Classification of quadrics in a double isotropic space

Jelena Beban-Brkić*

Abstract

This paper gives the classification of second order surfaces in a double isotropic space $I_{3}^{(2)}$. Although quadrics in $I_{3}^{(2)}$ have been investigated earlier [e.g. 8 or 9], this paper offers a new method based on linear algebra. The definition of invariants of a quadric with respect to the group of motions in $I_{3}^{(2)}$ makes it possible to determine the type of a quadric without reducing its equation to a canonical form. For that purpose isometric properties of conics in the isotropic plane and affine properties of quadrics are used.

Key words: quadrics, plane isotropic geometry, geometry of the double isotropic space

AMS subject classifications: 51 N 25
Received January 15, 2003
Accepted June 11, 2003

1. Double isotropic space

Let $P_{3}(R)$ be a three-dimensional real projective space, quadruples $\left(x_{0}: x_{1}: x_{2}: x_{3}\right)$ $\neq(0: 0: 0: 0)$ the projective coordinates, ω a plane in P_{3}, and $A_{3}=P_{3} \backslash \omega$ the derived affine space. An affine space A_{3} is called a double isotropic space $I_{3}^{(2)}$ if in A_{3} a metric is induced by an absolute $\{\omega, f, F\}$, consisting of the line f in the plane of infinity ω and the point $F \in f$. The geometry of $I_{3}^{(2)}$ could be seen in e.g. Brauner [5]. In the affine model, where

$$
\begin{equation*}
x=\frac{x_{1}}{x_{0}}, \quad y=\frac{x_{2}}{x_{0}}, \quad z=\frac{x_{3}}{x_{0}}, \quad\left(x_{0} \neq 0\right) \tag{1}
\end{equation*}
$$

the absolute figure is determined by $\varpi \equiv x_{0}=0, f \equiv x_{0}=x_{1}=0$, and $F(0: 0: 0: 1)$.
All regular projective transformations that keep the absolute figure fixed form a 9-parametric group

$$
G_{9}\left\{\begin{array}{l}
\overline{x_{0}}=x_{0} \tag{2}\\
\overline{x_{1}}=c_{1} x_{0}+c_{2} x_{1} \\
\overline{x_{2}}=c_{3} x_{0}+a x_{1}+c_{4} x_{2} \\
\overline{x_{3}}=c_{5} x_{0}+b x_{1}+c x_{2}+c_{6} x_{3}
\end{array} \quad, c_{1}, \ldots, c_{6}, a, b, c \in R, \text { and } c_{2} c_{4} c_{6} \neq 0\right.
$$

[^0]We call it the group of similarities of the double isotropic space $I_{3}^{(2)}$.
The unimodular transformations in G_{9} form a 6-parametric motion group of $I_{3}^{(2)}$, i.e.,

$$
G_{6}\left\{\begin{array}{l}
\overline{x_{0}}=x_{0} \tag{3}\\
\overline{x_{1}}=c_{1} x_{0}+x_{1} \\
\overline{x_{2}}=c_{3} x_{0}+a x_{1}+x_{2} \\
\overline{x_{3}}=c_{5} x_{0}+b x_{1}+c x_{2}+x_{3}
\end{array}\right.
$$

In the plane of infinity ω, G_{6} induces a 3 -parametric group

$$
G_{3}\left\{\begin{array}{l}
\overline{x_{1}}=x_{1} \tag{4}\\
\overline{x_{2}}=a x_{1}+x_{2} \\
\overline{x_{3}}=b x_{1}+c x_{2}+x_{3}
\end{array}\right.
$$

G_{3} is the motion group of an isotropic plane, see [7].

2. Quadric equation

A quadric equation is a second-degree equation in three variables that can be written in the form

$$
\begin{align*}
Q(x, y, z) \equiv & a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z \tag{5}\\
& +2 a_{01} x+2 a_{02} y+2 a_{03} z+a_{00}=0
\end{align*}
$$

where $a_{11}, \ldots, a_{00} \in R$ and at least one of the coefficients $a_{11}, \ldots, a_{23} \neq 0[1]$.
Using the matrix notation,

$$
Q(x, y, z) \equiv\left[\begin{array}{lll}
1 & x & y \tag{6}\\
z
\end{array}\right]\left[\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{01} & a_{11} & a_{12} & a_{13} \\
a_{02} & a_{12} & a_{22} & a_{23} \\
a_{03} & a_{13} & a_{23} & a_{33}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
y \\
z
\end{array}\right]=0 .
$$

We will need

$$
\begin{align*}
& \Delta=\left|\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{01} & a_{11} & a_{12} & a_{13} \\
a_{02} & a_{12} & a_{22} & a_{23} \\
a_{03} & a_{13} & a_{23} & a_{33}
\end{array}\right|, \quad \Delta_{0}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right|, \\
& \Delta_{1}
\end{align*}=\left|\begin{array}{ll}
a_{22} & a_{23} \tag{7}\\
a_{23} & a_{33}
\end{array}\right|, \quad \Delta_{2}=\left|a_{33}\right|=a_{33},
$$

the 3×3 - minors $D_{i, j}(i, j=1,2,3)$ of Δ, the 2×2 - minors $\Delta_{i j}(i, j=1,2,3)$ of Δ_{0}, as well as

$$
\begin{align*}
& \Gamma_{0}=\gamma_{01}+\gamma_{02}+\gamma_{03}=\left|\begin{array}{ll}
a_{00} & a_{01} \\
a_{01} & a_{11}
\end{array}\right|+\left|\begin{array}{ll}
a_{00} & a_{02} \\
a_{02} & a_{22}
\end{array}\right|+\left|\begin{array}{ll}
a_{00} & a_{03} \\
a_{03} & a_{33}
\end{array}\right|, \\
& \Gamma_{1}=\Delta_{11}+\Delta_{22}+\Delta_{33}, \quad\left(\Delta_{11}=\Delta_{1}\right), \quad \Gamma=\Gamma_{0}+\Gamma_{1}, \tag{8}\\
& \alpha_{0}=a_{11}+a_{22}+a_{33}, \quad \alpha_{1}=\alpha_{0}+a_{00} .
\end{align*}
$$

As it is known, see [4], the sign of the determinant Δ as well as that of Δ_{0} is invariant with respect to the affine (linear, regular) transformations. The goal is to determine the invariants of quadrics with respect to the group G_{6} of motions in $I_{3}^{(2)}$. For that purpose let us apply on the quadric equation (5) the mapping from G_{6} given by

We obtain

$$
Q(x, y, z) \equiv[1 \bar{x} \bar{y} \bar{z}]\left[\begin{array}{llll}
\bar{a}_{00} & \bar{a}_{01} & \bar{a}_{02} & \bar{a}_{03} \tag{10}\\
\bar{a}_{01} & \bar{a}_{11} & \bar{a}_{12} & \bar{a}_{13} \\
\bar{a}_{02} & a_{12} & \bar{a}_{22} & \bar{a}_{23} \\
\bar{a}_{03} & \bar{a}_{13} & \bar{a}_{23} & \bar{a}_{33}
\end{array}\right]\left[\begin{array}{c}
1 \\
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right]=0,
$$

where,

$$
\begin{aligned}
& \bar{a}_{00}=a_{00}, \\
& \bar{a}_{01}=a_{01}+a a_{02}+b a_{03}, \\
& \bar{a}_{02}=a_{02}+c a_{03}, \\
& \bar{a}_{03}=a_{03}, \\
& \bar{a}_{11}=a_{11}+2 a a_{12}+2 b a_{13}+2 a b a_{23}+a^{2} a_{22}+b^{2} a_{33}, \\
& \bar{a}_{12}=a_{12}+a a_{22}+b a_{23}+c a_{13}+a c a_{23}+b c a_{33}, \\
& \bar{a}_{13}=a_{13}+a a_{23}+b a_{33}, \\
& \bar{a}_{22}=a_{22}+2 c a_{23}+c^{2} a_{33}, \\
& \bar{a}_{23}=a_{23}+c a_{33}, \\
& \bar{a}_{33}=a_{33} .
\end{aligned}
$$

These yield: $\bar{\Delta}=\Delta, \bar{\Delta}_{0}=\Delta_{0}, \bar{\Delta}_{1}=\Delta_{1}, \bar{\Delta}_{2}=\Delta_{2}$.
For example,

$$
\bar{\Delta}_{1}=\left|\begin{array}{cc}
\bar{a}_{22} & \bar{a}_{23} \\
\bar{a}_{23} & \bar{a}_{33}
\end{array}\right|=\left|\begin{array}{cc}
a_{22}+2 c a_{23}+c^{2} a_{33} & a_{23}+c a_{33} \\
a_{23}+c a_{33} & a_{33}
\end{array}\right|=\cdots=a_{22} a_{33}-a_{23}^{2}=\Delta_{1}
$$

3. Diagonalization of the quadratic form

The quadratic form within equation (5) is a homogenous polynomial of the second degree:

$$
\begin{align*}
K(x, y, z) & \equiv a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{23} y z \\
& =\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0 . \tag{12}
\end{align*}
$$

