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An invariance principle for the law of the iterated logarithm
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Abstract. In this note, we prove the Strassen’s strong invariance principle for vector-
valued additive functionals of a Markov chain via the martingale argument and the theory
of fractional coboundaries.
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1. Introduction

Let (Xn)n≥0 denote a stationary ergodic Markov chain defined on a probability space
(Ω,F ,P), with values in a measurable space (X ,B). Let Q(x, dy) be its transition
kernel and π the stationary initial distribution. Fix an integer d ≥ 1 and for p ≥ 1
let Lp(π) denote the space of (equivalence classes of) B-measurable functions g :
X → Rd such that ‖g‖pp :=

∫
X |g(x)|pπ(dx) < ∞, and let Lp0(π) denote the set of

g ∈ Lp(π) for which
∫
X gdπ = 0. Here, | · | denotes the Euclidean norm on Rd.

Now fix an Rd-valued function g ∈ L2
0(π). For n ≥ 0, define

Sn+1 = Sn+1(g) :=

n∑
i=0

g(Xi) and S0 = 0. (1)

For the question of central limit type results for Sn, there have been numerous studies
from many angles and under different assumptions; see Maxwell and Woodroofe [6],
Derriennic and Lin [4] and references therein.

This short note is a natural continuation of Maxwell and Woodroofe [6]. Our goal
is to consider the problem that Sn satisfies the law of the iterated logarithm (LIL)
under some proper conditions. Since the appearance of Strassen’s paper [13], almost
sure invariance principles for the law of iterated logarithm have been obtained for a
large class of independent and dependent sequence (Yn)n≥1; see Hall and Heyde [5],
and Philipp and Stout [10]. Here, the Skorokhod representation plays an important
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role. However, we encounter the essential difficulties, when considering the vector-
valued martingale, since Monrad and Philipp [9] proved that it is impossible to
embed a general Rd-valued martingale in an Rd-valued Gaussian process.

In this paper, we mainly take along the lines of Maxwell and Woodroofe [6],
and use Berger’s strong approximation [1]. Moreover, we identify the lim sup in the
functional LIL just the square root of the trace of the diffusion matrix corresponding
to the functional central limit theorems (CLT). Recently, Zhao and Woodroofe [14]
published a LIL for stationary processes that is stronger than our results in the case
of d = 1, please refer to Miao and Yang [8]. However, the present note has the
advantage to make clear that the reasonings used to get the functional CLT in its
”almost sure” sense lead easily to the functional form of the multidimensional LIL
(Zhao and Woodroofe [14] considered only the classical scalar form of this law but
their reasoning could apply to a more general situation).

2. Main results

For introducing our main results, we need some notations. Let C([0, 1],Rd) be the
Banach space of continuous maps from [0, 1] to Rd, endowed with the supremum
norm |‖ · |‖, using the Euclidean norm in Rd. Denote by K the set of absolutely
continuous maps f ∈ C([0, 1], Rd), such that

f(0) = 0,

∫ 1

0

|ḟ(t)|2dt ≤ 1,

where ḟ denotes the derivative of f determined almost everywhere with respect to
Lebesgue measure. Obviously, K is relatively compact and closed. Define

ξn(t) = (2n log log n)−1/2[Sk + (nt− k)g(Xk)]

for t ∈ [ kn ,
k+1
n ), k = 0, 1, 2, · · · , n− 1. In order to avoid difficulties in specification,

we adopt the convention that log log x = 1, if 0 < x ≤ ee. Then, ξn is a random
element with values in C([0, 1], Rd). In addition, given a function h ∈ L1(π), we
define an operator

Qh(x) =

∫
h(y)Q(x, dy), π-a.e. x ∈ X .

Obviously, Q is a contraction on Lp(π) for p ≥ 1.

Theorem 1. Let g ∈ L2
0(π) and assume that there exists an α ∈ (0, 1/2) such that

‖
n−1∑
i=0

Qig‖2 = O(nα). (2)

Then, the sequence of functions (ξn(·), n ≥ 1) is almost surely relatively compact
in the space C([0, 1], Rd), and the set of its limit points as n → ∞, coincides with√

tr(D)K, where tr(·) denotes the trace operator of a matrix and D = E(M1M
t
1) =∫

HHtdπ1 is the diffusion matrix corresponding to the functional central limit theo-
rem, where M1, H and π1 are defined in Section 3.
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Theorem 2. Let g ∈ L2
0(π) and assume that there exists an α ∈ (0, 1/2) for which

(2) is satisfied. Then

lim sup |Sn|/
√

2n log log n =
√

tr(D), P-a.s. (3)

It is worthwhile to give some comments on Theorem 1 and Theorem 2.

