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Abstract. Let A be an n × n complex matrix and 0 ≤ q ≤ 1. The boundary of the
q-numerical range of A is the orthogonal projection of a hypersurface defined by the dual
surface of the homogeneous polynomial

F (t, x, y, z) = det(t In + x(A + A∗)/2 + y(A−A∗)/(2i) + z A∗A).

We construct different types of cubic surfaces SF corresponding to the homogeneous poly-
nomial F (t, x, y, z) induced by some 3 × 3 matrices. The degree of the boundary of the
Davis-Wielandt shell of a 3 × 3 upper triangular matrix is determined by the cubic sur-
face SF .
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1. Introduction

Let A be an n × n complex matrix and 0 ≤ q ≤ 1. The q-numerical range of A is
defined and denoted as

Wq(A) = {ζ∗Aξ : ξ, ζ ∈ Cn, ξ∗ξ = ζ∗ζ = 1, ζ∗ξ = q},

where ξ∗ denotes the transpose of the coordinate-wise complex conjugate of the
vector ξ ∈ Cn. It is well known (see [18]) that Wq(A) is a convex subset of C.
Its star-shaped generalization is studied in [15]. When q = 1, Wq(A) reduces to
the classical numerical range W (A) = {ξ∗Aξ : ξ ∈ Cn, ξ∗ξ = 1}. For n = 3, there
has been a number of interesting papers on their numerical ranges ([3, 5, 6, 16]).
Furthermore, a comprehensive study of the numerical ranges of 3×3 matrices can be
found in [7, 8] which classify the shapes of the numerical range via the homogeneous
polynomial

F (t, x, y) = det(t In + x(A+A∗)/2 + y(A−A∗)/(2i)),

where A∗ stands for the Hermitian adjoint of A.
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The study of the q-numerical range is closely related to the so-called Davis-
Wielandt shell of A ∈Mn which is defined as

DW (A) = {(ξ∗Aξ, ξ∗A∗Aξ) : ξ ∈ Cn, ξ∗ξ = 1}.

(see [4, 10]). Consider the homogeneous polynomial

F (t, x, y, z) = det(t In + x(A+A∗)/2 + y(A−A∗)/(2i) + z A∗A), (1)

which defines the algebraic variety SF = {[(t, x, y, z] ∈ CP3 : F (t, x, y, z) = 0}.
Let G(t, x, y, z) = 0 be the dual surface of SF . We consider a hypersurface in the
4-dimensional Euclidean space

S = {(x, y, u, v) ∈ R4 : u2 + v2 = h(x+ iy)2},

where h(z) = sup{w ∈ R : (z, w) ∈ DW (A)}. Define an orthogonal projection πq of
R4 onto C ∼= R2 by

πq((x, y, u, v)) = (qx+
√

1− q2u) + i(qy +
√

1− q2v).

Then the range Wq(A) is given by Wq(A) = πq(S) (cf. [4]). Every boundary point
(z, w) of DW (A) satisfies G(1,<(z),=(z), w) = 0 or the point lies on a multi-tangent
of the surface G(1,<(z),=(z), w) = 0. If the surface F (t, x, y, z) = 0 has no singular
point, then the range Wq(A) is given by

πq{(x, y, u, v) ∈ R4 : G(1, x, y, x2 + y2 + u2 + v2) = 0}.

The range Wq(A) is essentially determined by the form G(t, x, y, z), and hence by
the form FA(t, x, y, z) = F (t, x, y, z). If we replace A by UAU∗ for some unitary
matrix U , the associated form FUAU∗(t, x, y, z) coincides with FA(t, x, y, z). Thus
the range Wq(A) is invariant under a unitary similarity. The relation Wq(A) = πq(A)
is rewritten as

Wq(A) = {qz +
√

1− q2wh(z) : z ∈W (A), w ∈ C, |w| ≤ 1}.

Furthermore, if the boundary of the range DW (A) has a flat portion on the plane
a1x1 + a2x2 + a3x3 + a0 = 0, then the real point (a0, a1, a2, a3) is a singular point of
the surface SF . Thus the number of the flat portions of the boundary of the range
DW (A) is less than or equal to the number of the singular points of the surface SF

(cf. [5]). The analysis of the degree of the boundary equation of Wq(A) is closely
related to the study of the singularities of the surface SF .