The question is whether and when it is possible to obtain the canonical form (see [6]) of the quadratic form (12), i. e., $a_{12}=a_{13}=a_{23}=0$, using transformations of the group G_{6}. From (11) we derive that

$$
\begin{equation*}
\bar{a}_{12}=\bar{a}_{13}=\bar{a}_{23}=0 \Rightarrow c=-\frac{a_{23}}{a_{33}}, b=\frac{a_{12} a_{23}-a_{13} a_{22}}{a_{22} a_{33}-a_{23}^{2}}, a=\frac{a_{13} a_{23}-a_{12} a_{33}}{a_{22} a_{33}-a_{23}^{2}} \tag{13}
\end{equation*}
$$

that is,

$$
\begin{equation*}
c=-\frac{a_{23}}{\Delta_{2}}, \quad b=\frac{\Delta_{13}}{\Delta_{1}}, \quad a=\frac{\Delta_{12}}{\Delta_{1}} \tag{14}
\end{equation*}
$$

In such a way we obtain

$$
K(x, y, z)=\left[\begin{array}{lll}
\bar{x} & \bar{y} & \bar{z}
\end{array}\right]\left[\begin{array}{ccc}
\bar{a}_{11} & 0 & 0 \tag{15}\\
0 & \bar{a}_{22} & 0 \\
0 & 0 & \bar{a}_{33}
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right]
$$

where,

$$
\begin{equation*}
\bar{a}_{11}=\frac{\Delta_{0}}{\Delta_{1}}, \quad \bar{a}_{22}=\frac{\Delta_{1}}{\Delta_{2}}, \quad \bar{a}_{33}=\Delta_{2} \tag{16}
\end{equation*}
$$

4. Isotropic values of the matrix

Using the analogies with the results given in Beban-Brkic [2] obtained for the isotropic plane, we have the following:

Definition 1. Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33}\end{array}\right]$ be any real symmetric matrix, and let us denote $\left.\Delta_{0}=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33}\end{array}\right|, \Delta_{1}=\left\lvert\, \begin{array}{ll}a_{22} & a_{23} \\ a_{23} & a_{33}\end{array}\right.\right], \Delta_{2}=\left|a_{33}\right|=a_{33}$. Then the values $I_{1}=\frac{\Delta_{0}}{\Delta_{1}}, I_{2}=\frac{\Delta_{1}}{\Delta_{2}}, I_{3}=\Delta_{2},\left(\Delta_{1}, \Delta_{2} \neq 0\right)$, are called isotropic values of the matrix A.

Definition 2. We say that the real symmetric 3×3-matrix A allows the isotropic diagonalization if there exists a matrix $G=\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$ such that $G^{T} A G$ is a diagonal matrix, i.e., $G^{T} A G=\left[\begin{array}{ccc}I_{1} & 0 & 0 \\ 0 & I_{2} & 0 \\ 0 & 0 & I_{3}\end{array}\right]$ where I_{1}, I_{2}, I_{3} are the isotropic values of the matrix A. We say that matrix G isotropically diagonalizes A.

It can be seen from what has been shown earlier that the following propositions hold:

Proposition 1. The isotropic values I_{1}, I_{2}, I_{3} as well as their products $I_{1} I_{2} I_{3}=$ $\Delta_{0}, I_{2} I_{3}=\Delta_{1}$ are invariant with respect to the group of motions of the double isotropic space $I_{3}^{(2)}$.

Proposition 2. Let A be a matrix from Definition 1. Then there is a matrix $G=\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$ with $a=\frac{\Delta_{12}}{\Delta_{1}}, b=\frac{\Delta_{13}}{\Delta_{1}}, c=-\frac{a_{23}}{\Delta_{2}}$, which under the condition $\Delta_{1}, \Delta_{2} \neq 0$ isotropically diagonalizes A.

Proposition 3. It is always possible to reduce the quadratic form (12) by an isotropic motion to the canonical form (15) except for
a) $\Delta_{2}=0, \Delta_{1} \neq 0$;
b) $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0} \neq 0$;
c) $\Delta_{2}=\Delta_{1}=\Delta_{0}=0$.

5. The absolute plane ω

The quadric equation (5) written in homogenous coordinates $\left(x_{0}: x_{1}: x_{2}: x_{3}\right)$ has the form

$$
\begin{align*}
a_{11} x_{1}^{2} & +a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+2 a_{12} x_{1} x_{2}+2 a_{13} x_{1} x_{3}+2 a_{23} x_{2} x_{3}+2 a_{01} x_{1} x_{0} \\
& +2 a_{02} x_{2} x_{0}+2 a_{03} x_{3} x_{0}+a_{00} x_{0}^{2}=0 . \tag{17}
\end{align*}
$$

With $x_{0}=0$ we obtain the cross-section of the quadric with the plane of infinity ω, i.e.,

$$
\begin{equation*}
k_{\omega}=a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+2 a_{12} x_{1} x_{2}+2 a_{13} x_{1} x_{3}+2 a_{23} x_{2} x_{3}=0, \tag{18}
\end{equation*}
$$

where, $\left(x_{1}: x_{2}: x_{3}\right)$ are plane projective coordinates. The affine coordinates ξ, η in ω are given by

$$
\begin{equation*}
\xi=\frac{x_{2}}{x_{1}}, \quad \eta=\frac{x_{3}}{x_{1}} \tag{19}
\end{equation*}
$$

and the absolute figure is determined by

$$
\begin{equation*}
F(0: 0: 1), \quad f \equiv x_{1}=0 . \tag{20}
\end{equation*}
$$

Equation (18) obtains the form

$$
\begin{align*}
k_{\omega} & \equiv a_{22} \xi^{2}+a_{33} \eta^{2}+2 a_{12} \xi+2 a_{13} \eta+2 a_{23} \xi \eta+a_{11} \\
& =\left[\begin{array}{lll}
1 & \xi & \eta
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]\left[\begin{array}{l}
1 \\
\xi \\
\eta
\end{array}\right]=0 . \tag{21}
\end{align*}
$$

As it has been shown in [2], the basic conic invariants with respect to the group of motions of the isotropic plane ω, in terms of the quadrics invariants, are Δ_{0}, Δ_{1}, and Δ_{2}, given in relation (7).

6. Isotropic classification of quadrics

It is known that in the isotropic plane there are 20 different types of conics, see [3], [7]. We will use the classification given in [3], made with respect to the conics isometric invariants in the isotropic plane, as well as the results related to k_{ω} obtained in the same paper:

$\Delta_{2} \neq 0$	$\Delta_{1}>0$	$\Delta_{0} \neq 0$	$\Delta_{0} \Delta_{2}>0$		imaginary ell		$1^{\text {st }}$ family
		$\Delta_{0}=0$	$\Delta_{0} \Delta_{2}<0$	imag	ry pair of straight		
	$\Delta_{1}<0$	$\Delta_{0} \neq 0$	$\Delta_{2} \Delta_{0}>0$	$2^{\text {nd }}$ type hyperbola			
			$\Delta_{2} \Delta_{0}<0$	$1^{\text {st }}$ type hyperbola			
		$\Delta_{0}=0$	pair of intersecting straight lines				
	$\Delta_{1}=0$	$\Delta_{0} \neq 0$		parabola			
		$\Delta_{0}=0$	$\Delta_{22}<0$		pair of parallel		
			$\Delta_{22}>0$	imagin	pair of parallel		
			$\Delta_{22}=0$		two coinciding		
$\Delta_{2}=0$	$\Delta_{1}<0$	$\Delta_{0} \neq 0$			special hype		$2^{n d}$ family
	$\Delta_{1}<0$	$\Delta_{0}=0$		of lines,	being an isotropi		family
	$\Delta_{1}=0$	$\Delta_{0} \neq 0$			parabolic		$3^{\text {rd }}$ family
		$\Delta_{0}=0$	$\Delta_{33}<0$		pair of isotropic 1		
			$\Delta_{33}>0$	imagina	pair of isotropic 1		
			$\Delta_{33}=0$	$a_{22} \neq 0$	$\begin{aligned} & \text { two coinciding } \\ & \text { lines } \end{aligned}$	tropic	
			$\Delta_{22}<0$	straight line $+f$			$4^{t h}$ family
			$\Delta_{22}=0$	$\Delta_{33}<0$	$\mathrm{a}_{22}=0$	ne $+f$	
				$\Delta_{33}=0$		double f	
						all points in plane	

So, for quadrics classification we will use the conics division in four families depending on their relation towards the absolute figure given by relation (20). We will distinguish the following:
k_{ω} belongs to the $1^{s t}$ family \equiv it does not have an isotropic direction $\Rightarrow 1^{\text {st }}$
family of quadrics; consisting of two subfamilies defined by

$$
\left\{\begin{array}{ll}
k_{\omega} \cap f=\emptyset ; & \alpha \text { subfamily } \\
k_{\omega} \cap f \neq \emptyset ; & \beta \text { subfamily }
\end{array} ;\right.
$$

k_{ω} belongs to the $2^{\text {nd }}$ family \equiv it has one isotropic direction $\Rightarrow 2^{\text {nd }}$ family of quadrics;
k_{ω} belongs to the $3^{\text {rd }}$ family \equiv it has a double isotropic direction $\Rightarrow 3^{\text {rd }}$ family of quadrics;
k_{ω} belongs to the $4^{\text {th }}$ family \equiv it contains an absolute line $f \Rightarrow 4^{\text {th }}$ family of quadrics.
On the other hand, according to Brauner [5], in $I_{3}^{(2)}$ we distinguish six classes of straight lines. Those are:

- Nonisotropic lines \equiv lines l with the property $l \cap f=\emptyset$;
- Isotropic lines \equiv lines l with the property $l \cap f \neq \emptyset, l \cap f \neq F$;
- Double isotropic lines \equiv lines l with the property $l \cap f=F$;
- Nonisotropic lines in the plane of infinity $\omega \equiv$ lines for which $l \cap f=\emptyset$;
- Isotropic lines in the plane of infinity $\omega \equiv$ lines for which $l \cap f=F, l \neq f$;
- Absolute line f.

