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On mapping properties and the property of Kelley

Janusz J. Charatonik
∗

Abstract. Mapping conditions are studied under which a contin-
uum having the property of Kelley has this property hereditarily. The ob-
tained results, related mainly to confluent mappings, extend some known
assertions of the subject.
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1. Introduction

All considered spaces are assumed to be metric and all mappings are continuous.
A continuum means a compact connected space.

A surjective mapping f : X → Y between topological spaces is said to be:

– open, provided that the images of open sets under f are open;

– monotone, provided that for each point y ∈ Y the set f−1(y) is connected;

– confluent, provided that for each subcontinuum Q of Y each component of
f−1(Q) is mapped onto Q under f ;

– semi-confluent, provided that for each subcontinuum Q of Y and for every two
components C1 and C2 of f−1(Q) either f(C1) ⊂ f(C2) or f(C2) ⊂ f(C1);

– weakly confluent, provided that for each subcontinuum Q of Y some compo-
nent of f−1(Q) is mapped onto Q under f .

The reader is referred to [11] for properties of and relations between the above
and some other classes of mappings.

A continuum X is said to have the property of Kelley provided that for each
point x ∈ X , for each subcontinuum K of X containing x and for each sequence of
points xn converging to x there exists a sequence of subcontinua Kn of X containing
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xn and converging to the continuum K (see e.g. [6, p. 167] or [12, Definition 16.10,
p. 538]). A continuum is defined to have the property of Kelleyhereditarily provided
thateach of its subcontinua has the property of Kelley, see [1].

The property, introduced by J. L. Kelley as property 3.2 in [8, p. 26], has
been used there to study hyperspaces, in particular their contractibility (see e.g.
[12, Chapter 16], where references for further results in this area are given). Now
the property, which has been recognized as an important tool in investigation of
various properties of continua, is interesting by its own right, and has numerous
applications to continuum theory. Many of them are not related to hyperspaces.

2. Mappings that preserve the property of Kelley

A class M of mappings between topological spaces is said to have the (weak) com-
ponent restriction property provided thatfor each mapping f : X → Y belonging
to M and for each subset B of Y , if A ⊂ X is the union of some components (is a
component) of f−1(B), then the restriction f |A : A → f(A) belongs to M. Obvi-
ously, the component restriction property implies the weak component restriction
property. The component restriction property for various classes of mappings is
studied in [4].

A class M of mappings between topological spaces is said to preserve a topological
property P provided thatfor each surjection f ∈ M if the domain of f has the
property P , then also the range of f has P . In particular, we say that a class M
of mappings between continua preserves a property P hereditarily provided thatfor
each mapping f : X → Y belonging to M and for each subcontinuum K of X the
restriction f |K : K → f(K) ⊂ Y is in M.

Theorem 1. Let M denote a subclass of the class of weakly confluent mappings
between continua and let a topological property P be given. If

(1.1) M has the weak component restriction property, and

(1.2) M preserves P,

then M preserves P hereditarily.
Proof. Let a mapping f : X → Y between continua X and Y be weakly conflu-

ent. Assume that X has the property P hereditarily. Let Q be a subcontinuum of
Y . Fix a component K of f−1(Q) such thatf(K) = Q. Then K has the property P
according to the assumption on X . Further, the restriction f |K : K → f(K) ⊂ Y
is in M by (1.1). Thus, f(K) has P by (1.2). Finally, since f(K) = Q, it follows
that Q has P , and the proof is complete. ✷

If we take in Theorem 1 the class of confluent mappings as M and the property of
Kelley as P , then (1.1) is satisfied since M has the component restriction property
(so it has the weak component restriction property), see [2, I, p. 213], and (1.2)
holds since confluent mappings preserve the property of Kelley, see [14, Theorem
4.3, p. 296]. Thus we get the following result as a corollary, see [1, Theorem 7.1, p.
159].