Cubic surfaces is a classical subject in algebraic geometry. Schläfli [17] gave a
foundation of its classification theory (see also [2, 9]). It is of great interest in com-
puter aided geometric design (cf. [1, 14]). In this paper, we study the Davis-Wielandt
shells of certain 3 × 3 upper triangular matrices from a viewpoint of the types of
singularities occuring on the cubic surfaces SF corresponding to the matrices.
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2. Singular points of cubic surfaces

Let F (t, x, y, z) be an irreducible complex cubic form in the polynomial ring C[t, x,
y, z]. Suppose that (t, x, y, z) = (1, x0, y0, z0) is a singular point of the algebraic sur-
face SF , that is, F (1, x0, y0, z0)=Ft(1, x0, y0, z0)=Fx(1, x0, y0, z0)=Fy(1, x0, y0, z0)
=Fz(1, x0, y0, z0)=0.

In this case, we assume that

F (1, x0 + x, y0 + y, z0 + z) = α11x
2 + α22y

2 + α33z
2 + 2α12x y

+2α13x z + 2α23y z + F3(x, y, z), (2)

where F3(x, y, z) is homogeneous of degree 3. If the cubic surface SF has non isolated
singularities, then the singularity set is a line (cf. [2] page 252, [13]). A fundamental
classification of a singularity is provided by the types of the quadratic form α11x

2 +
α22y

2 + α33z
2 + 2α12x y + 2α13x z + 2α23y z. Consider the symmetric matrix

α =

α11 α12 α13

α12 α22 α23

α13 α23 α33


corresponding to the coefficients of the quadratic terms in (2). Firstly we consider
an exceptional case α11 = α22 = α33 = 0, α12 = α13 = α23 = 0, or equivalently
F (t, x, y) = F3(x, y, z). If the irreducible cubic curve F3(x, y, z) = 0 has no singular
point, the surface SF has no singular point. If F3(x, y, z) = 0 has a node or a cusp,
then the surface SF has a line of singularities.

Secondly we consider a generic case α 6= 0. In this case, if the surface SF has
a singular point (1, x0, y0, z0), then the surface F (t, x0t + x, y0t + y, z0t + z) = 0 is
expressed as t (a11x

2 + a22y
2 + a33z

2 + 2a12xy + 2a13xz + 2a23yz) + F3(x, y, z) = 0.
For instance, we assume that a33 6= 0. The surface SF has a rational parametrization

t = − F3(x, y, 1)

a33 + 2a13x+ 2a23y + a11x2 + 2a12xy + a22y2
.

If the matrix α is non-singular, the point (1, x0, y0, z0) is called an ordinary double
point (also called A1 point). If α is singular with rank r, for r = 2, the singular
point (1, x0, y0, z0) is called a biplanar double point (or a binode). If r = 1, the
singular point (1, x0, y0, z0) is called a uniplanar double point (or a unode). If r = 0,
or α = 0, the singular point (1, x0, y0, z0) is a called a triple point. Biplanar double
points are classified into four types. Suppose that (1, x0, y0, z0) is a biplanar double
point of SF . By changing the variables, we may assume that α13 = α23 = α31

= α32 = α33 = 0, α11α22−α2
12 6= 0. Under theses assumptions, if F3(0, 0, 1) 6= 0, the

point (1, x0, y0, z0) is a biplanar double point A2. We are interested in the real cubic
form F (t, x, y, z) given by (1), which is hyperbolic with respect to (1, 0, 0, 0), that is,
the cubic equation F (t, x0, y0, z0) = 0 in t has 3 real roots counting multiplicities
for every (x0, y0, z0) ∈ R3. If we replace A∗A in equation (1) by an arbitrary 3× 3
hermitian matrix K, we can construct a real irreducible hyperbolic form F for which
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the surface F (t, x, y, z) = 0 has non-isolated singularities. An example is given by

A =

 1 + i 0 0
0 1 + i 0
0 0 3i

 , K =

 0 2 0
2 0 1
0 1 0

 .
In the sequel, we shall treat the case the cubic surface F (t, x, y, z) has isolated
singularities. For more singularity classification of cubic surfaces, we refer the reader
to Bruce and Wall [2] and references therein. There are 21 types of cubic surfaces
in referring to isolated singularities listed on the webpage of Labs [11]. Nice models
of cubic surfaces can be found on the webpage [12]. In Section 3, we show that the
following 6 typical types of cubic surfaces actually occur as surfaces SF corresponding
to some matrices:

[I]: no singularity;

[II]: one ordinary double point A1;

[IV]: two ordinary double points 2A1;

[VIII]: three ordinary double points 3A1;

[IX]: two biplanar double points 2A2;

[XVII]: two biplanar double points 2A2 and one ordinary double point A1.

