On a class of module maps of Hilbert C^*-modules

Damir Bakić and **Boris Guljaš**

Abstract. The paper describes some basic properties of a class of module maps of Hilbert C^*-modules.

In Section 1 ideal submodules are considered and the canonical Hilbert C^*-module structure on the quotient of a Hilbert C^*-module over an ideal submodule is described. Given a Hilbert C^*-module V, an ideal submodule V_z, and the quotient V/V_z, canonical morphisms of the corresponding C^*-algebras of adjointable operators are discussed.

In the second part of the paper a class of module maps of Hilbert C^*-modules is introduced. Given Hilbert C^*-modules V and W and a morphism $\varphi : A \rightarrow B$ of the underlying C^*-algebras, a map $\Phi : V \rightarrow W$ belongs to the class under consideration if it preserves inner products modulo φ: $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$ for all $x, y \in V$. It is shown that each morphism Φ of this kind is necessarily a contraction such that the kernel of Φ is an ideal submodule of V. A related class of morphisms of the corresponding linking algebras is also discussed.

Key words: C^*-algebra, Hilbert C^*-module, adjointable operator

AMS subject classifications: Primary 46C50; Secondary 46L08

Received July 11, 2002 Accepted December 12, 2002

Introduction

A (right) Hilbert C^*-module over a C^*-algebra A is a right A-module V equipped with an A-valued inner product $\langle \cdot, \cdot \rangle$ which is A-linear in the second and conjugate linear in the first variable such that V is a Banach space with the norm $\|v\| = \|(v, v)\|^{1/2}$. Hilbert C^*-modules are introduced and initially investigated in [3], [5] and [8].

The present paper is organized as an introduction to a study of extensions of Hilbert C^*-modules.

Section 1 contains a detailed discussion on ideal submodules. As their basic properties are already known (see [10] and [7]), some of the results are stated without proof. The starting point is Theorem 1.6 which states that the quotient of a
Hilbert C^*-module over an ideal submodule admits a natural Hilbert C^*-module structure. Considering a Hilbert C^*-module V, an ideal submodule $V_I \subseteq V$, and the quotient V/V_I, we describe canonical morphisms of the corresponding C^*-algebras of adjointable operators $B(V), B(V_I)$ and $B(V/V_I)$. Also, some properties of ideal submodules arising from essential ideals are obtained. In particular, we show in Theorem 1.12 that the canonical morphism $\alpha : B(V) \rightarrow B(V_I)$ sending each operator T to its restriction $T|_{V_I}$ is an injection if and only if I is an essential ideal in the underlying C^*-algebra A.

In Section 2 a class of module maps of Hilbert C^*-modules over possibly different C^*-algebras is introduced. We consider morphisms of Hilbert C^*-modules which are in a sense supported by morphisms of the underlying C^*-algebras. Their basic properties are collected and a couple of examples is provided. In Theorem 2.15 we establish a correspondence between the class of module maps under consideration and a class of morphisms of the corresponding linking algebras.

The present material provides a necessary tool for the later study of extensions of Hilbert C^*-modules. A related discussion will appear in our subsequent paper.

Throughout the paper we denote the C^*-algebras of all adjointable and "compact" operators on a Hilbert C^*-module V by $B(V)$ and $K(V)$, respectively. We also use $B(\cdot, \cdot)$ and $K(\cdot, \cdot)$ to denote spaces of all adjointable, resp. "compact" operators acting between different Hilbert C^*-modules.

We denote by $\langle V, V \rangle$ the closed linear span of all elements in the underlying C^*-algebra A of the form $(x, y), x, y \in V$. Obviously, $\langle V, V \rangle$ is an ideal in A. (Throughout the paper, an ideal in a C^*-algebra always means a closed two-sided ideal.) V is said to be a full A-module if $\langle V, V \rangle = A$.

For this and other general facts concerned with Hilbert C^*-modules we refer to [4], [7] and [9].

1. Ideal submodules and quotients of Hilbert C^*-modules

We begin with the definition of an ideal submodule. A related discussion can be found in [10].

Definition 1.1. Let V be a Hilbert C^*-module over A, and I an ideal in A. The associated ideal submodule V_I is defined by

$$V_I = [VI]^- = \{vb : v \in V, b \in I\}^-$$

(the closed linear span of the action of I on V).

Clearly, V_I is a closed submodule of V. It can be also regarded as a Hilbert C^*-module over I.

In general, there exist closed submodules which are not ideal submodules. For instance, if a C^*-algebra A is regarded as a Hilbert A-module (with the inner product $(a, b) = a^*b$), then ideal submodules of A are precisely ideals in A, while closed submodules of A are closed right ideals in A.

We proceed with a couple of basic properties of ideal submodules. Our first proposition is already known ([10]).
Proposition 1.2. Let V be a Hilbert C^*-module over A, and let \mathcal{I} be an ideal in A. Then $V_\mathcal{I} = \{ v \mathcal{I} : v \in V, b \in \mathcal{I} \}$.

Proof. The associated ideal submodule $V_\mathcal{I}$ is by definition equal to $V_\mathcal{I} = [V \mathcal{I}]^- = \{ [vb] : v \in V, b \in \mathcal{I} \}$, where $[vb] = \{ vb + z \mathcal{I} : z \in V \mathcal{I} \}$. Regarding $V_\mathcal{I}$ as a Hilbert \mathcal{I}-module we may apply the Hewitt-Cohen factorization theorem ([6], Theorem 4.1, see also [7], Proposition 2.31): for each $x \in V_\mathcal{I}$ there exist $y \in V_\mathcal{I}$ and $b \in \mathcal{I}$ such that $x = yb$. This shows $V_\mathcal{I} \subseteq [V \mathcal{I}]^- = V_\mathcal{I} \subseteq V_\mathcal{I} \subseteq V_\mathcal{I}$, i.e. $V_\mathcal{I} = V_\mathcal{I}$.

Proposition 1.3. Let V be a Hilbert A-module, \mathcal{I} an ideal in A, and $V_\mathcal{I}$ the associated ideal submodule. Then

$$V_\mathcal{I} = \{ x : \langle x, x \rangle \in \mathcal{I} \} = \{ x : \langle x, v \rangle \in \mathcal{I}, \forall v \in V \}. $$

If V is full, then $V_\mathcal{I}$ is full as a Hilbert \mathcal{I}-module.

Proof. $\langle vb, vb \rangle = b^* (v, v)b \in \mathcal{I}$, $\forall b \in \mathcal{I}, v \in V$. This shows $x = vb \in V_\mathcal{I} \Rightarrow \langle x, x \rangle \in \mathcal{I}$. A well known formula ([9], Lemma 15.2.9)

$$x = \lim_n \left(\langle x, x \rangle + \frac{1}{n} \right)^{-1} \langle x, x \rangle, \forall x \in V$$

implies the converse. The second equality is now an immediate consequence.

Suppose that V is full as a Hilbert C^*-module over A. Then there is an approximate unit $(a_\mathcal{I})$ for A such that each $a_\mathcal{I}$ is a finite sum of the form $a_\mathcal{I} = \sum_{i=1}^{n(\lambda)} \langle x_\mathcal{I}, x_\mathcal{I}^* \rangle$ ([1], Remark 1.9). Take any positive $b \in \mathcal{I}$, let ε be given.