Corollary 1. Confluent mappings preserve the property of Kelleyhereditarily.
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Remark 1. In connection with a question of Nadler who asks in [12, (16.38),
p. 559] what classes of mappings between continua preserve the property of Kel-
ley, it is interesting to know what class can be substituted for the class of con-
fluent ones in Corollary 1. Easy examples show that neither semi-confluent nor
weakly confluent mappings preserve the property of Kelley. Furthermore, even if
the classes of hereditarilysemi-confluent or hereditarilyweakly confluent mappings
are considered, then the preservation of the property of Kelleydoes not hold. In-
deed, if X is the closure of the set {(x, sin( 1

x )) : 0 < |x| ≤ 1} in the plane, and
Y = ({0} × [−1, 2]) ∪ {(x, sin( 1

x )) : 0 < x ≤ 1}, then X has the property of Kelley-
while Y does not, and each mapping from X onto Y is hereditarilyweakly confluent,
see [13, Theorem 4, p. 236] and compare [11, Theorem 6.16, p. 56].

3. Generalized homogeneity

Recall that a continuum X is called a triod provided thatX contains a subcontinuum
C such thatX \C has at least three components. A continuum is said to be atriodic
provided thatit contains no triod. For example each solenoid and each arc-like
continuum is atriodic.

The following assertion (see [1, Corollary 5.2, p. 158]) is a consequence of a
more general result (viz. [1, Theorem 5.1, p. 157]).

Proposition 1. Each atriodic continuum with the property of Kelleyhas the
property of Kelleyhereditarily.

Let M be a class of mappings between topological spaces. A space X is said
to be M homogeneous provided thatfor every two points p and q in X there is a
mapping f ∈ M such thatf(p) = q. The next result follows from Proposition 1.

Theorem 2. Let M be a class of mappings between continua. If

(2.1) each atriodic M homogeneous continuum has the property of Kelley,

then

(2.2) each atriodic M homogeneous continuum has the property of Kelleyhereditar-
ily.

It is known that each homogeneous (see [14, Theorem 2.5, p. 293]) and, more-
over, each open homogeneous (see [3, Statement, p. 380]) continuum has the prop-
erty of Kelley. Consequently, condition (2.1) holds if M means the class of open
mappings between continua. Thus we have a corollary that extends [1, Theorem
10.1, p. 161] from homogeneous to open homogeneous continua.

Corollary 2. Each atriodic open homogeneous continuum has the property of
Kelleyhereditarily.

It is interesting to know what other classes M of mappings between continua
satisfy condition (2.1). Recall that the above mentioned implication [3, Statement,
p. 380] cannot be extended to confluent homogeneous continua because examples
are known of confluent homogeneous continua that do not have the property of
Kelley, see [7, Section 1, p. 52]. Namely, two such examples are presented there.
One of them contains a 2-cell, see [7, Figure 1, p. 53], and the other contains the
Menger universal curve, see [7, Figure 2, p. 57]. Thus none of them is atriodic,
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and we do not know if condition (2.1) holds if M stands for the class of confluent
mappings. So, the following question can be asked.

Question 1. Does each atriodic confluent homogeneous continuum have the
property of Kelley?

A similar situation is with the class of monotone mappings. An example of a
monotone homogeneous continuum without the property of Kelleyis constructed in
[5], but again the continuum is very far from being atriodic. So, we have the next
question.

Question 2. Does each atriodic monotone homogeneous continuum have the
property of Kelley?

4. A remark on hyperspaces

Let N denote the set of all positive integers. Given a continuum X , we denote by
2X the hyperspaceof all nonempty closed subsets of X metrized by the Hausdorff
metric (see [6] or [12]), and for an n ∈ N we put

Cn(X) = {A ∈ 2X : A has at most n components}

and
C∞(X) = {A ∈ 2X : A has finitely many components}.

Thus
C(X) = C1(X) ⊂ · · · ⊂ Cn(X) ⊂ Cn+1(X) ⊂ · · · ⊂ C∞(X). (1)

The reader is referred to [9] and [10] for properties of these hyperspaces.
It is shown in [1, Theorem 8.1, p. 159] that for any continuum X the hyper-

spaceC(X) does not have the property of Kelleyhereditarily. Therefore the inclu-
sions (1) imply the following extension of this result.

Proposition 2. For each continuum X and for each n ∈ N the hyperspacesCn(X)
and C∞(X) do not have the property of Kelleyhereditarily.
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