Remark 1. Maxwell and Woodroofe [6] showed the functional CLT for Sn when
d = 1, under condition (2). However, the CLT is proved there under the following
weaker condition

∞∑
n=1

n−3/2‖
n−1∑
i=0

Qig‖2 <∞. (4)

Recently, for d = 1, Peligrad and Utez [11] proved the functional CLT under con-
dition (4) by developing some new maximal inequality for stationary sequences. It
is well known that the LIL is closely related to the CLT in some sense, hence the
functional LIL should be true under condition (4). But, under our present frame-
work, the functional LIL cannot be proved under condition (4) since the fractional
coboundary theory of Derriennic and Lin [3] is no longer valid. Cuny [2] also treated
the LIL for Sn when d = 1 under some conditions. For an update account of condi-
tion (4) and some other forms, please refer to Merlevède, Peligrad and Peligrad [7]
and references therein.

3. Proof of main results

For ε > 0, let hε be the solution of the equation

(1 + ε)h = Qh+ g,

where Q is defined as in Section 2. In fact,

hε =

∞∑
n=1

(1 + ε)−nQn−1g. (5)

Note that hε ∈ Lp(π), if g ∈ Lp(π). Let π1 be the joint distribution of X0 and X1,
so that π1(dx0, dx1) = Q(x0, dx1)π(dx0); denote the L2-norm on L2(π1) by ‖ · ‖1;
and let

Hε(x0, x1) = hε(x1)−Qhε(x0)

for x0, x1 ∈ X . For any ε > 0, let

Mn(ε) =

n−1∑
i=0

Hε(Xi, Xi+1) and Rn(ε) = Qhε(X0)−Qhε(Xn),

hence, by simple computations,

Sn(g) = Mn(ε) + εSn(hε) +Rn(ε). (6)

For convenience, we summarize the results of Maxwell and Woodroofe [6] as the
following theorem.
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Theorem 3 (Theorem MW). Assume that g ∈ L2
0(π) and that there exists an

α ∈ (0, 1/2) for which (2) is satisfied. Then we have

1. The limit H = limε→0+ Hε exists in L2(π1). Moreover, if one defines

Mn =

n−1∑
i=0

mi,

where mi = H(Xi, Xi+1), then (mn)n≥0 is a stationary and ergodic P-square
integrable martingale difference sequence, with respect to the filtration {Fn =
σ(X0, · · · , Xn)}n≥0;

2. ‖hε‖2 = O(ε−α), and if Rn = Sn−Mn = Mn(ε)−Mn+εSn(hε)+Rn(ε), then

E(|Rn|2) = O(n2α).

3.1. Proof of Theorem 1

For 0 ≤ t ≤ 1, define

ζn(t) = (2n log log n)−1/2M[nt],

ηn(t) = (2n log log n)−1/2B(nt),

where Mn is as defined in Section 2 and B(·) is an Rd-valued Brownian motion with
mean 0 and diffusion matrix D. Theorem 1 of Strassen [13] shows that (ηn(·))n≥1
is relatively compact and the set of its limit points coincides with

√
tr(D)K.

Notice that by part (1) of Theorem MW, (Mn)n≥1 is a square integrable mar-
tingale with strictly stationary increments. Moreover,

E(< u,m0 >
2) <∞ and E(< u,m0 >) = 0, for all u ∈ Rd, (7)

where, < ·, · > denotes the inner product in Rd. Therefore, Corollary 4.1 of Berger
[1] implies that,

Without changing its distribution, one can redefine the sequence (Mn)n≥1 on a

new probability space (Ω̂, F̂ , P̂) on which there exists an Rd-valued Brownian motion
(B(t))t≥0 with mean 0 and diffusion matrix D such that

|M[t] −B(t)| = o((t log log t)1/2), P̂-a.s. (as t→∞). (8)

where, D = limn→∞ n−1Cov(Mn).

Remark 2. Birkhoff-Khinchin’s ergodic theorem and a simple calculation show that
D = E(M1M

t
1) =

∫
HHtdπ1 is the diffusion matrix corresponding to the functional

central limit theorem; please see Rassoul-Agha and Seppäläinen [12].

That is to say,

sup
0≤t≤1

|M[nt] −B(nt)| = o((2n log log n)1/2), P-a.s.
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Hence,

|‖ζn − ηn|‖ =(2n log log n)−1/2 sup
0≤t≤1

|M[nt] −B(nt)|

=o(1), P-a.s.

Define

ζ̃n(t) = (2n log log n)−1/2[Mk + (nt− k)mk]

for t ∈ [ kn ,
k+1
n ), k = 0, 1, 2, · · · , n− 1. Then ζ̃n ∈ C([0, 1], Rd) and

sup
t∈[0,1)

|ζn(t)− ζ̃n(t)| = (2n log log n)−1/2 max
0≤k≤n−1

|mk|.

Next, we give the order estimation of max0≤k≤n−1 |mk|. Since the fact that

1

n

n∑
1

|mk|2 −→ tr(D), P-a.s.

we have max0≤k≤n−1 |mk| = o(n1/2) a.s. Hence,

|‖ζn − ζ̃n|‖ = sup
t∈[0,1)

|ζn(t)− ζ̃n(t)| = o(1), P-a.s.