Since $(a_\mathcal{I})$ is an approximate unit for A, there exists λ such that $\| b^{1/2} - a_\mathcal{I} b^{1/2} \|$ is small enough so that $\| b^{1/2} (b^{1/2} - a_\mathcal{I} b^{1/2}) \| < \varepsilon$. It remains to observe that the left-hand side of the above inequality can be rewritten in the form

$$\| b^{1/2} a_\mathcal{I} b^{1/2} \| = \| b - \sum_{i=1}^{n(\lambda)} \langle x_\mathcal{I} b^{1/2}, x_\mathcal{I} b^{1/2} \rangle \|.$$

This shows that b can be approximated by inner products of elements from $V_\mathcal{I}$, i.e. $b \in (V_\mathcal{I}, V_\mathcal{I})$.

Now we introduce a natural Hilbert C^*-module structure on the quotient of a Hilbert C^*-module over an ideal submodule.

Definition 1.4. Let V be a Hilbert C^*-module over A, \mathcal{I} an ideal in A, and $V_\mathcal{I}$ the associated ideal submodule. Denote by $\pi : A \to A/\mathcal{I}$ and $q : V \to V/V_\mathcal{I}$ the quotient maps. A right action of A/\mathcal{I} on the linear space $V/V_\mathcal{I}$ is defined by $q(v) \pi (a) = q(va)$.

The action of A/\mathcal{I} on the quotient $V/V_\mathcal{I}$ given by $q(v) \pi (a) = q(va)$ is well defined precisely because $V_\mathcal{I}$ is an ideal submodule of V. Indeed, if $\pi (a) = \pi (a')$ then $q(v) \pi (a) = q(v) \pi (a')$ is ensured by definition of an ideal submodule: $vb \in V_\mathcal{I}$, $\forall b \in \mathcal{I}, \forall v \in V$.

If X is an arbitrary closed submodule of V one can also consider the quotient of linear spaces V/X. Further, denote by $\mathcal{I} = \langle X, X \rangle \subseteq A$ the closed linear span of
the set of all \((x, y), x, y \in X\). Since \(X\) is by assumption a closed submodule of \(V\), \(\mathcal{I}\) is an ideal in \(\mathcal{A}\).

Now an action of \(\mathcal{A}/\mathcal{I}\) on \(V/X\) given by \(q(x)\pi(a) = q(xa)\) will be unambiguously defined if and only if \(vb \in X\) is satisfied for each \(b \in \mathcal{I}\) and \(v \in V\); i.e. \(V\mathcal{I} \subseteq X\). Since \(X\) is a closed submodule, this implies \(V_\mathcal{I} \subseteq X\). Because the reverse inclusion is always satisfied, we conclude: the action of \(\mathcal{A}/\mathcal{I}\) on \(V/X\) is well defined if and only if \(X\) is the ideal submodule \(V_\mathcal{I}\) associated with \(\mathcal{I} = \langle X, X \rangle\).

Remark 1.5. The role of ideal submodules in the preceding discussion should be compared with Proposition 3.25 in [7]. Recall that each right Hilbert \(\mathcal{A}\)-module \(V\) is also equipped with a natural left Hilbert \(K(V)\)-module structure. Moreover, there is a standard Hilbert \(K(V)\)–\(\mathcal{A}\) bimodule structure on \(V\). Now one easily show the following assertions (which are stated without proofs):

1. Each ideal submodule \(V_\mathcal{I}\) of \(V\) is also an ideal submodule of the left Hilbert \(K(V)\)-module \(V\).
2. Let \(X\) be a closed submodule of a right Hilbert \(C^*\)-module \(V\). Then \(X\) is an ideal submodule of \(V\) if and only if \(X\) is a closed subbimodule of the Hilbert \(K(V)\)–\(\mathcal{A}\) bimodule \(V\).

The following theorem is known ([7], Proposition 3.25, [10], Lemma 3.1). We state it for the sake of completeness.

Theorem 1.6. Let \(V\) be a Hilbert \(\mathcal{A}\)-module, \(\mathcal{I}\) an ideal in \(\mathcal{A}\), and \(V_\mathcal{I}\) the associated ideal submodule. Then \(V/V_\mathcal{I}\) equipped with a right \(\mathcal{A}/\mathcal{I}\)-action from Definition 1.4 is a pre-Hilbert \(\mathcal{A}/\mathcal{I}\)-module with the inner product given by \(\langle q(v), q(w) \rangle = \pi((v, w))\). The resulting norm \(\| q(v) \| = \| \pi((v, v)) \|^{1/2}\) coincides with the quotient norm \(d(v, V_\mathcal{I})\) defined on the quotient of Banach spaces \(V/V_\mathcal{I}\). In particular, \(V/V_\mathcal{I}\) is complete, hence a Hilbert \(C^*\)-module over \(\mathcal{A}/\mathcal{I}\).

Remark 1.7. \(V/V_\mathcal{I}\) is a full \(\mathcal{A}/\mathcal{I}\)-module if and only if \(V\) is full. This follows at once from the evident equality \(\langle V/V_\mathcal{I}, V/V_\mathcal{I} \rangle = \pi((V, V))\).

Example 1.8. Let us briefly describe an application of Theorem 1.6. Consider a Hilbert \(C^*\)-module \(V\) over \(\mathcal{A}\) and a surjective morphism of \(C^*\)-algebras \(\varphi : \mathcal{A} \to \mathcal{B}\). Define

\[N_\varphi = \{ x \in V : \varphi((x, x)) = 0 \}. \]

One easily shows that \(N_\varphi\) is a closed submodule of \(V\). There is a standard construction ([2], p. 19) which provides a pre-Hilbert \(\mathcal{B}\)-module structure on \(V/N_\varphi\); one defines \(q(v)\varphi(a) = q(va)\) and \(q(x), q(y) = \varphi((x, y))\). However, it seems to be overlooked that \(V/N_\varphi\) is already complete with respect to the resulting norm.

To prove this, first observe that \(\mathcal{A}/\text{Ker}\varphi\) and \(\mathcal{B}\) are isomorphic \(C^*\)-algebras. This enables us to regard \(V/N_\varphi\) as a Hilbert \(\mathcal{A}/\text{Ker}\varphi\)-module. Now, \(N_\varphi = \{ x \in V : (x, x) \in \text{Ker}\varphi \}\) (by Proposition 1.3) = \(V_{\text{Ker}\varphi}\); i.e. \(N_\varphi\) is the ideal submodule associated to the ideal \(\text{Ker}\varphi\). It remains to apply Theorem 1.6.

Theorem 1.6 also implies that a property of the Rieffel correspondence is that, assuming that two \(C^*\)-algebras are Morita equivalent, the corresponding ideals and
quotients are Morita equivalent themselves (Proposition 3.25 in [7]). We shall proceed in a different direction. Our goal is to compare the C*-algebras of all adjo
jointable and “compact” operators acting on a Hilbert C*-module V with the corresponding algebras of operators on an ideal submodule V⊥ in V and the quotient V/V⊥, respectively.

To fix our notation, we recall the definition of the ideal of all “compact” operators on a Hilbert C*-module V. Given v, w ∈ V, let θv,w : V → V denote the operator defined by θv,w(x) = v⟨w, x⟩. Each θv,w is an adjointable operator on V and the linear span

{[θv,w : v, w ∈ V]}

is a two-sided ideal in B(V). Its closure in the operator norm

K(V) = {[θv,w : v, w ∈ V]} ⊆ B(V)

is an ideal in B(V) and elements of K(V) are called “compact” operators.

Let V be a Hilbert A-module. Assume that I is an ideal in A, and let V⊥ be the associated ideal submodule. Observe that V⊥ is invariant for each T ∈ B(V); namely T(vb) = (Tv)b ∈ V⊥, ∀v, b ∈ I, ∀v ∈ V. Consequently, there is an operator T|V⊥ on V⊥ induced by T such that (T|V⊥)∗ = T∗|V⊥. This gives a well defined map α : B(V) → B(V⊥), α(T) = T|V⊥. Clearly, α is a morphism of C*-algebras.

