣ ≤ εX +

∣∣∣ ∑
εX<n≤X

e(han)
∣∣∣,

from which we observe that to get (5), it is enough to prove∣∣∣ ∑
εX<n≤X

e(han)
∣∣∣ ≤ εX,

for X sufficiently large. To do this, we write∑
εX<n≤X

e(han) = S(ε, z;X) + E, (6)

where

S(ε, z;X) =
∑

εX<n≤X

e
(
h
(
αn− ρn(z)− 1

2

))
,

and

E �
∑

εX<n≤X

{
|ρn(D, z)|+ D

n
+
n2

D3

}
�
∑
n≤X

|ρn(D, z)|+D logX +X3D−3.

We estimate
∑
n≤X |ρn(D, z)| by using Lemma 5 of [1], which is an important part

of the method of Deshouillers and Iwaniec and asserts that if τν(d) denote the
generalized divisor function, then for any complex number c(d) with

|c(d)| ≤ τν(d), (7)

we have ∑
|n|≤T

∣∣∣ ∑
z≤d≤D

c(d)

d
ψ
(n
d

)∣∣∣2 �ν Tz
−1(log z)B(ν) +D(logD)B(ν), (8)

where the symbol B(ν) denotes a constant that depends only on the number ν, the
value which may change from one occurrence to the other one. As an immediate
and useful consequence of (8), we use the Cauchy’s inequality to obtain∑

|n|≤T

∣∣∣ ∑
z≤d≤D

c(d)

d
ψ
(n
d

)∣∣∣�ν Tz
− 1

2 (log z)B(ν) +
√
TD(logD)B(ν). (9)
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We use (9) by taking

c(d) =

{
0 if d|P (z),
1 if d - P (z).

(10)

Let us verify that c(d) defined by (10) satisfies the required condition (7). For
d < z we let d =

∏
p p

vp(d), where pvp(d)‖d, and so pvp(d) ≤ d < z. Thus vp(d) <
(log z)/(log p), and we imply that d|P (z). This gives c(d) = 0 for d < z. On the
other hand, for z ≤ d ≤ D we have |c(d)| ≤ 1. Therefore, we may apply (9) to
obtain ∑

n≤X

|ρn(D, z)| � Xz−
1
2 (log z)B1 +

√
XD(logX)B2 ,

for some real numbers B1 and B2, and for D < X. Thus, we get

E � Xz−
1
2 (log z)B1 +

√
XD(logX)B2 +D logX +X3D−3.

We put 2 ≤ z ≤ logX and we take D = X(logX)−c, where c is some positive
constant satisfying the condition min{−c/2 + B2, 1 − c} < −1/2. Now, we have
D < n provided X is sufficiently large and εX < n ≤ X. Considering all of these,
implies that

E � Xz−
1
2 (log z)B1 � Xz−

1
3 . (11)

To approximate S(ε, z;X) we use the irrationality of α and the fact that ρn(z)
defined by (2) is periodic in n with period P , hence we obtain

|S(ε, z;X)| =
∣∣∣ P−1∑
b=0

∑
εX<n≤X
n≡b [P ]

e
(
h
(
αn− ρn(z)− 1

2

))∣∣∣
≤

P−1∑
b=0

∣∣∣ ∑
εX<n≤X
n≡b [P ]

e (hαn)
∣∣∣ =

P−1∑
b=0

∣∣∣ ∑
εX−b

P <k≤X−b
P

e (hα(b+ kP ))
∣∣∣.

The inner sum is indeed a geometric sum, which is bounded by 2
|e(hαP )−1| . Thus,

by considering the identity |e(x)− 1| = 2| sin(πx)|, we get

|S(ε, z;X)| ≤ P

| sin(hαPπ)|
. (12)

Now, we consider (6) and use approximations (11) and (12) to obtain the estimate∣∣∣ ∑
εX<n≤X

e(han)
∣∣∣ ≤ P

| sin(hαPπ)|
+R(z;X),

with R(z;X) = O(Xz−
1
3 ). We choose z to depend only on ε in such a way that

|R(z;X)| ≤ ε

2
X.

Moreover, we imply that P (z) is dependent only on ε, and we can find X0 = X0(h, ε)
such that

P

| sin(hαPπ)|
≤ ε

2
X, for X > X0.

By combining the last two estimates we complete the proof of Theorem 1.
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4. Some remarks

Remark 1. For any real number η, the sequence (aη(n))n defined by

aη(n) = n1−2η
( ∑
m≤n

σ(m)
)η

is uniformly distributed modulo 1, provided the number αη is irrational.

Proof. We write an = αn+R(n). So, we have∑
m≤n

σ(m) = nan = αn2
(

1 +
R(n)

αn

)
.

This implies that

aη(n) = αηn

(
1 +

R(n)

αn

)η
= αηn

(
1 +

ηR(n)

αn
+O

( log2 n

n2

))
= αηn+ ηαη−1R(n) +O

( log2 n

n

)
.

We apply the truth of Lemma 1 to get

aη(n) = αηn− ηαη−1ρn(z)− ηαη−1ρn(D, z)− ηαη−1

2
+O

(D
n

+
n2

D3
+

log2 n

n

)
.

Using this relation and the following similar argument as in the proof of Theorem
1, we obtain

∑
n≤X e(haη(n)) = o(X) as X → ∞, for any positive integer h. This

completes the proof.

Corollary 1. Sequences with general terms

sn =

√∑
m≤n

σ(m), wn =
n2

sn
, rn =

n2

an
,

are uniformly distributed modulo 1.

Proof. We apply the truth of Remark 1 by taking η = 1
2 ,−

1
2 and −1, respectively,

and we note that αη is irrational in each case.

We easily obtain the following similar results for the Euler function in the work
of J.-M. Deshouillers and H. Iwaniec [1].

Remark 2. Let β = 3/π2. Then, for any real number η, the sequence with general
term

bη(n) = n1−2η
( ∑
m≤n

ϕ(m)
)η
,

is uniformly distributed modulo 1, provided the number βη is irrational.
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Corollary 2. Let bn = 1
n

∑
m≤n ϕ(m). Sequences with general terms

sn =

√∑
m≤n

ϕ(m), wn =
n2

sn
, rn =

n2

bn
,

are uniformly distributed modulo 1.
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