Hence, quadrics in $I_{3}^{(2)}$ will also be classified according to the direction of the longitudinal axes, i.e., according to the straight line class the axes belong to. We will distinguish:

- Nonisotropic surfaces;
- Isotropic surfaces;
- Double isotropic surfaces.

6.1. k_{ω} belongs to the $1^{\text {st }}$ family

If k_{ω} belongs to the $1^{s t}$ family, then according to the conics isometric invariants, there are two possibilities:
(i) $\Delta_{2} \neq 0, \Delta_{1} \neq 0$;
(ii) $\Delta_{2} \neq 0, \Delta_{1}=0$.

Ad (i) Under such conditions it is always possible to reduce the conic equation (21) by isotropic motions into the form

$$
\begin{gather*}
k_{\omega} \equiv \frac{\Delta_{1}}{\Delta_{2}} \xi^{2}+\Delta_{2} \eta^{2}+\frac{\Delta_{0}}{\Delta_{1}}=0, \text { i.e., } \tag{22}\\
k_{\omega} \equiv I_{2} \xi^{2}+I_{3} \eta^{2}+I_{1}=0 \tag{23}
\end{gather*}
$$

In the homogenous coordinates,

$$
\begin{equation*}
k_{\omega} \equiv I_{2} x_{2}^{2}+I_{3} x_{3}^{2}+I_{1} x_{1}^{2}=0 \tag{24}
\end{equation*}
$$

and finally, in the affine space coordinates,

$$
\begin{equation*}
k_{\omega} \equiv I_{2} y^{2}+I_{3} z^{2}+I_{1} x^{2}=0 \tag{25}
\end{equation*}
$$

All quadrics having (25) as the cross-section with the plane of infinity ω could be written in the form, see [8]:

$$
\begin{align*}
& I_{1} x^{2}+I_{2} y^{2}+I_{3} z^{2}+2 a_{01} x+2 a_{02} y+2 a_{03} z+a_{00}=0, \text { i.e., } \\
& \frac{\Delta_{0}}{\Delta_{1}} x^{2}+\frac{\Delta_{1}}{\Delta_{2}} y^{2}+\Delta_{2} z^{2}+2 a_{01} x+2 a_{02} y+2 a_{03} z+a_{00}=0 . \tag{26}
\end{align*}
$$

The possibilities are the following:
Ad 1) k_{ω} is an imaginary ellipse. Choosing

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}>0 \tag{27}
\end{equation*}
$$

it follows that (21) represents an equation of an imaginary ellipse. By means of three translations of the coordinate system, in the direction of x, y, and z-axes, the quadric equation (26) obtains the form

$$
\begin{equation*}
\frac{\Delta_{0}}{\Delta_{1}} x^{2}+\frac{\Delta_{1}}{\Delta_{2}} y^{2}+\Delta_{2} z^{2}+t=0 \tag{28}
\end{equation*}
$$

where $t=\frac{\Delta}{\Delta_{0}}$ is invariant. Surface (28) defined by:
1.1. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}>0$, and $\Delta>0$, will be called an imaginary ellipsoid of the α subfamily;
1.2. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}>0$, and $\Delta<0$, will be called an ellipsoid of the α subfamily;
1.3. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}>0$, and $\Delta=0$, will be called an imaginary cone of the α subfamily.

Ad 2) k_{ω} is a real ellipse. With

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}<0 \tag{29}
\end{equation*}
$$

an equation of an ellipse is obtained. The quadric equation (26) can be transformed into

$$
\begin{equation*}
-\left|\frac{\Delta_{0}}{\Delta_{1}}\right| x^{2}+\left|\frac{\Delta_{1}}{\Delta_{2}}\right| y^{2}+\left|\Delta_{2}\right| z^{2}+t=0, \quad t=\frac{\Delta}{\Delta_{0}} \tag{30}
\end{equation*}
$$

wherefrom three types of surfaces can be distinguished:
2.1. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$ and $\Delta>0$, will be called a nonisotropic one-sheet hyperboloid of the α subfamily;
2.2. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$ and $\Delta<0$, will be called a nonisotropic two-sheet hyperboloid of the α subfamily;
2.3. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$ and $\Delta=0$, will be called a nonisotropic cone of the α subfamily.

Figure 1. Nonisotropic one-sheet hyperboloid of the α subfamily

Ad 3) k_{ω} is an imaginary pair of straight lines. Choosing

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0}=0 \tag{31}
\end{equation*}
$$

(21) represents an imaginary pair of straight lines. It is easy to verify that the quadric quation (26) under such conditions can be transformed into

$$
\begin{equation*}
\frac{\Delta_{1}}{\Delta_{2}} y^{2}+\Delta_{2} z^{2}+2 a_{01} x+a_{00}=0 \tag{32}
\end{equation*}
$$

wherefrom we derive two possibilities:
3.1. $a_{01} \neq 0$; After a translation of the coordinate system in the direction of the x-axis, equation (32) becomes of the form

$$
\begin{equation*}
\frac{\Delta_{1}}{\Delta_{2}} y^{2}+\Delta_{2} z^{2}+2 a_{01} x=0 \tag{33}
\end{equation*}
$$

where the remaining coefficient $a_{01}=\sqrt{-\frac{\Delta}{\Delta_{1}}}$ is invariant as well. A surface defined by:
3.1.1. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0}=0$, and $\Delta<0$, will be called a nonisotropic elliptical paraboloid of the α subfamily.
3.2.

$$
\begin{equation*}
a_{01}=0 \Rightarrow \frac{\Delta_{1}}{\Delta_{2}} y^{2}+\Delta_{2} z^{2}+a_{00}=0 \tag{34}
\end{equation*}
$$

wherefrom it follows that $\Delta=0$, and $a_{00}=\frac{D_{11}}{\Delta_{1}}$, where D_{11} is invariant with respect to the group of motions of $I_{3}^{(2)}$, and is therefore a_{00}. A surface defined by:
3.2.1. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0}=0$, and $\Delta=0, D_{11} \Delta_{2}>0$, will be called a nonisotropic imaginary cylinder of the α subfamily;
3.2.2. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0}=0$, and $\Delta=0,\left(\Gamma<0 \vee D_{11} \alpha_{1}<0\right)$, will be called a nonisotropic elliptical cylinder of the α subfamily;
3.2.3. $\Delta_{2} \neq 0, \Delta_{1}>0, \Delta_{0}=0$, and $\Delta=0, D_{11} \Delta_{2}=0$, will be called a pair of imaginary planes with a nonisotropic cross-section of the α subfamily.

Figure 2. Nonisotropic elliptical paraboloid of the α subfamily
Here follows the proof for D_{11} being invariant under isotropic motions: From (11) and (34) we derive that

$$
\begin{aligned}
\bar{D}_{11} & =\left|\begin{array}{ccc}
\bar{a}_{00} & \bar{a}_{02} & \bar{a}_{03} \\
\bar{a}_{02} & \bar{a}_{22} & \bar{a}_{23} \\
\bar{a}_{03} & \bar{a}_{23} & \bar{a}_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{00} & a_{02}+c a_{03} & a_{03} \\
a_{02}+c a_{03} & a_{22}+2 c a_{23}+c^{2} a_{33} & a_{23}+c a_{33} \\
a_{03} & a_{23}+c a_{33} & a_{33}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
a_{00} & 0 & 0 \\
0 & a_{22}+c^{2} a_{33} & c a_{33} \\
0 & c a_{33} & a_{33}
\end{array}\right|=a_{00} a_{22} a_{33}=D_{11} .
\end{aligned}
$$

Ad 4) k_{ω} is a $1^{\text {st }}$ type hyperbola. Choosing

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}<0 \tag{35}
\end{equation*}
$$

(21) represents an equation of the $1^{\text {st }}$ type hyperbola. The quadric equation given in (26) can be transformed into

$$
\begin{equation*}
-\left|\frac{\Delta_{0}}{\Delta_{1}}\right| x^{2}+\left|\frac{\Delta_{1}}{\Delta_{2}}\right| y^{2}-\left|\Delta_{2}\right| z^{2}+t=0, \quad t=\frac{\Delta}{\Delta_{0}}, \tag{36}
\end{equation*}
$$

wherefrom three surfaces can be distinguished:
4.1. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta>0$, will be called an isotropic one-sheet hyperboloid of the β subfamily;
4.2. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta<0$, will be called an isotropic two-sheet hyperboloid of the β subfamily;
4.2.1. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta=0$, will be called an isotropic cone of the β subfamily.