We shall prove that the map α is an injection if and only if I is an essential ideal in A. (An ideal I in a C*-algebra A is said to be essential if its annihilator I⊥ = {a ∈ A : aI = {0}} is trivial: I⊥ = {0}.)

To do this, we need a few simple results on ideal submodules associated to essential ideals. We start with a property of essential ideals which is certainly known. Since we are unable to provide a reference, the proof is included.

Lemma 1.9. Let I be an ideal in a C*-algebra A. Then I is an essential ideal in A if and only if there exists a faithful representation ρ : A → B(H) of A on a Hilbert space H such that I acts non-degenerately on H.

Proof. Suppose I ⊆ A ⊆ B(H) such that I acts non-degenerately on H. Let (ui) be an approximate unit for I. Then ξ = limλ→∞ uλξ, ∀ξ ∈ H. Now a ∈ I⊥ implies auλ = 0, ∀λ, hence a = 0.

To prove the converse, suppose that I is an essential ideal in A. Taking any faithful representation of A we may write I ⊆ A ⊆ B(H). Define H0 = [TH]⊥. Clearly, I acts non degenerately on H0. Since I is an ideal in A, H0 reduces A. We shall show that a → a|H0 is also a faithful representation of A. Let aH0 = 0. Since H0 is invariant for each b ∈ I, this implies abH⊥ 0 = 0, ∀b ∈ I. On the other hand, ab ∈ I shows ab|H⊥ 0 = 0, ∀b ∈ I (observe H⊥ 0 = ∩b∈I Ker b). This gives ab = 0, ∀b ∈ I and, since I is essential, a = 0.

Lemma 1.10. Let I be an ideal in a C*-algebra A. The following conditions are mutually equivalent:

(a) I is an essential ideal in A.
(b) ∥a∥ = supb∈I,∥b∥≤1 ∥ab∥, ∀a ∈ A.
(c) ∥a∥ = supb∈I,∥b∥≤1 ∥ba∥, ∀a ∈ A.
(d) ∥a∥ = supb∈I,∥b∥≤1 ∥bab∥, ∀a ∈ A⊥.
Proof. $(a) \Rightarrow (b)$: By Lemma 1.9 we may assume $\mathcal{I} \subset \mathcal{A} \subseteq \mathcal{B}(H)$ such that \mathcal{I} acts non-degenerately on H. Given $a \in \mathcal{A}$, we have to show $\|a\| \leq \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|ab\|$ (the opposite inequality is trivial). Let (a_λ) be an approximate unit for \mathcal{I}. Then $\xi = \lim_{\lambda} a_\lambda \xi$, $\forall \xi \in H$. Take $\|\xi\| \leq 1$. Then

$$
\|a\xi\| = \lim_{\lambda} \|a_\lambda a_\lambda \xi\| \leq \lim_{\lambda} \sup_{\lambda} \|a_\lambda \xi\| \leq \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|ab\|.
$$

$(b) \Leftrightarrow (c)$ is obvious (by taking adjoints).

$(c) \Rightarrow (d)$: Let a be positive. Then

$$
\|a\| = \|a^{1/2}\|^2 = \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|ba^{1/2}\|^2 = \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|bab^*\|.
$$

$(d) \Rightarrow (a)$: Take any $a \in \mathcal{I}^\perp$. Then (d) applied to a^*a gives $a^*a = 0$, thus $\mathcal{I}^\perp = \{0\}$.

Proposition 1.11. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an essential ideal in \mathcal{A}, and $V_\mathcal{I}$ the associated ideal submodule. Then

(1) $\|v\| = \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|vb\|$, for each $v \in V$ and

(2) $\|v\| = \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|\langle v, y \rangle\|$, for each $v \in V$.

Conversely, if V is a full \mathcal{A}-module in which (1) or (2) is satisfied with respect to (the ideal submodule associated with) some ideal \mathcal{I} in \mathcal{A}, then \mathcal{I} is an essential ideal in \mathcal{A}.

Proof. Take any $v \in V$. Using Lemma 1.10(d) we find

$$
\|v\|^2 = \|\langle v, v \rangle\| = \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|b^* \langle v, v \rangle b\| = \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|vb\|^2.
$$

To prove the second formula, take any $v \in V$ such that $\|v\| = 1$. Then

$$
\|v\| = \|v\|^2 = \|\langle v, v \rangle\| = \|\langle v, v \rangle\| = \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|\langle v, v \rangle b\| = \sup_{b \in \mathcal{I}, \|b\| \leq 1} \|\langle v, vb \rangle\| \leq \sup_{y \in V, \|y\| \leq 1} \|\langle v, y \rangle\| \leq \|v\|.
$$

To prove the converse, suppose that V is a full \mathcal{A}-module and \mathcal{I} is not essential so that $\mathcal{I}^\perp \neq \{0\}$. Take any $c \in \mathcal{I}^\perp$, $c \neq 0$. Then there exists $v \in V$ such that $vc \neq 0$. Indeed, $vc = 0$, $\forall v \in V$ would imply $\langle v, vc \rangle = 0$, $\forall v \in V$ or $\langle v, v \rangle c = 0$, $\forall v \in V$. Since V is full, it would follow $c^*c = 0$, thus $c = 0$.

After all, it remains to observe that $x = vc \neq 0$ with $c \in \mathcal{I}^\perp$ contradicts to (1) and (2), respectively.

Theorem 1.12. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an ideal in \mathcal{A}, and $V_\mathcal{I}$ the associated ideal submodule. If \mathcal{I} is an essential ideal in \mathcal{A}, then the map $\alpha : B(V) \rightarrow B(V_\mathcal{I})$, $\alpha(T) = T|V_\mathcal{I}$ is an injection. Conversely, if V is full and if α is injective, then \mathcal{I} is an essential ideal in \mathcal{A}.
Proposition 1.11. \(T \) is an ideal submodule of \(A \) if and only if \(\theta \) is a surjection.

Proof. Suppose \(\alpha(T) = T|_{V_2} = 0 \) for some \(T \). Observe that, since \(V_2 \) is an ideal submodule, \(\forall v \in V \), \(\forall v \in V \). Since by assumption \(T \) vanishes on \(V_2 \), this implies \(T(v)b) = 0 \), \(\forall b \in I, \forall v \in V \). Now, taking arbitrary \(v \in V \), we find

\[
\|Tv\|(b) = \sup \|Tv(b)\| = \sup_{b \in x, \|b\| \leq 1} \|Tv(b)\| = 0.
\]

To prove the converse, let \(V \) be full and \(\alpha \) injective. Assume that \(I \) is not essential. For \(c \in I^\perp \), \(c \neq 0 \), find \(v \in V \) such that \(vc \neq 0 \) (as in the preceding proof). Then \(\alpha(vc) = \alpha(vc)V_2 = 0 \) - a contradiction. \(\square \)

Remark 1.13. In general, \(\alpha \) is not surjective, even if \(I \) is an essential ideal in \(A \). As an example, consider a nonunital \(C^* \)-algebra \(A \) contained as an essential ideal in a unital \(C^* \)-algebra \(B \). Assume further that \(B \) is not the maximal unitalization of \(A \), i.e. that \(B \) is properly contained in the multiplier algebra \(M(A) \). Consider \(B \) as a Hilbert \(B \)-module. It is well known that, since \(B \) is unital, \(K(B) = B(B) = B \). Further, \(A \) is an ideal submodule of \(B \) associated with the essential ideal \(A \) of \(B \). We also know \(K(A) = A \) and \(B(A) = M(A) \). One easily concludes that the map \(\alpha : B(A) = B \rightarrow B(A) = M(A) \) from Theorem 1.12 acts as the inclusion \(B \hookrightarrow M(A) \); thus, by assumption, \(\alpha \) is not a surjection.