Let A be a 3×3 matrix, and F (t, x, y, z) the corresponding homogeneous polynomial.
In [2], the class of an irreducible cubic surface SF with isolated singularities is
defined. It is the number of tangent hyperplanes of SF passing through a generic
point. The class number is given by

12−
∑
j

ν(Pj), (3)

where Pj is a singular point of SF and ν(P ) is a positive number depending on the
type of singularity at the point P . In particular, ν(P ) = 2 if P is an A1 point, and
ν(P ) = 3 if P is an A2 point.

Notice that every boundary point P of the Davis-Wielandt shell of a matrix lies
in the dual surface of the cubic surface if P does not lie on a flat portion. An
algorithm for computing the boundary of the Davis-Wielandt shell of a 3× 3 matrix
can be found in [4, 5]. The class number (3) of the cubic surface SF is exactly the
degree of the boundary generating surface G(1, x, y, z) = 0 of the Davis-Wielandt
shell of A.

3. Upper triangular matrices

We deal with the Davis-Wielandt shell of a 3× 3 upper triangular matrix using the
cubic surface SF .
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Theorem 1. Let A be the matrix given by

A =

 2 3 + ε 0
0 0 2
0 0 −2

 ,
for ε = ±1.

(i) If ε = +1, then the surface SF has no singular points. The cubic surface is
of type [I], and the boundary generating surface of the Davis-Wielandt shell
DW (A) lies in a polynomial surface of degree 12.

(ii) If ε=−1, the surface SF has an ordinary double point at (t, x, y, z)=(1, 0, 0,− 1
8 .

The cubic surface is of type [II], and the boundary generating surface of the
Davis-Wielandt shell DW (A) lies in a polynomial surface of degree 10.

Proof. Firstly we treat case (i), that is ε = +1. The derivative of the form
F (t, x, y, z) with respect y is given by

Fy(t, x, y, z) = −2y (5t− 6x+ 36z). (4)

Hence, if SF has a singular point, it lies on a hyperplane y = 0 or a hyperplane
z = (−5t + 6x)/36. We compute the resultant R1(x, z) of Ft and Fx with respect
to t, and the resultant R2(x, z) of Ft and Fz with respect to t under the assumption
that y = 0. We obtain that

R1(x, z) = −72(3x2 − 16z2)(9x2 + 24xz + 80z2), (5)

R2(x, z) = 192(3x+ 20z)2(3x2 + 8xz − 144z2), (6)

which are products of linear factors. The equation R1(x, z) = R2(x, z) = 0 implies
x = z = 0. Since F (1, 0, 0, 0) = 1 6= 0, the surface SF has no singular points on
the hyperplane y = 0. Next we compute the resultant R3(x, z) of Ft and Fx with
respect to t, and the resultant R4(x, z) of Ft and Fz with respect to t under the
assumption that z = (−5t+ 6x)/36. Then we have

R3(x, z) =
256

729
(1521x4 + 906x2y2 + 121y4), (7)

R4(x, z) =
4096

729
(729x4 + 886x2y2 + 81y4). (8)

These are also products of linear factors. The equation R3(x, y) = R4(x, y) = 0
implies x = y = 0. Because F (1, 0, 0, 0) = 1 6= 0, the surface SF has no singular
points.

Secondly we treat case (ii), that is ε = −1. The form F (t, x, y, z) associated with
A satisfies the equation

F (1, x, y,−1

8
+ z) = −9

2
x2 − 1

2
y2 + 64z2 − 12(x2 + y2)z, (9)
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and hence (1, 0, 0,− 1
8 ) is an ordinary double point of the cubic surface. On the

hyperplane t = 0 at infinity, we have

Fx(0, x, y, z) = −24xz, Fy(0, x, y, z) = −24yz, F (0, x, y, z) = −12(x2 + y2)z.

These relations imply that the cubic surface SF has no singular point on t = 0. On
the affine 3-space t = 1, the equation

F (1, x, y, z) = 1 + 16z − 6x2 − 2y2 + 64z2 − 12x2z − 12y2z (10)

implies that the resultant of Fx and Fy with respect z, x, y are respectively given by

−192xy, −4y(1 + 6z), −12x(1 + 2z).