Figure 3. Isotropic cone of the β subfamily

Ad 5) k_{ω} is a $2^{\text {nd }}$ type hyperbola. With

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}>0 \tag{37}
\end{equation*}
$$

(21) is an equation of the $2^{\text {nd }}$ type hyperbola. The quadric equation (26) can be written in the form:

$$
\begin{equation*}
-\left|\frac{\Delta_{0}}{\Delta_{1}}\right| x^{2}-\left|\frac{\Delta_{1}}{\Delta_{2}}\right| y^{2}+\left|\Delta_{2}\right| z^{2}+t=0, \quad t=\frac{\Delta}{\Delta_{0}} . \tag{38}
\end{equation*}
$$

The possibilities are:
5.1. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}>0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta>0$, will be called a double isotropic one-sheet hyperboloid of the β subfamily;
5.2. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}>0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta<0$, will be called a double isotropic two-sheet hyperboloid of the β subfamily;
5.3. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0} \neq 0, \Delta_{0} \Delta_{2}>0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta=0$, will be called a double isotropic cone of the β subfamily.

Figure 4. Double isotropic cone of the β subfamily

Ad 6) k_{ω} is a pair of intersecting straight lines. With

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0}=0 \tag{39}
\end{equation*}
$$

(21) represents a pair of intersecting straight lines. It is easy to verify that the quadrics equation (26) under such conditions can be transformed into

$$
\begin{equation*}
\left|\frac{\Delta_{1}}{\Delta_{2}}\right| y^{2}-\left|\Delta_{2}\right| z^{2}+2 a_{01} x+a_{00}=0 \tag{40}
\end{equation*}
$$

wherefrom we derive two possibilities:
6.1.

$$
\begin{equation*}
a_{01} \neq 0 \Rightarrow\left|\frac{\Delta_{1}}{\Delta_{2}}\right| y^{2}-\left|\Delta_{2}\right| z^{2}+2 a_{01} x=0, \quad a_{01}=\sqrt{-\frac{\Delta}{\Delta_{1}}} . \tag{41}
\end{equation*}
$$

A surface defined by:
6.1.1. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0}=0$, and $\Delta>0$, will be called a nonisotropic hyperbolical paraboloid of the β subfamily.
6.2.

$$
\begin{equation*}
a_{01}=0 \Rightarrow\left|\frac{\Delta_{1}}{\Delta_{2}}\right| y^{2}-\left|\Delta_{2}\right| z^{2}+a_{00}=0 \tag{42}
\end{equation*}
$$

wherefrom it follows that $\Delta=0$, and $a_{00}=\frac{D_{11}}{\Delta_{1}}$. A surface defined by:
6.2.1. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0}=0$, and $\Delta=0, D_{11} \neq 0$, will be called a nonisotropic hyperbolical cylinder of the β subfamily;
6.2.2. $\Delta_{2} \neq 0, \Delta_{1}<0, \Delta_{0}=0$, and $\Delta=0, D_{11}=0$, will be called a pair of planes with a nonisotropic cross-section of the β subfamily.

Ad (ii) Under the conditions $\Delta_{2} \neq 0$, and $\Delta_{1}=0$, it is always possible to reduce the conic equation (21) by isotropic motions into the form

$$
\begin{align*}
& k_{\omega} \equiv \Delta_{2} \eta^{2}+2 a_{12} \xi=0, \text { or } \tag{43}\\
& k_{\omega} \equiv \Delta_{2} \eta^{2}+a_{11}=0, \tag{44}
\end{align*}
$$

depending on Δ_{0} being different from or equal to zero. The remaining coefficients $a_{12}=\sqrt{-\frac{\Delta_{0}}{\Delta_{2}}}$, and $a_{11}=\frac{\Delta_{22}}{\Delta_{2}}$. Following the earlier described procedure, all quadrics in $I_{3}^{(2)}$ related to k_{ω} given by equation (43) or (44) in the affine space coordinates, are of the form

$$
\begin{align*}
\Delta_{2} z^{2}+2 \sqrt{-\frac{\Delta_{0}}{\Delta_{2}}} x y+2 a_{01} x+2 a_{02} y+2 a_{03} z+a_{00}=0, \quad \text { or } \tag{45}\\
\frac{\Delta_{22}}{\Delta_{2}} x^{2}+\Delta_{2} z^{2}+2 a_{01} x+2 a_{02} y+2 a_{03} z+a_{00}=0 \tag{46}
\end{align*}
$$

Ad 7) \mathbf{k}_{ω} is a parabola. With

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0} \neq 0 \tag{47}
\end{equation*}
$$

(43) represents an equation of the parabola. The quadric equation (45), using translations of the coordinate system in the direction of the x, y, and z-axes, is reduced to

$$
\begin{equation*}
\Delta_{2} z^{2}+2 \sqrt{-\frac{\Delta_{0}}{\Delta_{2}}} x y+2 a_{00}=0, \quad a_{00}=\frac{\Delta}{\Delta_{0}} \tag{48}
\end{equation*}
$$

wherefrom three surfaces can be distinguished:
7.1. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0} \neq 0$, and $\Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta>0$ will be called a nonisotropic one sheet hyperboloid of the β subfamily;
7.2. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0} \neq 0$, and $\Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta<0$ will be called a nonisotropic two-sheet hyperboloid of the β subfamily;
7.3. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0} \neq 0$, and $\Delta_{0} \Delta_{2}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right)$, and $\Delta=0$ will be called a nonisotropic real cone of the β subfamily.

Ad 8) \mathbf{k}_{ω} is a pair of parallel lines. From

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}<0 \tag{49}
\end{equation*}
$$

it follows that (44) represents an equation of a pair of parallel lines. The equation of the associated quadrics can be reduced to

$$
\begin{equation*}
\left|\frac{\Delta_{22}}{\Delta_{2}}\right| x^{2}-\left|\Delta_{2}\right| z^{2}+2 a_{02} y+a_{00}=0 \tag{50}
\end{equation*}
$$

wherefrom we derive two possibilities:
8.1.

$$
\begin{equation*}
a_{02} \neq 0 \Rightarrow\left|\frac{\Delta_{22}}{\Delta_{2}}\right| x^{2}-\left|\Delta_{2}\right| z^{2}+2 a_{02} y=0, \quad a_{02}=\sqrt{-\frac{\Delta}{\Delta_{22}}} \tag{51}
\end{equation*}
$$

Surface (51) defined by:
8.1.1. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}<0$, and $\Delta>0$, will be called an isotropic hyperbolical paraboloid of the β subfamily.
8.2.

$$
\begin{equation*}
a_{02}=0 \Rightarrow\left|\frac{\Delta_{22}}{\Delta_{2}}\right| x^{2}-\left|\Delta_{2}\right| z^{2}+a_{00} y=0 \tag{52}
\end{equation*}
$$

It is easy to be seen that $\Delta=0$, and that $a_{00}=\frac{D_{22}}{\Delta_{22}}$, with D_{22} being invariant under isotropic motions (see case 3.2.). A surface defined by:
8.2.1. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}<0$, and $\Delta=0, D_{22} \neq 0$, will be called an isotropic hyperbolical cylinder of the β subfamily;
8.2.2. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}<0$, and $\Delta=0, D_{22}=0$, will be called a pair of planes with an isotropic cross-section of the β subfamily.

Figure 5. Isotropic hyperbolical cylinder of the β subfamily

Ad 9) \mathbf{k}_{ω} is an imaginary pair of parallel lines
From

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}>0 \tag{53}
\end{equation*}
$$

it follows that (44) represents an equation of a conic from the title. The associated quadric equation can be reduced to

$$
\begin{equation*}
\frac{\Delta_{22}}{\Delta_{2}} x^{2}+\Delta_{2} z^{2}+2 a_{02} y+a_{00}=0 \tag{54}
\end{equation*}
$$

wherefrom similarly to the previous case we derive two possibilities:
9.1.

$$
\begin{equation*}
a_{02} \neq 0 \Rightarrow \frac{\Delta_{22}}{\Delta_{2}} x^{2}+\Delta_{2} z^{2}+2 a_{02} y=0, \quad a_{02}=\sqrt{-\frac{\Delta}{\Delta_{22}}} . \tag{55}
\end{equation*}
$$

Surface (55) defined by:
9.1.1. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}>0$, and $\Delta<0$, will be called an isotropic elliptical paraboloid of the β subfamily.
9.2.

$$
\begin{equation*}
a_{02}=0 \Rightarrow \frac{\Delta_{22}}{\Delta_{2}} x^{2}+\Delta_{2} z^{2}+a_{00}=0 \tag{56}
\end{equation*}
$$

with $\Delta=0$, and $a_{00}=\frac{D_{22}}{\Delta_{22}}$. Surface (56) defined by:
9.2.1. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}>0$, and $\Delta=0,\left(\Gamma<0 \vee D_{22} \alpha_{1}<0\right)$, will be called an isotropic elliptical cylinder of the β subfamily;
9.2.2. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}>0$, and $\Delta=0, D_{22} \Delta_{2}>0$, will be called an isotropic imaginary cylinder of the β subfamily;
9.2.3. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}>0$, and $\Delta=0, D_{22} \Delta_{2}=0$, will be called an imaginary pair of planes with an isotropic cross-section of the β subfamily.