Consider again an arbitrary Hilbert \(A \)-module and an ideal \(I \) in \(A \). Using the map \(\alpha \) one can easily determine \(K(V_2) \). Our next proposition, in which \(K(V_2) \) is recognized as an ideal in \(K(V) \), is known; hence we state it without proof. For the proof we refer to [7], Theorem 3.22. (Alternatively, it can be deduced from Theorem 1.12 above after observing that for each ideal \(I \) in \(A \), we have \(V_2 \oplus V_2^* = V_2 \oplus \mathbb{C} \).

Proposition 1.14. Let \(V \) be a Hilbert \(A \)-module, \(I \) an ideal in \(A \), and \(V_2 \) be the associated ideal submodule. Then \(J = \{[\theta_{x,y} : x, y \in V_2]\} = K(V_2) \) is an ideal in \(K(V) \) and the restriction \(\alpha' = \alpha[J] : J \hookrightarrow K(V_2) \) is an isomorphism of \(C^* \)-algebras.

Remark 1.15. Using the same notation as above one easily concludes that \(V_2 \) is an ideal submodule of the left \(K(V) \)-module \(V \) (with the inner product \([x, y] = \theta_{x,y} \)) associated with the ideal \(J = \{[\theta_{x,y} : x, y \in V_2]\} \subset K(V) \). As in Proposition 1.3 one obtains \(V_2 = \{x \in V : \theta_{x,v} \in J, \forall v \in V \} \).

Corollary 1.16. Let \(V \) be a full Hilbert \(A \)-module, \(I \) an ideal in \(A \), \(tV_2 \) the associated ideal submodule. Then:

(i) \(J = \{[\theta_{x,y} : x, y \in V_2]\} = K(V_2) \) is an essential ideal in \(K(V) \) if and only if \(I \) is an essential ideal in \(A \).

(ii) \(J = K(V) \) if and only if \(I = A \).

Proof. Assume that \(I \) is an essential ideal in \(A \) and take \(T \in K(V) \) such that \(T \perp J \). By the preceding remark for each \(v \in V \) and \(x \in V_2 \) the operator \(\theta_{v,x} \) belongs to \(J \), hence \(T\theta_{v,x} = \theta_{v,x} = 0 \). In particular, \(Tv(x,y) = 0, \forall x, y \in V_2 \). Since \(V \) is full, \(V_2 \) is a full \(I \)-module and now the first assertion of Proposition 1.11 implies \(Tv = 0 \).
The proof of the second assertion is similar, hence omitted.

We end this section with the corresponding result on quotients. Let I be an ideal in A, and let V_z be the associated ideal submodule. Since V_z is invariant for each $T \in B(V)$, there is a well defined induced operator \hat{T} on V/V_z given by $\hat{T}(q(v)) = q(Tv)$. Moreover, \hat{T} is adjointable because $(\hat{T})^* = \hat{T}^*$. This enables us to define $\beta : B(V) \to B(V/V_z)$, $\beta(T) = \hat{T}$. Obviously, β is a morphism of C^*-algebras.

The following proposition is proved by applying β to the ideal $K(V)$ of all "compact" operators on V. However, as the result is already known ([7], Proposition 3.25, see also [10]), we omit the proof.

Proposition 1.17. Let V be a Hilbert A-module, I an ideal in A, V_z the associated ideal submodule, and let $J = \{[q(x) : x \in V_z]\}^\perp \subset K(V)$ be as in Proposition 1.14. Then $K(V)/J$ and $K(V/V_z)$ are isomorphic C^*-algebras.

Corollary 1.18. Let V be a Hilbert A-module, I an ideal in A, and V_z the associated ideal submodule. Then the map $\beta : B(V) \to B(V/V_z)$, $\beta(T) = \hat{T}$ is the unique morphism of C^*-algebras satisfying $\beta(q(x)) = q(x), \forall x, y \in V$ and $\beta(K(V)) = K(V/V_z)$. If V is countably generated, then β is surjective.

Proof. The equality $\beta(q(x)) = q(x), \forall x, y \in V$ is verified by a direct calculation. Since β is a morphism of C^*-algebras, this ensures $\beta(K(V)) = K(V/V_z)$. Now the small extension theorem applies (see [9], Propositions 2.2.16 and 2.3.7) because $B(V)$ and $B(V/V_z)$ are the multiplier algebras of $\beta(K(V))$, resp. $K(V/V_z)$. Thus $\beta : B(V) \to B(V/V_z)$ is uniquely determined as the extension of $\beta' = \beta|K(V)$.

The last assertion follows from Tietze's extension theorem. First, if V is countably generated, then $K(V)$ is a σ-unital C^*-algebra ([4], Proposition 6.7]). Since $\beta' : K(V) \to K(V/V_z)$ is a surjection, Proposition 6.8 from [4] implies that β is also a surjective map. □

2. Morphisms of Hilbert C^*-modules

In this section we introduce a class of module maps of Hilbert C^*-modules, not necessarily over the same C^*-algebra (cf. [2], p. 9, [4], p. 24 and also [7], p. 57). The motivating example is provided by the quotient map $q : V \to V/V_z$, taking values in the quotient module of V over an ideal submodule V_z satisfying $\langle q(x), q(y) \rangle = \pi(\langle x, y \rangle)$.

Definition 2.1. Let V and W be Hilbert C^*-modules over C^*-algebras A and B, respectively. Let $\varphi : A \to B$ be a morphism of C^*-algebras. A map $\Phi : V \to W$ is said to be a φ-morphism of Hilbert C^*-modules if $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$ is satisfied for all $x, y \in V$.

Using polarization, one immediately concludes that Φ is a φ-morphism if and only if $\langle \Phi(x), \Phi(x) \rangle = \varphi(\langle x, x \rangle)$ is satisfied for each x in V.

It is also easy to show that each φ-morphism is necessarily a linear operator and a module map in the sense $\Phi(\alpha \tau) = \Phi(\alpha) \Phi(\tau), \forall v \in V, \forall a \in A$.
Further, let \(\varphi : A \to B \) and \(\psi : B \to C \) be morphisms of \(C^* \)-algebras and let \(V,W,Z \) be Hilbert \(C^* \)-modules over \(A,B,C \), respectively. If \(\Phi : V \to W \) is a \(\varphi \)-morphism and \(\Psi : W \to Z \) is a \(\psi \)-morphism, then obviously \(\Psi \Phi : V \to Z \) is a \(\varphi \psi \varphi \)-morphism of Hilbert \(C^* \)-modules.

Example 2.2. Consider a Hilbert \(C^* \)-module \(V \) over a \(C^* \)-algebra \(A \). Let \(I \) be an ideal in \(A \), and let \(V_I \) be the associated ideal submodule. Then we have an exact sequence of \(C^* \)-algebras \(I \to A \xrightarrow{\pi} A/I \) and the corresponding sequence of Hilbert \(C^* \)-modules \(V_I \to V \xrightarrow{\pi} V/V_I \). (Here \(i \) and \(j \) denote inclusions while \(x \) and \(q \) denote canonical quotient maps). Obviously, \(j \) is an \(i \)-morphism and \(q \) is a \(\pi \)-morphism in the sense of the above definition.