The above discussions immediately yield the following claim:

(ζ̃n(·), n ≥ 1) is almost surely relatively compact and the set of its limit points coin-
cides with

√
tr(D)K.

We now turn to deal with the negligible term Rn in the sense of functional
LIL. Firstly, let us recall the concept of the Dunford-Schwarz (DS) operator; see
Derriennic and Lin [3]. We call T a DS operator on L1 of a probability space,
if T is a contraction of L1 such that ‖Tf‖∞ ≤ ‖f‖∞ for every f ∈ L∞. If θ is a
measure preserving transformation in a probability space (Ω,Σ, µ), then the operator
Tf = f◦θ is a DS operator on L1(µ). More generally, any Markov transition operator
P with an invariant probability measure yields a positive DS operator.

Lemma 1 (Lemma DL, [3]).

1. Let T be a contraction in a Banach space X, and let 0 < β < 1. If

sup
n
‖ 1

n1−β

n∑
k=1

T ky‖ <∞, then y ∈ (I − T )αX for every 0 < α < β.

2. Let T be a DS operator in L1(µ) of a probability space, and fix 1 < p < ∞,
with q = p/(p − 1). Let 0 < α < 1, and f ∈ (I − T )αLp. If α > 1 − 1

p = 1
q ,

then
1

n1/p

n−1∑
k=0

T kf → 0 a.e.
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Note that Lemma DL was originally proved for d = 1; however, we can make
the shift operating coordinate-wise, hence the original proof of Derriennic and Lin
is enough for our case. To apply the above lemma, i.e., the theory of fractional
coboundaries named by Derriennic and Lin [3], we need to construct a DS operator.
On X × X , define

f(x0, x1) = g(x0)−H(x0, x1),

then

Rn =Sn −Mn

=

n−1∑
i=0

[g(Xi)−H(Xi, Xi+1)]

=

n−1∑
i=0

f(Xi, Xi+1). (9)

Let θ be the shift map on the path space XN for the Markov chain which is a
contraction on L2(P). The DS operator is the shift θ. For a sequence x = (xi)i∈N ∈
XN, define F (x) = f(x0, x1), then we have

F ∈ L2(P) and Rn =

n−1∑
k=0

F ◦ θk.

From part (2) of Theorem MW, there exists a constant 1/2 < β < 1 − α, such
that

sup
n

∥∥∥ 1

n1−β

n−1∑
k=0

F ◦ θk
∥∥∥ <∞, (10)

Since part (1) of Lemma DL and 0 < α < 1/2, we have F ∈ (I − θ)ηL2(P), for some
η ∈ (1/2, 1− α). By part (2) of Lemma DL, we have

1

n1/2
Rn → 0, P-a.s.

Furthermore, applying an elementary property of real convergent sequences, we im-
mediately get

max
0≤k≤n

|Rk| = o((2n log log n)1/2), P-a.s.

Consequently,

(2n log logn)−1/2 sup
0≤t≤1

|R[nt]| → 0, P-a.s. (11)

From the above discussions, we complete the proof of Theorem 1.
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3.2. Proof of Theorem 2

Here, we take along the lines of the proof of Theorem 4.8 in Hall and Heyde [5].
Let {ei}di=1 the canonical basis of Rd. For any Rd-valued function f , denote f =
(f1, f2, · · · , fd)t. By the definition of K, for any f ∈

√
tr(D)K, we have

|f(t)|2 =

d∑
i=1

(

∫ t

0

ḟi(s)ds)
2 ≤

d∑
i=1

(

∫ t

0

ḟi(s)
2ds)

∫ t

0

1ds ≤ tr(D)t (12)

where the first inequality is due to the Cauchy-Schwarz’s inequality. So, |f(t)| ≤√
tr(D)t. It follows that supt∈[0,1] |f(t)| ≤

√
tr(D). Hence, by Theorem 1

lim sup
n

sup
t∈[0,1]

|ξn(t)| ≤
√
tr(D), P− a.s. (13)

and setting t = 1,

lim sup
n
|Sn|/

√
2n log log n ≤

√
tr(D), P− a.s. (14)

On the other hand, we put f(t) = t
√

tr(D)
d

∑d
i=1 ei, t ∈ [0, 1]. Then, f ∈√

tr(D)K and so for P− a.s. ω, there exists a sequence nk = nk(ω) such that

ξnk
(·)(ω)

|‖·|‖−→ f(·). (15)

Particularly, f(1) =
√

tr(D)
d

∑d
i=1 ei, |ξnk

(1)(ω)| −→ |f(1)|. That is to say,

|Snk
|/
√

2nk log log nk −→
√

tr(D), P− a.s. (16)

This completes the proof of Theorem 2.
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