Since F (1, 0, y,−1/6) = 1/9, F (1, x, 0,−1/2) = 9, the singular point (1, x, y, z) of
SF necessarily satisfies x = y = 0. Then F (1, 0, 0, z) = 1 + 16z + 64z2 = (1 + 8z)2,
and thus z = − 1

8 .
The class numbers (3) of (i) and (ii) are respectively 12 = 12 − 0 and 10

= 12− 2, which are the degrees of the boundary generating surface of the respective
DW (A).

Theorem 2. Let A be the upper triangular matrix given by

A =

 1 a 0
0 1 b
0 0 0

 ,
a > 0, b > 0. Then

(i) The corresponding cubic surface SF has no singular points on the plane at
infinity t = 0.

(ii) If a =
√

1 + b2, the surface SF has an ordinary double point at (t, x, y, z)
= (1, 2/b2, 0,−1/b2) and a pair of imaginary ordinary double points (t, x, y, z)
= (1, (1 − b2)/b2,±i(b2 + 1)/b2,−1/b2). The cubic surface is of type [VIII],
and the boundary generating surface of the Davis-Wielandt shell DW (A) lies
in a polynomial surface of degree 6.

(iii) If a 6=
√

1 + b2, the surface SF has a pair of imaginary ordinary double points
(t, x, y, z) = (1, (1− b2)/b2,±i(b2 + 1)/b2,−1/b2). The cubic surface is of type
[IV], and the boundary generating surface of the Davis-Wielandt shell DW (A)
lies in a polynomial surface of degree 8.

Proof. Let g(t, x, y, z) = 4F (t, x, y, z). Firstly, we show that the surface g(t, x, y, z)
= 0 has no singular points on the plane t = 0. We have

g(0, x, y, z) = −b2(x2 + y2)(x+ (a2 + 1)z).

Consider gz(0, x, y, z) = 0, we may assume that (x, y, z) = (0, 0, 1) or (x, y, z)
= (1,±i, z). If (x, y, z) = (0, 0, 1) then gt(0, 0, 0, 1) = 4(a2b2 + b2 + 1) 6= 0, and
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thus (x, y) = (1,±i). The condition gy(0, x, y, z) = 0 implies that z = −1/(a2 + 1)
and hence gx(0, x, y, z) = −b2(3 − 1 − 2/(a2 + 1) = −2b2(a2 + 1 − 1)/(a2 + 1)
= −2a2b2/(a2 + 1) 6= 0. This shows that the surface g(t, x, y, z) = 0 has no singular
points on the plane t = 0.

Next, we deal with singular points of the surface g(t, x, y, z) = 0 on the affine
space t = 1, (x, y, z) ∈ C3. Assume that (1, x, y, z) is a singular point of g(t, x, y.z)
= 0. Then

gy(1, x, y, z) = −2y(b2x+ (a2b2 + b2)z + a2 + b2) = 0. (11)

Suppose

b2x+ (a2b2 + b2)z + a2 + b2 = 0 (12)

in (11). Solve (12) for x = x(z). Then the equation g(1, x(z), y, z) = 0 becomes
4a4(b2z + 1)2/b4 = 0. Thus z = −1/b2, and x = (1− b2)/b2. Further, we solve

gz(1, (1− b2)/b2, y,−1/b2) = −a
2 + 1

b2
(b4y2 + (1 + b2)2) = 0

in y. Then y = ±i((b2 + 1)/b2). Conversely the point (t, x, y, z) = (1, (1 −
b2)/b2,±i(b2 + 1)/b2,−1/b2) satisfies the condition for singularity. We conclude
that the singular points (1, x, y, z) with y 6= 0 are (x, y, z) = ((1 − b2)/b2,±i(b2 +
1)/b2,−1/b2).

Lastly, we deal with singular points of the surface g(t, x, y, z) = 0 on the plane
y = 0. In this plane, gy(1, x, 0, z) = 0 holds. Assume that (1, x, 0, y) is a singular
point of g(t, x, y, z) = 0. We solve the equation

gz(1, x, 0, z) = 8(a2b2 + b2 + 1)z − (a2b2 + b2)x2 + (4b2 + 8)x+ 4a2 + 8 = 0

in z = z(x). Then the resultant of g(1, x, 0, z(x)) and gx(1, x, 0, z(x)) with respect
to x is given by

−a
12b8(a2 + 1)2(b2 + 1)4(a2 − 1− b2)2

16(a2b2 + b2 + 1)5

which does vanish if and only if a =
√
b2 + 1. Thus in case (iii), a 6=

√
b2 + 1, the

cubic surface is of type [IV].
We assume a=

√
b2 + 1 in (ii). Applying an Euclidean algorithm for g(1, x, 0, z(x))

and gx(1, x, 0, z(x)) with respect to x, we obtain that their common divisor b2x− 2
= 0. Then the singular point (1, x, 0, z(x)) on the plane y = 0 satisfies x = 2/b2 and
z(x) is given by z = −1/b2. Thus the surface SF has three ordinary double points,
the cubic surface is of type [VIII].