Theorem 2.3. Let \(V \) and \(W \) be Hilbert \(C^* \)-modules over \(C^* \)-algebras \(A \) and \(B \), respectively. Let \(\varphi : A \to B \) be a morphism of \(C^* \)-algebras and let \(\Phi : V \to W \) be a \(\varphi \)-morphism of Hilbert \(C^* \)-modules. Then \(\Phi \) is a contraction satisfying \(\text{Ker} \Phi = V_{\text{Ker} \varphi} \). If \(\varphi \) is an injection, then \(\Phi \) is an isometry, hence also injective. If \(V \) is a full \(A \)-module and if \(\Phi \) is injective, then \(\varphi \) is also an injection.

Proof. \(\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle) \Rightarrow \|\Phi(x)\|^2 = \|\langle \Phi(x), \Phi(x) \rangle\| = \|\varphi(\langle x, x \rangle)\| \leq \|\langle x, x \rangle\| = \|x\|^2, \forall x \in V \). This proves that \(\Phi \) is a contraction. The same calculation also shows: if \(\varphi \) is an injection, then the inequality above is replaced by the equality, hence \(\Phi \) is also an isometry.

Obviously, \(\text{Ker} \Phi \) is a closed submodule of \(V \) such that \(V_{\text{Ker} \varphi} \subseteq \text{Ker} \Phi \).

Further, \(x \in \text{Ker} \Phi \Rightarrow \langle \Phi(x), \Phi(x) \rangle = 0 \Rightarrow \varphi(\langle x, x \rangle) = 0 \); i.e. \(\langle x, x \rangle \in \text{Ker} \varphi \). By Proposition 1.3 we conclude \(x \in V_{\text{Ker} \varphi} \) which gives \(\text{Ker} \Phi \subseteq V_{\text{Ker} \varphi} \).

Finally, suppose that \(\Phi \) is an injection. Then \(\text{Ker} \Phi = V_{\text{Ker} \varphi} = \{0\} \). Take any \(a \in \text{Ker} \varphi \). Then the last equality means \(xa = 0, \forall x \in V \). In particular, \(\langle y, xa \rangle = \langle y, x \rangle a = 0, \forall x, y \in V \). Since \(V \) is by hypothesis full, this implies \(a = 0 \).

Lemma 2.4. Let \(V \) and \(W \) be Hilbert \(C^* \)-modules over \(C^* \)-algebras \(A \) and \(B \), respectively. Let \(\varphi : A \to B \) be a morphism of \(C^* \)-algebras and let \(\Phi : V \to W \) be a \(\varphi \)-morphism of Hilbert \(C^* \)-modules. Denote by \(\hat{\varphi} \) and \(\hat{\Phi} \) the maps induced on the quotients by \(\varphi \) and \(\Phi \), respectively:

\[
\hat{\varphi} : A/\text{Ker} \varphi \to B, \quad \hat{\varphi}(\pi(a)) = \varphi(a), \quad \hat{\Phi} : V/\text{Ker} \Phi \to W, \quad \hat{\Phi}(\pi(v)) = \Phi(v).
\]

Then \(\hat{\Phi} \) is a well defined \(\hat{\varphi} \)-morphism of Hilbert \(C^* \)-modules \(V/\text{Ker} \Phi \) and \(W \).

Proof. First, by Theorem 2.3, \(\text{Ker} \Phi = V_{\text{Ker} \varphi} \). This ensures that \(V/\text{Ker} \Phi = V/V_{\text{Ker} \varphi} \) is a Hilbert \(A/\text{Ker} \varphi \)-module. Both maps are obviously well defined, so we only need to check that \(\hat{\Phi} \) is a \(\hat{\varphi} \)-morphism. Indeed:

\[
\langle \hat{\Phi}(q(v)), \hat{\Phi}(q(w)) \rangle = \hat{\Phi}(q(v)) = \varphi(\langle v, w \rangle) = \frac{1}{6}(\langle q(v), q(w) \rangle).
\]
Proposition 2.5. Let \(V \) and \(W \) be Hilbert \(C^* \)-modules over \(C^* \)-algebras \(A \) and \(B \), respectively. Let \(\varphi : A \to B \) be a morphism of \(C^* \)-algebras and let \(\Phi : V \to W \) be a \(\varphi \)-morphism of Hilbert \(C^* \)-modules. Then \(\operatorname{Im} \Phi \) is a closed subspace of \(W \). It is also a Hilbert \(C^* \)-module over the \(C^* \)-algebra \(\operatorname{Im} \varphi \subseteq B \) such that \(\langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle = \varphi(\langle V, V \rangle) \). If \(V \) is a full \(A \)-module, then \(\operatorname{Im} \Phi \) is a full \(\operatorname{Im} \varphi \)-module. In particular, if \(\Phi \) is surjective, and if \(W \) is a full \(B \)-module, then \(\varphi \) is also a surjection.

Proof. First suppose that \(\varphi \) is injective. Then by Theorem 2.3 \(\Phi \) is an isometry which implies that \(\operatorname{Im} \Phi \) is a closed subspace of \(W \). Also, \(\Phi(v)\varphi(a) = \Phi(va) \in \operatorname{Im} \Phi \) and \(\langle \Phi(v), \Phi(w) \rangle = \varphi(\langle v, w \rangle) \in \operatorname{Im} \varphi \). This shows that \(\operatorname{Im} \Phi \) is a Hilbert \(\varphi \)-module. The last equality also proves \(\langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle = \varphi(\langle V, V \rangle) \).

If \(V \) is full, this implies \(\langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle = \varphi(\langle A \rangle) \) which means that \(\operatorname{Im} \Phi \) is a full \(\varphi \)-module. If \(\Phi \) is a surjection and if \(W \) is full, we additionally get \(B = \langle W, W \rangle = \langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle = \varphi(\langle V, V \rangle) \), hence \(\varphi \) is also a surjection.

To prove the general case, take the maps \(\hat{\varphi} \) and \(\hat{\Phi} \) from Lemma 2.4. Since \(\hat{\varphi} \) is an injection, we may apply the first part of the proof.

To do this, one has only to observe \(\operatorname{Im} \varphi = \operatorname{Im} \hat{\varphi} \), \(\operatorname{Im} \Phi = \operatorname{Im} \hat{\Phi} \) and \(\langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle \). \(\hat{\varphi}(\langle V/V_{\operatorname{ker} \varphi}, V/V_{\operatorname{ker} \varphi} \rangle) = \varphi(\langle V, V \rangle) \).

(The equality \(\langle V/V_{\operatorname{ker} \varphi}, V/V_{\operatorname{ker} \varphi} \rangle \) is noted in Remark 1.7.) \(\square \)

Remark 2.6. Let us observe: if \(V \) is a full \(A \)-module and if \(\varphi \) and \(\Phi \) are surjective, then \(W \) is also a full \(B \)-module.

On the other hand, we cannot conclude that \(\Phi \) is a surjection if \(\varphi \) is surjective, even if \(V \) and \(W \) are full. As an example we may take \(V = A, W = A \oplus A, \varphi = \text{id}, \Phi(a) = (a, 0) \).

Example 2.7. Let \(A \) and \(B \) be \(C^* \)-algebras considered as Hilbert \(C^* \)-modules over \(A \) and \(B \), respectively. Let \(\varphi : A \to B \) be a morphism of \(C^* \)-algebras and let \(\Phi : V \to W \) be a \(\varphi \)-morphism of Hilbert \(C^* \)-modules \(A \) and \(B \). Then there exists an isometry \(m \) in the multiplier \(C^* \)-algebra of \(B \), \(m \in M(B) \), such that \(\Phi(a) = m\varphi(a), \forall a \in A \).