Ad 10) \mathbf{k}_{ω} consists of two coinciding lines. Choosing

$$
\begin{equation*}
\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0 \tag{57}
\end{equation*}
$$

(44) represents an equation of a conic from the title. The equation of the joined quadrics can be reduced to

$$
\begin{equation*}
\Delta_{2} z^{2}+2 a_{01} x+2 a_{02} y+a_{00}=0, \quad a_{01}=\sqrt{-\frac{D_{22}}{\Delta_{2}}}, \quad a_{02}=\sqrt{-\frac{D_{11}}{\Delta_{2}}} \tag{58}
\end{equation*}
$$

On the other hand, on the assumption that in this case the surface equation disjoints in two linear factors, compared with (58), $a_{01}=a_{02}=0$ is derived. Therefore, the surface equation is of the form

$$
\begin{equation*}
\Delta_{2} z^{2}+a_{00}=0, \quad a_{00}=\frac{\gamma_{03}}{\Delta_{2}} \tag{59}
\end{equation*}
$$

where the sign of γ_{03} is invariant. Three surfaces can be distinguished:
$10.1 \Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0$, and $\Delta=0, D_{11}=D_{22}=0, \gamma_{03}<0$, will be called a pair of nonisotropic parallel planes of the β subfamily;
10.2. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0$, and $\Delta=0, D_{11}=D_{22}=0, \gamma_{03}>0$, will be called an imaginary pair of nonisotropic parallel planes of the β subfamily;
10.3. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0$, and $\Delta=0, D_{11}=D_{22}=0, \gamma_{03}=0$, will be called two coinciding nonisotropic planes of the β subfamily.
Here follows the proof that the sign of γ_{03} is invariant under isotropic motions.
From (8) and (59) it follows that

$$
\begin{aligned}
\Gamma_{0}=\gamma_{01}+\gamma_{02}+\gamma_{03} & =\left|\begin{array}{ll}
a_{00} & a_{01} \\
a_{01} & a_{11}
\end{array}\right|+\left|\begin{array}{ll}
a_{00} & a_{02} \\
a_{02} & a_{22}
\end{array}\right|+\left|\begin{array}{ll}
a_{00} & a_{03} \\
a_{03} & a_{33}
\end{array}\right| \\
& =\left|\begin{array}{cc}
a_{00} & 0 \\
0 & 0
\end{array}\right|+\left|\begin{array}{cc}
a_{00} & 0 \\
0 & 0
\end{array}\right|+\left|\begin{array}{cc}
a_{00} & 0 \\
0 & a_{33}
\end{array}\right| \\
& =\gamma_{03} .
\end{aligned}
$$

On the other hand, according to (11), we obtain

$$
\begin{aligned}
\bar{\Gamma}_{0}=\bar{\gamma}_{01}+\bar{\gamma}_{02}+\bar{\gamma}_{03} & =\left|\begin{array}{cc}
\bar{a}_{00} & \bar{a}_{01} \\
\bar{a}_{01} & \bar{a}_{11}
\end{array}\right|+\left|\begin{array}{cc}
\bar{a}_{00} & \bar{a}_{02} \\
\bar{a}_{02} & \bar{a}_{22}
\end{array}\right|+\left|\begin{array}{ll}
\bar{a}_{00} & \bar{a}_{03} \\
\bar{a}_{03} & \bar{a}_{33}
\end{array}\right| \\
& =\left|\begin{array}{cc}
a_{00} & 0 \\
0 & b^{2} a_{33}
\end{array}\right|+\left|\begin{array}{cc}
a_{00} & 0 \\
0 & c^{2} a_{33}
\end{array}\right|+\left|\begin{array}{cc}
a_{00} & 0 \\
0 & a_{33}
\end{array}\right| \\
& =\cdots=\Gamma\left(b^{2}+c^{2}+1\right)=\gamma_{03}\left(b^{2}+c^{2}+1\right) .
\end{aligned}
$$

6.2. k_{ω} belongs to the $2^{\text {nd }}$ family

Since k_{ω} belongs to the $2^{\text {nd }}$ family, with respect to the conics isometric invariants, the following conditions are fulfilled:

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}<0 \tag{60}
\end{equation*}
$$

Under such conditions, using isotropic motions it is always possible to reduce the conic equation (20) into

$$
\begin{equation*}
k_{\omega} \equiv 2 a_{23} \xi \eta+a_{11}=0 \tag{61}
\end{equation*}
$$

where $a_{11}=\frac{\Delta_{0}}{\Delta_{1}}$ and $a_{23}=\sqrt{-\Delta_{1}}$. In the affine space coordinates:

$$
\begin{equation*}
k_{\omega}=a_{11} x^{2}+2 a_{23} y z=0 \tag{62}
\end{equation*}
$$

All quadrics having (62) as the cross-section with the plane of infinity ω could be written in the form

$$
\begin{equation*}
a_{11} x^{2}+2 a_{23} y z+2 a_{01} x+2 a_{02} y+a_{03} z+a_{00}=0 \tag{63}
\end{equation*}
$$

The possibilities are the following:
Ad 11) \mathbf{k}_{ω} is a special hyperbola. With

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}<0, \Delta_{0} \neq 0 \tag{64}
\end{equation*}
$$

(61) is an equation of a special hyperbola. Using translations in the direction of the x, y, and z-axes, the quadric equation given in (63) can be reduced to

$$
\begin{equation*}
\frac{\Delta_{0}}{\Delta_{1}} x^{2}+2 \sqrt{-\Delta_{1}} y z+a_{00}=0, \quad a_{00}=\frac{\Delta}{\Delta_{0}} \tag{65}
\end{equation*}
$$

The surface defined by:
11.1. $\Delta_{2}=0, \Delta_{1}<0, \Delta_{0} \neq 0$, and ($\left.\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right), \Delta>0$, will be called an one-sheet hyperboloid of the second family (isotropic and nonisotropic);
11.2. $\Delta_{2}=0, \Delta_{1}<0, \Delta_{0} \neq 0$, and ($\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0$), $\Delta<0$, will be called an two-sheet hyperboloid of the second family (isotropic and nonisotropic);
11.3. $\Delta_{2}=0, \Delta_{1}<0, \Delta_{0} \neq 0$, and $\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right), \Delta=0$, will be called a real cone of the second family (isotropic and nonisotropic).

Ad 12) k_{ω} is a pair of lines, one being an isotropic line. Choosing

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}<0, \Delta_{0}=0 \tag{66}
\end{equation*}
$$

it follows that (61) represents an equation of a conic from the title. The quadric equation (63) is reduced to

$$
\begin{equation*}
2 \sqrt{-\Delta_{1}} y z+2 a_{01} x+a_{00}=0 \tag{67}
\end{equation*}
$$

wherefrom we derive two possibilities:
12.1.

$$
\begin{equation*}
a_{01} \neq 0 \Rightarrow 2 \sqrt{-\Delta_{1}} y z+2 a_{01} x=0, \quad a_{00}=\sqrt{-\frac{\Delta}{\Delta_{1}}} . \tag{68}
\end{equation*}
$$

Surface (68) defined by:
12.1.1. $\Delta_{2}=0, \Delta_{1}<0, \Delta_{0}=0$, and $\Delta>0$, will be called a nonisotropic hyperbolical paraboloid of the second family.
12.2.

$$
\begin{equation*}
a_{01} \neq 0 \Rightarrow 2 \sqrt{-\Delta_{1}} y z+2 a_{00}=0, \quad a_{00}=\frac{D_{11}}{\Delta_{1}} \tag{69}
\end{equation*}
$$

The surface defined by:
12.2.1. $\Delta_{2}=0, \Delta_{1}<0, \Delta_{0}=0$, and $\Delta=0, D_{11} \neq 0$, will be called a nonisotropic hyperbolical cylinder of the second family;
12.2.2. $\Delta_{2}=0, \Delta_{1}<0, \Delta_{0}=0$, and $\Delta=0, D_{11}=0$, will be called a pair of planes with a nonisotropic cross-section of the second family.