The class numbers (3) of (i) and (ii) are respectively 12 = 12 − 0 and 10
= 12−2, which are the degrees of the boundary generating surfaces of the respective
DW (A).

We consider the cubic form corresponding to a nilpotent matrix

A =

 0 a c
0 0 b
0 0 0

 .
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We assume a 6= 0, and we may assume a = 1. We also assume that b > 0 and c ∈ R.
We deal with the matrix

A =

 0 1 c
0 0 b
0 0 0

 , b > 0, c ∈ R, (13)

Theorem 3. Let A be the matrix as in (13).

(i) If b = 1, the surface SF has two biplanar double points (0, 1, i, c/b) and (0, 1,−i,
c/b), and one ordinary double point (1, 2c, 0, c2 − 1). The cubic surface is of
type [XVII], and the boundary generating surface of the Davis-Wielandt shell
DW (A) lies in a polynomial surface of degree 4.

(ii) If b 6= 1, the surface SF has two biplanar double points (0, 1, i, c/b) and (0, 1,−i,
c/b). The cubic surface is of type [IX], and the boundary generating surface of
the Davis-Wielandt shell DW (A) lies in a polynomial surface of degree 6.

Proof. By direct computations, a pair of points (t, x, y, z)=(0, 1, i, c/b), (0, 1,−i, c/b)
are biplanar double points of type A2, and the surface SF has no other singular points
on the plane t = 0 at infinity. We examine singular points on the affine 3-space :
t = 1, (x, y, z) ∈ C3. For b = 1, the surface SF has an ordinary double point at
(t, x, y, z) = (1, 2c, 0, c2 − 1). The cubic surface is of type [XVII].

For 0 < b, b 6= 1, we will show that there is no singular point of the surface SF

on the affine 3-space t = 1, (x, y, z) ∈ C3, and thus the cubic surface is of type [IX].
We define the polynomial g(x, y, z) and compute that

g(x, y, z) = 4F (1, x, y, z)

= bcx3 + bcxy2 − b2(x2 + y2)z − (b2 + c2 + 1)(x2 + y2)

+4b2z2 +−4bcxz + 4(b2 + c2 + 1)z + 4.

Then gy(x, y, z) = −2y(−bcx + b2z + b2 + c2 + 1) = 0. Suppose (x0, y0, z0) is a
singular point of g = 0 with y0 6= 0. We set h = −bcx + b2z + b2 + c2 + 1.
We find the resultant of g and h with respect to z is 4b4 6= 0. Thus there is no
such a singular point. So we assume that (x0, 0, z0) is a singular point of g = 0.
Then gz(x0, 0, z0) = 8b2z − b2x2 − 4bcx + 4b2 + 4c2 + 4. Solve gz(x, 0, z) = 0 with
respect to z, and substitute the solution z = k(x) into gx(x, 0, z) = 0, we obtain
(bx−2c)(b2x2−4bcx+4b2 +4c2 +4) = 0. We set m(x) = b2x2−4bcx+4b2 +4c2 +4.
Then the resultant m(x) and g(x, 0, k(x)) with respect to x is 16b8 6= 0. This
implies that bx−2c = 0, we have x = 2c/b, and then z = (2c2−b2−1)/(2b2). Hence
F = −(b− 1)2(b + 1)2/b2 6= 0, and thus the surface F = 0 has no singular point in
the affine 3-space.

The class numbers (3) of (i) and (ii) are respectively 4 = 12 − 2 × 3 − 2 and
6 = 12 − 2 × 3, which are the degrees of the boundary generating surfaces of the
respective DW (A).

Remark 1. We have found in Theorems 1-3 six types of cubic surfaces related with
the Davis-Wielandt shell DW (A) of 3 × 3 matrices. It is open whether there exist
cubic surfaces other than types (I), (II), (IV), (VIII), (IX), (XVII) related with
some 3× 3 matrices.
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