To prove this, let us take any approximate unit \((e_j) \) for \(A \). We shall show that \(\Phi(e_j) \) is a net in \(B \) strictly convergent in \(M(B) \). First observe that \(A \) and \(B \) are full, so \(\varphi \) is also surjective.

For each \(b \in B \) there exists \(a \in A \) such that \(\varphi(a) = b \). Now, \(\Phi(e_j)b = \Phi(e_j)\varphi(a) = \Phi(e_j)a \) converges since \((e_j) \) is an approximate unit for \(A \) and \(\Phi \) is continuous. On the other hand, since \(\Phi \) is by assumption a surjection, there exists \(c \in A \) such that \(\Phi(c) = a \). This implies \(b\Phi(e_j) = (\Phi(c))^{\ast}\Phi(e_j) = (\Phi(c), \Phi(e_j)) = \varphi((c, e_j)) = \varphi(c^{\ast}e_j) \), hence \(b\Phi(e_j) \) converges too.

Let \(m \in M(B) \) be the strict limit: \(m = (\text{stlim} \Phi(e_j)) \); i.e. \(mb = \lim_j \Phi(e_j)b, bm = \lim_j \Phi(e_j)b, \forall b \in B \). Using continuity of \(\Phi \) we get \(\Phi(a) = \Phi(\text{stlim} e_j a) = \lim_j \Phi(e_j) \varphi(a) = m \varphi(a), \forall a \in A \). It remains to show that \(m \) is an isometry. First, \(\langle \Phi(x), \Phi(y) \rangle = \langle m \varphi(x), m \varphi(y) \rangle = \varphi(x)^{\ast}m^{\ast}m \varphi(y) \). On the other hand, \(\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle) = \varphi(x^{\ast}y) = \varphi(x)^{\ast} \varphi(y) \). Since \(\varphi \) is a surjection, this gives \(bm^{\ast}mc = bc, \forall b, c \in B \); i.e. \(bm^{\ast}m - b = 0, \forall b \in B \). Taking \(c = (bm^{\ast}m - b)^{\ast} \), we find \(bm^{\ast}m - b = 0, \forall b \in B \). The last equality can be written in the form
Definition 2.8. Let A and B be C^*-algebras, and let V and W be Hilbert C^*-modules over A and B, respectively. A map $\Phi : V \to W$ is said to be a unitary operator if there exists an injective morphism of C^*-algebras $\varphi : A \to B$ such that Φ is a surjective φ-morphism.

Remark 2.9.

(a) Each unitary operator of Hilbert C^*-modules is necessarily (by Theorem 2.3) an isometry.

(b) Since Φ is a surjection, Proposition 2.5 implies $\langle W, W \rangle = \varphi((V, V)) \simeq \langle V, V \rangle$. If W is additionally a full B-module, then φ is also surjective, hence an isomorphism of C^*-algebras.

(c) If V is a Hilbert C^*-module over a C^*-algebra A and if $\varphi : A \to B$ is an isomorphism of C^*-algebras, then V can also be regarded a Hilbert B-module and the identity map is obviously a unitary operator between these two versions of V.

Conversely, if V and W are full unitary equivalent Hilbert C^*-modules over C^*-algebras A and B, respectively (in the sense that there exists a unitary operator $\Phi : V \to W$, then A and B are isomorphic C^*-algebras.

(d) Suppose that V and W are full Hilbert C^*-modules over A and B, respectively. Let $\varphi : A \to B$ be an isomorphism of C^*-algebras. Then a surjective operator $\Phi : V \to W$ satisfying $\Phi(va)\Phi(v)\varphi(a), \forall v \in V, \forall a \in A$ is a unitary operator of Hilbert C^*-modules if and only if Φ is an isometry.

To see this, we have to show that Φ, having the property $\|\Phi(v)\| = \|v\|, \forall v \in V$, also satisfies the condition from Definition 2.1. This can be done by repeating the nice argument from [4], Theorem 3.5.

Take $x \in V$ and $b \in B$. Then there exists $a \in A$ such that $\varphi(a) = b$ and

$$
\|\langle \Phi(x), \Phi(x) \rangle^{1/2}b\|^2 = \|b^*\langle \Phi(x), \Phi(x) \rangle b\| = \|\langle \Phi(x)b, \Phi(x)b \rangle\|
= \|\langle \Phi(x)\varphi(a), \Phi(x)\varphi(a) \rangle\| = \|\langle xa, xa \rangle\|
= \|\Phi(xa)\|^2 = \|xa\|^2 = \|\langle xa, xa \rangle\| = \|\varphi(\langle xa, xa \rangle)\|
= \|\varphi(\langle x, x \rangle)^{1/2}\varphi(a)\|^2 = \|\varphi(\langle x, x \rangle)^{1/2}b\|^2.
$$

By Lemma 3.4 from [4] this implies $\langle \Phi(x), \Phi(x) \rangle^{1/2} = \varphi(\langle x, x \rangle)^{1/2}$.

(e) Unitary equivalence of full Hilbert C^*-modules is an equivalence relation.

(f) Suppose that V and W are full Hilbert C^*-modules over C^*-algebras A and B, respectively such that $\varphi : A \to B$ is an isomorphism and that $\Phi : V \to W$ is a unitary φ-morphism. Then $\Phi^{-1} : W \to V$ is a unitary φ^{-1}-morphism. Then we also have

$$
\langle w, \Phi(x) \rangle = \varphi(\langle \Phi^{-1}(w), x \rangle), \forall x \in V, w \in W.
$$
Indeed, putting \(w = \Phi(v) \), one obtains
\[
\langle w, \Phi(x) \rangle = \langle \Phi(v), \Phi(x) \rangle = \varphi((v, x)) = \varphi(\Phi^{-1}(w), x).
\]

Example 2.10. Consider an arbitrary \(C^* \)-algebra \(A \) regarded as a Hilbert \(A \)-module with \(\langle a, b \rangle = a^*b \). It is well known that the map \(\gamma : A \to K(A) \), \(\gamma(a) = T_a \), \(T_a(x) = ax \) is an isomorphism of \(C^* \)-algebras. Its unique extension to the corresponding multiplier algebras ([9], Proposition 2.2.16) \(\gamma : M(A) \to B(A) \) is also an isomorphism of \(C^* \)-algebras.

Let \(V \) be a Hilbert \(A \)-module, let us denote \(V_d = B(A, V) \). It is well known that \(V_d \) is a Hilbert \(B(A) \)-module with the \(B(A) \)-valued inner product \(\langle r_1, r_2 \rangle = r_1^*r_2 \) such that the resulting norm coincides with the operator norm on \(V_d \).

Further, each \(v \in V \) induces the map \(r_v : v \in V \) given by \(r_v(a) = va \). It is also known ([7], Lemma 2.32) that \(\{ r_v : v \in V \} = K(A, V) \subseteq V_d \).

Now one can easily verify the following assertions:

1. \(\Gamma : V \to V_d, \Gamma(v) = r_v \) is a \(\gamma \)-morphism of Hilbert \(C^* \)-modules.
2. \(\text{Im} \Gamma \) is the ideal submodule of \(V_d \) associated with the ideal \(K(A) \) of \(B(A) \).
3. \(\Gamma : V \to \text{Im} \Gamma = K(A, V) \) is a unitary \(\gamma \)-morphism of Hilbert \(C^* \)-modules.