6.3. k_{ω} belongs to the $3^{\text {rd }}$ family

If k_{ω} belongs to the $3^{r d}$ family, the following conditions are fulfilled:

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0 \tag{70}
\end{equation*}
$$

In addition, on the assumption that $a_{22} \neq 0$, using isotropic motions, it is always possible to reduce the conic equation (21) into the form

$$
\begin{gather*}
k_{\omega} \equiv a_{22} \xi^{2}+2 a_{13} \eta=0, \text { or } \tag{71}\\
k_{\omega} \equiv a_{22} \xi^{2}+a_{11}=0, \tag{72}
\end{gather*}
$$

depending on Δ_{0} being different from or equal to zero. Following the earlier described procedure, all quadrics in $I_{3}^{(2)}$ related to k_{ω} given by equation (71) or (72) in the affine space coordinates, are of the form

$$
\begin{gather*}
a_{22} y^{2}+2 a_{13} x z+2 a_{01} x+2 a_{02} y+2 a_{03} z+a_{00}=0, \text { or } \tag{73}\\
a_{11} x^{2}+a_{22} y^{2}+2 a_{01} x+2 a_{02} y+2 a_{03} z+a_{00}=0 . \tag{74}
\end{gather*}
$$

Ad 13) k_{ω} is a parabolic circle. With

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0, \Delta_{0} \neq 0 \tag{75}
\end{equation*}
$$

(71) is an equation of a parabolic circle. Using translations of the coordinate system in the direction of the x, y, and z-axes, the quadric equation (73) can be reduced to

$$
\begin{equation*}
a_{22} y^{2}+2 a_{13} x z+a_{00}=0 \tag{76}
\end{equation*}
$$

where $a_{22}=-\frac{\Delta_{0}}{\sqrt{-\Delta_{22}}}, a_{13}=\sqrt{-\Delta_{22}}$, and $a_{00}=\frac{\Delta}{\Delta_{0}}$. The surface defined by:
13.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0} \neq 0$, and $\Delta_{22}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right), \Delta>0$, will be called a nonisotropic one-sheet hyperboloid of the third family;
13.2. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0} \neq 0$, and $\Delta_{22}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right), \Delta<0$, will be called a textbfnonisotropic two-sheet hyperboloid of the third family;
13.3. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0} \neq 0$, and $\Delta_{22}<0,\left(\Gamma_{1}<0 \vee \Delta_{0} \alpha_{0}<0\right), \Delta=0$, will be called a real nonisotropic cone of the third family.

Ad 14) \mathbf{k}_{ω} is a pair of isotropic lines. With

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}<0 \tag{77}
\end{equation*}
$$

it follows that (72) represents an equation of the conic from the title. Under the above conditions the quadric equation (75) can be reduced to

$$
\begin{equation*}
\left|a_{11}\right| x^{2}-\left|a_{22}\right| y^{2}+2 a_{03} z+a_{00}=0 \tag{78}
\end{equation*}
$$

wherefrom we derive two possibilities:
14.1.

$$
\begin{equation*}
a_{03} \neq 0 \Rightarrow\left|a_{11}\right| x^{2}-\left|a_{22}\right| y^{2}+2 a_{03} z=0, \quad a_{03}=\sqrt{-\frac{\Delta}{\Delta_{33}}}, \quad \Delta_{33}=a_{11} a_{22} \tag{79}
\end{equation*}
$$

Surface (80) defined by:
14.1.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}<0$, and $\Delta>0$, will be called a double isotropic hyperbolical paraboloid of the third family.
14.2.

$$
\begin{equation*}
a_{03}=0 \Rightarrow\left|a_{11}\right| x^{2}-\left|a_{22}\right| y^{2}+a_{00}=0, a_{00}=\frac{D_{33}}{\Delta_{33}}, \Delta_{33}=a_{11} a_{22} \tag{80}
\end{equation*}
$$

The possibilities are:
14.2.1 $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}<0$, and $\Delta=0, D_{33} \neq 0$, will be called a double isotropic hyperbolical cylinder of the third family;
14.2.2. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}<0$, and $\Delta=0, D_{33}=0$, will be called a pair of planes with a double isotropic cross-section of the third family.

Figure 6. Double isotropic hyperbolical cylinder of the third family

Ad 15) k_{ω} is an imaginary pair of isotropic lines With

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}>0 \tag{81}
\end{equation*}
$$

it follows that (72) represents an equation of the conic from the title. Similarly to the above case, the quadric equation (75) can be reduced to

$$
\begin{equation*}
a_{11} x^{2}+a_{22} y^{2}+2 a_{03} z+a_{00}=0, \tag{82}
\end{equation*}
$$

and the possibilities are:
15.1.

$$
\begin{equation*}
a_{03} \neq 0 \Rightarrow a_{11} x^{2}+a_{22} y^{2}+2 a_{03} z=0, a_{03}=\sqrt{-\frac{\Delta}{\Delta_{33}}}, \Delta_{33}=a_{11} a_{22} . \tag{83}
\end{equation*}
$$

A surface defined by:
15.1.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}>0$, and $\Delta<0$, will be called a double isotropic elliptical paraboloid of the third family.
15.2.

$$
\begin{equation*}
a_{03}=0 \Rightarrow a_{11} x^{2}+a_{22} y^{2}+a_{00}=0, a_{00}=\frac{D_{33}}{\Delta_{33}}, \Delta_{33}=a_{11} a_{22} . \tag{84}
\end{equation*}
$$

On the assumption of (81) D_{33} is invariant.
15.2.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}>0$, and $\Delta=0,\left(\Gamma<0 \vee \alpha_{1} D_{33}<0\right)$, will be called a double isotropic elliptical cylinder of the third family;
15.2.2. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}>0$, and $\Delta=0, a_{22} D_{33}>0$, will be called a double isotropic imaginary cylinder of the third family;
15.2.3. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}>0$, and $\Delta=0, a_{22} D_{33}=0$, will be called a pair of imaginary planes with a double isotropic cross-section of the third family.

On case 15.2 .2 we are going to demonstrate that the conditions on the invariants characterize the types unequally.

First, let us prove that $D_{33}=D_{11}+D_{22}+D_{33}=\bar{D}_{11}+\bar{D}_{22}+\bar{D}_{33}$:

$$
\begin{aligned}
& \bar{D}_{11}=\left|\begin{array}{lll}
\bar{a}_{00} & \bar{a}_{02} & \bar{a}_{03} \\
\bar{a}_{02} & \bar{a}_{22} & \bar{a}_{23} \\
\bar{a}_{03} & \bar{a}_{23} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{00} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & 0
\end{array}\right|=D_{11}=0, \\
& \bar{D}_{22}=\left|\begin{array}{ccc}
\bar{a}_{00} & \bar{a}_{01} & \bar{a}_{03} \\
\bar{a}_{01} & \bar{a}_{11} & \bar{a}_{13} \\
\bar{a}_{03} & a_{13} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{00} & 0 & 0 \\
0 & a_{11}+a^{2} a_{22} & 0 \\
0 & 0 & 0
\end{array}\right|=0, D_{22}=\left|\begin{array}{ccc}
0 & 0 & 0 \\
0 & a_{11} & 0 \\
0 & 0 & 0
\end{array}\right|=0, \\
& \bar{D}_{33}=\left|\begin{array}{lll}
\bar{a}_{00} & \bar{a}_{01} & \bar{a}_{02} \\
\bar{a}_{01} & \bar{a}_{11} & \bar{a}_{12} \\
\bar{a}_{02} & \bar{a}_{12} & \bar{a}_{22}
\end{array}\right|=\left|\begin{array}{ccc}
a_{00} & 0 & 0 \\
0 & a_{11}+a^{2} a_{22} & a a_{22} \\
0 & a a_{22} & a_{22}
\end{array}\right|=a_{00} a_{11} a_{22}, \\
& D_{33}=\left|\begin{array}{ccc}
a_{00} & 0 & 0 \\
0 & a_{11} & 0 \\
0 & 0 & a_{33}
\end{array}\right|=a_{00} a_{11} a_{22} .
\end{aligned}
$$

We will also need $\Delta_{33}>0 \Rightarrow \Delta_{11}+\Delta_{22}+\Delta_{33}>0$, i.e. $\bar{\Delta}_{11}+\bar{\Delta}_{22}+\bar{\Delta}_{33}>0$:

$$
\begin{aligned}
& \bar{\Delta}_{11}=\left|\begin{array}{ll}
\bar{a}_{22} & \bar{a}_{23} \\
\bar{a}_{23} & \bar{a}_{33}
\end{array}\right|=\left|\begin{array}{rr}
a_{22} & 0 \\
0 & 0
\end{array}\right|=\Delta_{11}=0, \\
& \bar{\Delta}_{22}=\left|\begin{array}{ll}
\bar{a}_{11} & \bar{a}_{13} \\
\bar{a}_{13} & \bar{a}_{33}
\end{array}\right|=\left|\begin{array}{cc}
a_{11}+a^{2} a_{22} & 0 \\
0 & 0
\end{array}\right|=0, \Delta_{22}=\left|\begin{array}{cc}
a_{11} & 0 \\
0 & 0
\end{array}\right|=0, \\
& \bar{\Delta}_{33}=\left|\begin{array}{c}
\bar{a}_{11} \\
\bar{a}_{12} \\
\bar{a}_{12} \\
\bar{a}_{22}
\end{array}\right|=\left|\begin{array}{cc}
a_{11}+a^{2} a_{22} & a a_{22} \\
a a_{22} & a_{22}
\end{array}\right|=a_{11} a_{22}, \Delta_{33}=\left|\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right|=a_{11} a_{22} \text {. }
\end{aligned}
$$