Proposition 2.11. Let \(V \) and \(W \) be Hilbert \(C^* \)-modules over \(C^* \)-algebras \(A \) and \(B \) respectively, let \(\varphi : A \to B \) be an injective morphism and let \(\Phi : V \to W \) be a unitary \(\varphi \)-morphism. Then the map \(\Phi^+ : B(V) \to B(W) \), \(\Phi^+(T) = \Phi T \Phi^{-1} \) is an isomorphism of \(C^* \)-algebras. Moreover, \(\Phi^+((\theta_x, y)) = \theta_{\varphi(x)}, \varphi(y), \forall x, y \in V \) and \(\Phi^+(K(V)) = K(W) \).

Proof. First observe that \(\Phi^+(T) = \Phi T \Phi^{-1} \) is an adjointable operator, in fact we claim \((\Phi T \Phi^{-1})^* = \Phi^* \Phi^{-1} \). Indeed,
\[
\langle w_1, \Phi T \Phi^{-1} w_2 \rangle = \varphi((\Phi^{-1} w_1, T \Phi^{-1} w_2)) = \varphi((T^* \Phi^{-1} w_1, \Phi^{-1} w_2)) = \langle \Phi^* T^* \Phi^{-1} w_1, w_2 \rangle.
\]

Now one easily verifies that \(\Phi^+ \) is an isomorphism of \(C^* \)-algebras. Further,
\[
\Phi^+(\theta_x, y)(w) = \Phi \theta_x y \Phi^{-1}(w) = \Phi \theta_{\varphi(x)}(\varphi(y)) = \Phi(x)(\varphi(y), \Phi(v)) = \theta_{\varphi(x)}, \varphi(y)(w).
\]

The last statement is an immediate consequence. \(\square \)

Remark 2.12.
(a) Since \(B(V) \) and \(B(W) \) are the multiplier \(C^* \)-algebras of \(K(V) \) and \(K(W) \),
we know that \(\Phi^+ \), satisfying \(\Phi^+((\theta_x, y)) = \theta_{\varphi(x)}, \varphi(y), \forall x, y \in V \), is uniquely determined.
(b) If one applies Proposition 2.11 to the case $V = \mathcal{A}$, $W = \mathcal{B}$, $\Phi = \varphi$, one obtains the uniquely determined extension of φ ensured by the small extension theorem ([9], Proposition 2.2.16): $\varphi^+: \mathcal{B}(\mathcal{A}) \to \mathcal{B}(\mathcal{B})$, $\varphi^+(T)\varphi^{-1}$.

(c) Proposition 2.11 applied to $V \cong \Gamma(V) = K(\mathcal{A}, V)$ coincides with (a special case of) Proposition 7.1 in [4].

Corollary 2.13. Let V and W be Hilbert C^*-modules over C^*-algebras \mathcal{A} and \mathcal{B}, let $\varphi: \mathcal{A} \to \mathcal{B}$ be a surjective morphism of C^*-algebras and let $\Phi: V \to W$ be a surjective φ-morphism. There exists a morphism of C^*-algebras $\Phi^+: \mathcal{B}(V) \to \mathcal{B}(W)$ satisfying $\Phi^+((\theta_{x,y}) = \theta_{\varphi(x), \varphi(y)}$ and $\Phi^+(K(V)) = K(W)$.

Proof. Considering the quotient $V/\text{Ker} \Phi$ we first apply Proposition 1.17 and Corollary 1.18. The proof is completed by a direct application of Lemma 2.4 and the preceding proposition.

Remark 2.14. Let V and W be full (right) Hilbert C^*-modules over \mathcal{A}, resp. \mathcal{B}, let $\varphi: \mathcal{A} \to \mathcal{B}$ be a morphism of C^*-algebras and let $\Phi: V \to W$ be a surjective φ-morphism of Hilbert C^*-modules. We note that Φ is also a Φ^+-morphism of left Hilbert C^*-modules V and W (when V and W are regarded as the left Hilbert C^*-modules over $K(V)$ and $K(W)$, respectively).

To show this, let us denote by $[,]$ the $K(V)$-inner product on V; i.e. $[x, y] = \theta_{x,y}$; the same notation will be used in W. Now the condition from Definition 2.1 is an immediate consequence of the preceding corollary: $[\Phi(x), \Phi(y)] = \theta_{\varphi(x), \varphi(y)} = \Phi^+([x, y])$.

Now we are able to describe morphisms of Hilbert C^*-modules in terms of the corresponding linking algebras.

Recall that, given a Hilbert \mathcal{A}-module V, the linking algebra $\mathcal{L}(V)$ may be written as the matrix algebra of the form

\[
\mathcal{L}(V) = \begin{bmatrix} K(\mathcal{A}) & K(V, \mathcal{A}) \\ K(\mathcal{A}, V) & K(V) \end{bmatrix}.
\]

(cf. [7], Lemma 2.32 and Corollary 3.21). Observe that $\mathcal{L}(V)$ is in fact the C^*-algebra of all "compact" operators acting on $\mathcal{A} \oplus V$. Keeping the notation from Example 2.10 we may write

\[
\mathcal{L}(V) = \begin{bmatrix} K(\mathcal{A}) & K(V, \mathcal{A}) \\ K(\mathcal{A}, V) & K(V) \end{bmatrix} = \left\{ \begin{bmatrix} T_{x,y} & l_y \\ r_x & T \end{bmatrix} : a \in \mathcal{A}, x, y \in V, T \in K(V) \right\}.
\]

Accordingly, we shall also identify the C^*-algebras of "compact" operators with the corresponding corners in the linking algebra: $K(\mathcal{A}) = K(\mathcal{A} \oplus 0) \subseteq K(\mathcal{A} \oplus V) = \mathcal{L}(V)$ and $K(V) = K(0 \oplus V) \subseteq K(\mathcal{A} \oplus V) = \mathcal{L}(V)$.

Theorem 2.15. Let V and W be full Hilbert C^*-modules over \mathcal{A}, resp. \mathcal{B}, let $\varphi: \mathcal{A} \to \mathcal{B}$ be a morphism of C^*-algebras and let $\Phi: V \to W$ be a surjective φ-morphism of Hilbert C^*-modules. Then the map $\rho_{\varphi, \Phi}: \mathcal{L}(V) \to \mathcal{L}(W)$ defined by

\[
\rho_{\varphi, \Phi}\left(\begin{bmatrix} T_{a} & l_y \\ r_x & T \end{bmatrix} \right) = \begin{bmatrix} T_{\varphi(a)} & l_{\varphi(y)} \\ r_{\varphi(x)} & \Phi^+(T) \end{bmatrix}.
\]
is a morphism of C^*-algebras. Conversely, let $\rho : \mathcal{L}(V) \to \mathcal{L}(W)$ be a morphism of C^*-algebras such that $\rho(\mathcal{K}(A)) \subseteq \mathcal{K}(B)$ and $\rho(\mathcal{K}(V)) \subseteq \mathcal{K}(W)$. Then there exist a morphism of C^*-algebras $\varphi : \mathcal{A} \to \mathcal{B}$ and a φ-morphism $\Phi : V \to W$ such that $\rho = \rho_{\varphi, \Phi}$.

Proof. Clearly, $\rho_{\varphi, \Phi}$ is a linear map. Further,

$$\rho_{\varphi, \Phi} \left(\begin{bmatrix} T_a l_v \\ r_w T \\ r_y S \end{bmatrix} \right) = \rho_{\varphi, \Phi} \left(\begin{bmatrix} T_{ab} + T(v, y) l_{xa^*} + l_{S^*v} \\ r_{wb} + r_{ty} \theta_{w, x} + TS \end{bmatrix} \right) = \begin{bmatrix} T_{\varphi(ab + (v, y))} l_{\Phi(xa^* + S^*v)} \\ r_{\Phi(wb + ty)} \Phi^*(\theta_{w, x} + TS) \end{bmatrix} = \text{(applying Remark 2.14 to)} \begin{bmatrix} T_{\varphi(a)} l_{\Phi(v)} \\ r_{\Phi(w)} \Phi^*(T) \end{bmatrix} \begin{bmatrix} T_{\varphi(b)} l_{\Phi(x)} \\ r_{\Phi(y)} \Phi^*(S) \end{bmatrix} = \rho_{\varphi, \Phi} \left(\begin{bmatrix} T_a l_v \\ r_w T \\ r_y S \end{bmatrix} \right).$$

To prove the converse, first observe that, by assumption, we may write

$$\rho = \rho_{\varphi, \Phi} \left(\begin{bmatrix} T_a \\ 0 \\ 0 \\ T \end{bmatrix} \right) = \begin{bmatrix} \rho_{\varphi(a)} \\ 0 \\ 0 \\ \Psi(T) \end{bmatrix}.$$

It should be noted that the definition of φ actually uses the standard identification $a \mapsto T_a$, $a \in \mathcal{A}, T_a \in \mathcal{K}(A)$ denoted by γ in Example 2.10. Obviously, both φ and Ψ are morphisms of C^*-algebras.

Take any $x \in V$ and write $\rho \left(\begin{bmatrix} 0 \\ 0 \\ r_x \\ 0 \end{bmatrix} \right) = \begin{bmatrix} \rho_{11}(x) \\ \rho_{12}(x) \\ \rho_{21}(x) \\ \rho_{22}(x) \end{bmatrix}$. Then

$$\rho \left(\begin{bmatrix} 0 \\ 0 \\ r_x \\ 0 \end{bmatrix} \right)^* \rho \left(\begin{bmatrix} 0 \\ 0 \\ r_x \\ 0 \end{bmatrix} \right) = \begin{bmatrix} \rho_{11}(x)^* \rho_{21}(x)^* \\ \rho_{12}(x)^* \rho_{22}(x)^* \end{bmatrix} \begin{bmatrix} \rho_{11}(x) \\ \rho_{12}(x) \\ \rho_{21}(x) \\ \rho_{22}(x) \end{bmatrix} = \begin{bmatrix} \rho_{11}(x)^* \rho_{11}(x) + \rho_{21}(x)^* \rho_{21}(x) + \rho_{12}(x)^* \rho_{12}(x) + \rho_{22}(x)^* \rho_{22}(x) \\ \rho_{12}(x)^* \rho_{11}(x) + \rho_{22}(x)^* \rho_{21}(x) + \rho_{12}(x)^* \rho_{12}(x) + \rho_{22}(x)^* \rho_{22}(x) \end{bmatrix}.$$

Observing $\begin{bmatrix} 0 \\ 0 \\ r_x \end{bmatrix}^* = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ and comparing the above result with

$$\rho \left(\begin{bmatrix} 0 \\ 0 \\ r_x \end{bmatrix} \right) = \rho \left(\begin{bmatrix} T_{(x, x)} \\ 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} T_{\varphi(x, x)} \\ 0 \\ 0 \end{bmatrix}$$

we find $\rho_{12}(x) = \rho_{22}(x) = 0$. Similarly, calculating $\rho \left(\begin{bmatrix} 0 \\ 0 \\ r_x \end{bmatrix} \right) \rho \left(\begin{bmatrix} 0 \\ 0 \\ r_x \end{bmatrix} \right)^*$, one additionally gets $\rho_{11} = 0$. After all, we conclude that ρ may be written in the form

$$\rho \left(\begin{bmatrix} T_a l_y \\ r_x T \end{bmatrix} \right) = \begin{bmatrix} T_{\varphi(a)} l_{\Phi(y)} \\ r_{\Phi(x)} \Psi(T) \end{bmatrix}.$$

Obviously, the induced maps Φ_1 and Φ_2 are linear.
Let us show $\Phi_1 = \Phi_2$. Indeed, $\rho\left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}\right)^* = \rho\left(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\right)$ implies $\begin{bmatrix} 0 \\ l_{\Phi_2(x)} \end{bmatrix} = \begin{bmatrix} 0 \\ l_{\Phi_1(x)} \end{bmatrix}$, thus $\Phi_1(x) = \Phi_2(x)$ which enables us to write $\Phi_1 = \Phi_2 = \Phi$.

Finally, $\rho\left(\begin{bmatrix} 0 & l_y \\ r_x & 0 \end{bmatrix}\begin{bmatrix} 0 & l_x \\ r_y & 0 \end{bmatrix}\right) =\rho\left(\begin{bmatrix} 0 & l_y \\ r_x & 0 \end{bmatrix}\right)\rho\left(\begin{bmatrix} 0 & l_x \\ r_y & 0 \end{bmatrix}\right) = \begin{bmatrix} T_{\phi(y)} & 0 \\ 0 & \theta_{\phi(x),\phi(x)} \end{bmatrix}$.

On the other hand, knowing that ρ is multiplicative, one obtains

\[
\rho\left(\begin{bmatrix} 0 & l_y \\ r_x & 0 \end{bmatrix}\begin{bmatrix} 0 & l_x \\ r_y & 0 \end{bmatrix}\right) = \rho\left(\begin{bmatrix} 0 & l_y \\ r_x & 0 \end{bmatrix}\right)\rho\left(\begin{bmatrix} 0 & l_x \\ r_y & 0 \end{bmatrix}\right) = \begin{bmatrix} T_{\phi(y)} & 0 \\ 0 & \theta_{\phi(x),\phi(x)} \end{bmatrix}.
\]

This is enough (together with Corollary 2.13) to conclude $\rho = \rho_{\varphi,\Phi}$. Notice that the assumptions $\rho(K(A)) \subseteq K(B)$ and $\rho(K(V)) \subseteq K(W)$ cannot be dropped from the hypothesis of the second assertion in Theorem 2.15.

Let us also note an alternative description of $\rho_{\varphi,\Phi}$. First, define $\varphi \oplus \Phi : A \oplus V \rightarrow B \oplus W$, $(\varphi \oplus \Phi)(a, v) = (\varphi(a), \Phi(v))$.

One easily verifies that $\varphi \oplus \Phi$ is a φ-morphism of Hilbert C^*-modules. After applying Corollary 2.13 it turns out that $(\varphi \oplus \Phi)^+ = \rho_{\varphi,\Phi}$.

At the end let us mention a similar characterization of ideal submodules in terms of linking algebras: there is a natural bijective correspondence between the set of all ideal submodules of a Hilbert C^*-module V and the set of all ideals of the corresponding linking algebra $L(V)$. Moreover, the ideal submodule associated with an essential ideal corresponds to an essential ideal in $L(V)$. The proof is an easy calculation similar to the preceding one, hence omitted.

Note added in proof: In Corollary 2.13 as well as in the subsequent Remark 2.14 and Theorem 2.15 the assumption that Φ is surjective is redundant. In fact, the map $\Phi^+ : B(V) \rightarrow B(W)$ satisfying $\Phi^*(\theta_{x,y}) = \theta_{\Phi(x),\Phi(y)}$ is always well defined. This can be seen using the identification $K(V) = V \otimes_{hA} V^*$ (cf. D. BLECHER, A new approach to Hilbert C^*-modules, Math. Ann. 307(1997), 253-290). We thank to the anonymous referee for this observation.

References