Finally, $\Delta_{2}=0 \& \Delta_{33}>0 \& a_{22} D_{33}>0 \Rightarrow\left(D_{11}+D_{22}+D_{33}\right)\left(a_{11}+a_{22}+a_{00}\right)>0$, i.e. $\left(\bar{D}_{11}+\bar{D}_{22}+\bar{D}_{33}\right)\left(\bar{a}_{11}+\bar{a}_{22}+\bar{a}_{00}\right)>0$:

With $\Delta_{33}=a_{11} a_{22}>0 \Rightarrow\left\{\begin{array}{l}a_{11}, a_{22}>0, \text { or } \\ a_{11}, a_{22}<0\end{array}, \quad \Delta_{2}=a_{33}=0, a_{22} D_{33}>0\right.$, we obtain

$$
\begin{aligned}
& \left(D_{11}+D_{22}+D_{33}\right)\left(a_{11}+a_{22}+a_{33}\right)=D_{33}\left(a_{11}+a_{22}+a_{00}\right)>0, \text { and } \\
& \left(\bar{D}_{11}+\bar{D}_{22}+\bar{D}_{33}\right)\left(\bar{a}_{11}+\bar{a}_{22}+\bar{a}_{33}\right)=D_{33}\left(a_{11}+a_{22}\left(a^{2}+1\right)+a_{00}\right)>0 .
\end{aligned}
$$

Presuming now conditions 15.2.2, and taking into consideration what has been proved above, we derive:
(i) With $\Delta_{2}=\Delta_{1}=0$, a surface belongs to the third family of quadrics;
(ii) With $\Delta=\Delta_{0}=0, \Delta_{33}>0$, and $a_{22} D_{33}>0$, according to the affine classification of second order surfaces, it is an imaginary cylinder;
(iii) (i) \& (ii) \Rightarrow the longitudinal axis is a double isotropic straight line.

All other cases can be checked in a similar way.
Ad 16) \mathbf{k}_{ω} consists of two coinciding isotropic lines. With

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}=0, a_{22} \neq 0 \tag{85}
\end{equation*}
$$

(72) represents an equation of a conic from the title. After being translated in the direction of the y axis the equation of the associated quadrics becomes

$$
\begin{equation*}
a_{22} y^{2}+2 a_{01} x+2 a_{03} z+a_{00}=0, a_{01}=\sqrt{-\frac{D_{33}}{a_{22}}}, a_{03}=\sqrt{-\frac{D_{11}}{a_{22}}} . \tag{86}
\end{equation*}
$$

On the other hand, on the assumption that in this case the surface equation disjoints in two linear factors, compared with (86), $a_{01}=a_{03}=0$ is derived. Therefore, it is of the form

$$
\begin{equation*}
a_{22} y^{2}+a_{00}=0, \quad a_{22} a_{00}=\gamma_{02} \tag{87}
\end{equation*}
$$

Three surfaces can be distinguished:
16.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}=0, a_{22} \neq 0$, and, $\Delta=D_{11}=D_{33}=0$, $\gamma_{02}<0$, will be called a real pair of isotropic parallel planes of the third family;
16.2. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}=0, a_{22} \neq 0$, and, $\Delta=D_{11}=D_{33}=0$, $\gamma_{02}>0$, will be called an imaginary pair of isotropic parallel planes of the third family;
16.3. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}=0, a_{22} \neq 0$, and, $\Delta=D_{11}=D_{33}=0, \gamma_{02}=0$, will be called two coinciding isotropic planes of the third family.

6.4. k_{ω} belongs to the $4^{\text {th }}$ family

k_{ω} being of the $4^{\text {th }}$ family means that the following conditions are fulfilled:

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0 \tag{88}
\end{equation*}
$$

Besides, on the assumption that $a_{22}=0$, using isotropic motions, it is always possible to reduce the conic equation (21) to the form

$$
\begin{equation*}
k_{\omega} \equiv 2 a_{12} \xi+2 a_{13} \eta+a_{11}=0 \tag{89}
\end{equation*}
$$

wherefrom it follows that the conic consists of two straight lines, one being an absolute line f. In the affine space coordinates we have

$$
\begin{equation*}
k_{\omega} \equiv x\left(a_{11} x+2 a_{12} y+2 a_{13} z\right)=a_{11} x^{2}+2 a_{12} x y+2 a_{13} x z=0 \tag{90}
\end{equation*}
$$

All quadrics having (90) as the cross-section with the plane of infinity ω are of the following form:

$$
\begin{equation*}
a_{11} x^{2}+2 a_{12} x y+2 a_{13} x z+2 a_{01} x+2 a_{02} y+2 a_{03} z+a_{00}=0 \tag{91}
\end{equation*}
$$

Ad 17) \mathbf{k}_{ω} consists of a nonisotropic line + an absolute line f. Choosing

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}<0 \tag{92}
\end{equation*}
$$

we obtain that (89) represents the conic from the title. Using translations in the direction of the x, and z-axes, (91) can be reduced to

$$
\begin{equation*}
2 a_{13} x z+2 a_{02} y+a_{00}=0 \tag{93}
\end{equation*}
$$

There are two possibilities:
17.1

$$
\begin{equation*}
a_{02} \neq 0 \Rightarrow a_{13} x z+a_{02} y=0, \quad a_{13}=\sqrt{-\Delta_{22}}, \quad a_{02}=\sqrt{-\frac{\Delta}{\Delta_{22}}} . \tag{94}
\end{equation*}
$$

Surface (94) defined by:
17.1.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}<0$, and $\Delta>0$, will be called an isotropic hyperbolical paraboloid of the fourth family.
17.2.

$$
\begin{equation*}
a_{02}=0 \Rightarrow 2 a_{13} x z+a_{00}=0, \quad a_{13}=\sqrt{-\Delta_{22}}, \quad a_{00}=\frac{D_{22}}{\Delta_{22}} \tag{95}
\end{equation*}
$$

From (95) two surfaces can be distinguished:
17.2.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}<0$, and $\Delta=0, D_{22} \neq 0$, will be called an isotropic hyperbolical cylinder of the fourth family;
17.2.2. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}<0$, and $\Delta=0, D_{22}=0$, will be called a pair of planes, one being a 2-isotropic plane, with an isotropic cross-section of the fourth family.

Figure 7. Isotropic hyperbolical cylinder of the fourth family

Ad 18) \mathbf{k}_{ω} consists of an isotropic line + an absolute line f. With

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0, a_{22}=0, \Delta_{33}<0 \tag{96}
\end{equation*}
$$

it follows that (89) represents an equation of the conic from the title. Under the above conditions, and after translations in the direction of the x and y-axes have been performed, the quadric equation (91) becomes as follows:

$$
\begin{equation*}
2 a_{12} x y+2 a_{03} z+a_{00}=0 \tag{97}
\end{equation*}
$$

There are two possibilities:
18.1.

$$
\begin{equation*}
a_{03} \neq 0 \Rightarrow a_{12} x y+a_{03} z=0, \quad a_{13}=\sqrt{-\Delta_{33}}, \quad a_{03}=\sqrt{-\frac{\Delta}{\Delta_{33}}} . \tag{98}
\end{equation*}
$$

Surface (98) defined by:
18.1.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0, a_{22}=0, \Delta_{33}<0$, and $\Delta>0$, will be called a double isotropic hyperbolical paraboloid of the fourth family.
18.2.

$$
\begin{equation*}
a_{03}=0 \Rightarrow 2 a_{12} x y+a_{00}=0, \quad a_{13}=\sqrt{-\Delta_{33}}, \quad a_{00}=\frac{D_{33}}{\Delta_{33}} \tag{99}
\end{equation*}
$$

We have:
18.2.1. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0, a_{22}=0, \Delta_{33}<0$, and $\Delta=0$, $D_{33} \neq 0$, will be called a double isotropic hyperbolical cylinder of the fourth family;
18.2.2. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0, a_{22}=0, \Delta_{33}<0$, and $\Delta=0$, $D_{33}=0$, will be called a pair of planes, 1 and 2-isotropic, with a double isotropic cross-section of the fourth family.

Ad 19) \mathbf{k}_{ω} is a double absolute line f. Choosing

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0, \Delta_{33}=0, a_{22}=0, a_{11} \neq 0 \tag{100}
\end{equation*}
$$

k_{ω} is a double absolute line f. After being translated in the direction of the x-axis, the equation of the associated quadrics becomes of the following form:

$$
\begin{equation*}
a_{11} x^{2}+2 a_{02} y+2 a_{03} z+a_{00}=0, a_{02}=\sqrt{-\frac{D_{33}}{a_{11}}}, a_{03}=\sqrt{-\frac{D_{22}}{a_{11}}} . \tag{101}
\end{equation*}
$$

On the other hand, on the assumption that in this case, similarly to cases 10) and $16)$, the surface equation disjoints in two linear factors, and therefore $a_{02}=a_{03}=0$ must be fulfilled. The surface equation becomes:

$$
\begin{equation*}
a_{11} x^{2}+a_{00}=0, \quad a_{11} a_{00}=\gamma_{01} \tag{102}
\end{equation*}
$$

Three surfaces can be distinguished:
19.1. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=0, a_{11} \neq 0$, and $\Delta=D_{22}=D_{33}=0$, $\gamma_{01}<0$, will be called a real pair of 2-isotropic planes of the fourth family;
19.2. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=0, a_{11} \neq 0$, and $\Delta=D_{22}=D_{33}=0$, $\gamma_{01}>0$, will be called an imaginary pair of 2-isotropic planes of the fourth family;
19.3. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=0, a_{11} \neq 0$, and $\Delta=D_{22}=D_{33}=0$, $\gamma_{01}=0$, will be called two coinciding 2-isotropic planes of the fourth family.

Ad 20) All points in the isotropic plane. Choosing

$$
\begin{equation*}
\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0, \Delta_{33}=0, a_{22}=0, a_{11}=0 \tag{103}
\end{equation*}
$$

it follows that k_{ω} consists of all points in I_{2}. In the homogenous coordinates and under the above conditions the quadric equation (91) is of the form

$$
\begin{equation*}
x_{0}\left(a_{00} x_{0}+2 a_{01} x_{1}+2 a_{02} x_{2}+2 a_{03} x_{3}\right)=0 \tag{104}
\end{equation*}
$$

There are four possibilities for this type of surfaces:
20.1. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=a_{11}=0$, and $\Delta=0, \gamma_{03} \neq 0$, will be called a pair of planes: $\omega+$ a nonisotropic plane;
20.2. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=a_{11}=0$, and $\Delta=0, \gamma_{03}=0, \gamma_{02} \neq 0$, will be called a pair of planes: $\omega+$ a 1-isotropic plane;
20.3. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=a_{11}=0$, and $\Delta=0, \gamma_{03}=0, \gamma_{02}=0$, $\gamma_{01} \neq 0$, will be called a pair of planes: $\omega+$ a 2-isotropic plane;
20.4. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=a_{11}=0$, and $\Delta=0, \Gamma=0, a_{00} \neq 0$, will be called a double absolute plane ω.
6.5. k_{ω} is a pair $\{S, G\}, S \in g$

We must also take into consideration the case when k_{ω} is of the type $\{S, g\}$, where g is a double straight line in the isotropic plane I_{2}, and S a point on it. Second order surfaces having such a cross-section with the plane of infinity ω are parabolic cylinders.

Ad 1) k_{ω} is a double nonisotropic line g. It follows from Section 6.1 that choosing $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0$, and $\Delta_{22}=0$, relation $k_{\omega} \equiv \eta^{2}=0$ represents an equation of a double nonisotropic line. All quadrics having such a cross-section with the plane of infinity could be written as $z^{2}+2 a_{01} x+2 a_{02} y+a_{00}=0$.
For the point $S \in g$ there are two possibilities:
a) $S \notin f$; and
b) $S \in f \backslash\{F\}$.

Ad a)

$$
\begin{equation*}
S \notin f, S(0: 1: 0: 0) \Rightarrow a_{01}=0, a_{02} \neq 0 \Rightarrow z^{2}+2 a_{02} y=0 . \tag{105}
\end{equation*}
$$

The surface defined by:

1. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0$, and $\Delta=0, D_{11} \neq 0$, will be called a nonisotropic parabolic cylinder of the β subfamily.

Ad b)

$$
\begin{equation*}
S \in f \backslash\{F\}, S(0: 1: 0: 0) \Rightarrow a_{01} \neq 0, a_{02}=0 \Rightarrow z^{2}+2 a_{01} x=0 \tag{106}
\end{equation*}
$$

The surface defined by:
2. $\Delta_{2} \neq 0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{22}=0$, and $\Delta=0, D_{11}=0, D_{22} \neq 0$ will be called an isotropic parabolic cylinder of the β subfamily.

Figure 8. Isotropic parabolic cylinder of the β subfamily

Ad 2) k_{ω} is a double isotropic line g. It follows from Section 6.3 that choosing $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}=0$, and $a_{22} \neq 0$ relation $k_{\omega} \equiv \xi^{2}=0$ represents an equation of a double isotropic line. All quadrics having such a cross-section with the plane of infinity could be written in the form $y^{2}+2 a_{01} x+2 a_{03} z+a_{00}=0$.

For the point $S \in g$ there are two possibilities:
a) $S \notin f$; and
b) $S=F(0: 0: 0: 1)$.

Ad a)

$$
\begin{equation*}
S \notin f, S(0: 1: 0: 0) \Rightarrow a_{01}=0, a_{03} \neq 0 \Rightarrow y^{2}+2 a_{03} z=0 . \tag{107}
\end{equation*}
$$

Surface (107) defined by:
3. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}=0, a_{22} \neq 0$, and $\Delta=0, D_{11} \neq 0$, will be called a nonisotropic parabolic cylinder of the third family.

Ad b)

$$
\begin{equation*}
S \in f \backslash\{F\}, S(0: 0: 0: 1) \Rightarrow a_{01} \neq 0, a_{03}=0 \Rightarrow y^{2}+2 a_{01} x=0 \tag{108}
\end{equation*}
$$

Surface (88) defined by:
4. $\Delta_{2}=0, \Delta_{1}=0, \Delta_{0}=0, \Delta_{33}=0, a_{22} \neq 0$, and $\Delta=0, D_{11}=0, D_{33} \neq 0$ will be called a double isotropic parabolic cylinder of the third family.

Ad 3) k_{ω} is a double absolute line $f=g$. It follows from Section 6.3 that choosing $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=0, a_{11} \neq 0$, relation $k_{\omega} \equiv x_{1}^{2}=0$ represents an equation of a double absolute line f. All quadrics having such a crosssection with the plane of infinity could be written as $x^{2}+2 a_{02} y+2 a_{03} z+a_{00}=0$. For the point $S \in g$ there are two possibilities:
a) $S \in f \backslash\{F\}$; and
b) $S=F(0: 0: 0: 1)$.

Ad a)

$$
\begin{equation*}
S \in f \backslash\{F\}, S(0: 0: 1: 0) \Rightarrow a_{02}=0, a_{03} \neq 0 \Rightarrow x^{2}+2 a_{03} z=0 \tag{109}
\end{equation*}
$$

Surface (109) defined by:
5. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=0, a_{11} \neq 0$, and $\Delta=0, D_{22} \neq 0$, will be called an isotropic parabolic cylinder of the fourth family.

Figure 9. Isotropic parabolic cylinder of the fourth family

Ad b)

$$
\begin{equation*}
S=F(0: 0: 0: 1) \Rightarrow a_{02} \neq 0, a_{03}=0 \Rightarrow x^{2}+2 a_{02} y=0 \tag{110}
\end{equation*}
$$

Surface (110) defined by:
6. $\Delta_{2}=\Delta_{1}=\Delta_{0}=\Delta_{22}=\Delta_{33}=a_{22}=0, a_{11} \neq 0$, and $\Delta=0, D_{22}=0$, $D_{33} \neq 0$, will be called a double isotropic parabolic cylinder of the fourth family.

Finally, we have
Proposition 4. In the double isotropic space $I_{3}^{(2)}$ there are 70 different second order surfaces.
In the conclusion we should point out that the given approach could be understood as an example of classifying quadratic forms in the spaces of various dimensions having no regular metric.

References

[1] H. Anton, C. Rorres, Elementary Linear Algebra, John Wiley \& Sons, Inc. New York, USA, 1994.
[2] J. Beban-Brkić, Classification of Pencils of Conics and Pencils of Quadrics in Isotropic Spaces, PhD thesis, PMF, Zagreb, Croatia, 2001. (in Croatian).
[3] J. Beban-Brkić, Isometric Invariants of Conics in the Isotropic Plane - Classification of Conics, Journal for Geometry and Graphics 6(2002), 17-26.
[4] D. Blanuša, Higher Mathematics, Tehnička knjiga, Zagreb, Croatia, Part 1, 1965. (in Croatian).
[5] H. Brauner, Geometry of Double Isotropic Space I, Journ. f. reine u. angew. Math. 224(1966), 118 - 146. (in German).
[6] N. Elezović, Linear Algebra, Element, Zagreb, 1995. (in Croatian)
[7] H. Sachs, Geometry of Isotropic Plane , Vieweg-Verlag, BraunschweigWiesbaden, Austria, 1987. (in German).
[8] H. Sachs, V. Scuric-Cudovan, On Theory of Quadrics in Flagspace, Rad HAZU 456(1991), 197-216. (in German).
[9] L. B. Vizgina, I. N. Semenova, I. I. Tirina, Quadrics in Flagspace, Уч зап. Моск. обл. пед. Инст. 123(1963), 491-507. (in Russian)

[^0]: *Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10000, Zagreb, Croatia, e-mail: jbeban@geof.hr

