On a class of module maps of Hilbert C^{*}-modules

Damir Bakić* and Boris Guljaš ${ }^{\dagger}$

Abstract

The paper describes some basic properties of a class of module maps of Hilbert C^{*}-modules.

In Section 1 ideal submodules are considered and the canonical Hilbert C^{*}-module structure on the quotient of a Hilbert C^{*}-module over an ideal submodule is described. Given a Hilbert C^{*}-module V, an ideal submodule $V_{\mathcal{I}}$, and the quotient $V / V_{\mathcal{I}}$, canonical morphisms of the corresponding C^{*}-algebras of adjointable operators are discussed.

In the second part of the paper a class of module maps of Hilbert C^{*}-modules is introduced. Given Hilbert C^{*}-modules V and W and a morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ of the underlying C^{*}-algebras, a map $\Phi: V \rightarrow W$ belongs to the class under consideration if it preserves inner products modulo $\varphi:\langle\Phi(x), \Phi(y)\rangle=\varphi(\langle x, y\rangle)$ for all $x, y \in V$. It is shown that each morphism Φ of this kind is necessarily a contraction such that the kernel of Φ is an ideal submodule of V. A related class of morphisms of the corresponding linking algebras is also discussed.

Key words: C^{*}-algebra, Hilbert C^{*}-module, adjointable operator
AMS subject classifications: Primary 46C50; Secondary 46L08
Received July 11, 2002 Accepted December 12, 2002

Introduction

A (right) Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A} is a right \mathcal{A}-module V equipped with an \mathcal{A}-valued inner product $\langle\cdot, \cdot\rangle$ which is \mathcal{A}-linear in the second and conjugate linear in the first variable such that V is a Banach space with the norm $\|v\|=$ $\|\langle v, v\rangle\|^{1 / 2}$. Hilbert C^{*}-modules are introduced and initially investigated in [3], [5] and [8].

The present paper is organized as an introduction to a study of extensions of Hilbert C^{*}-modules.

Section 1 contains a detailed discussion on ideal submodules. As their basic properties are already known (see [10] and [7]), some of the results are stated without proof. The starting point is Theorem 1.6 which states that the quotient of a

[^0]Hilbert C^{*}-module over an ideal submodule admits a natural Hilbert C^{*}-module structure. Considering a Hilbert C^{*}-module V, an ideal submodule $V_{\mathcal{I}} \subseteq V$, and the quotient $V / V_{\mathcal{I}}$, we describe canonical morphisms of the corresponding C^{*}-algebras of adjointable operators $\boldsymbol{B}(V), \boldsymbol{B}\left(V_{\mathcal{I}}\right)$ and $\boldsymbol{B}\left(V / V_{\mathcal{I}}\right)$. Also, some properties of ideal submodules arising from essential ideals are obtained. In particular, we show in Theorem 1.12 that the canonical morphism $\alpha: \boldsymbol{B}(V) \rightarrow \boldsymbol{B}\left(V_{I}\right)$ sending each operator T to its restriction $T \mid V_{\mathcal{I}}$ is an injection if and only if \mathcal{I} is an essential ideal in the underlying C^{*}-algebra \mathcal{A}.

In Section 2 a class of module maps of Hilbert C^{*}-modules over possibly different C^{*}-algebras is introduced. We consider morphisms of Hilbert C^{*}-modules which are in a sense supported by morphisms of the underlying C^{*}-algebras. Their basic properties are collected and a couple of examples is provided. In Theorem 2.15 we establish a correspondence between the class of module maps under consideration and a class of morphisms of the corresponding linking algebras.

The present material provides a necessary tool for the later study of extensions of Hilbert C^{*}-modules. A related discussion will appear in our subsequent paper.

Throughout the paper we denote the C^{*}-algebras of all adjointable and "compact" operators on a Hilbert C^{*}-module V by $\boldsymbol{B}(V)$ and $\boldsymbol{K}(V)$, respectively. We also use $\boldsymbol{B}(\cdot, \cdot)$ and $\boldsymbol{K}(\cdot, \cdot)$ to denote spaces of all adjointable, resp. "compact" operators acting between different Hilbert C^{*}-modules.

We denote by $\langle V, V\rangle$ the closed linear span of all elements in the underlying C^{*}-algebra \mathcal{A} of the form $\langle x, y\rangle, x, y \in V$. Obviously, $\langle V, V\rangle$ is an ideal in \mathcal{A}. (Throughout the paper, an ideal in a C^{*}-algebra always means a closed two-sided ideal.) V is said to be a full \mathcal{A}-module if $\langle V, V\rangle=\mathcal{A}$.

For this and other general facts concerned with Hilbert C^{*}-modules we refer to [4], [7] and [9].

1. Ideal submodules and quotients of Hilbert C^{*}-modules

We begin with the definition of an ideal submodule. A related discussion can be found in [10].

Definition 1.1. Let V be a Hilbert C^{*}-module over \mathcal{A}, and \mathcal{I} an ideal in \mathcal{A}. The associated ideal submodule $V_{\mathcal{I}}$ is defined by

$$
V_{\mathcal{I}}=[V \mathcal{I}]^{-}=[\{v b: v \in V, b \in \mathcal{I}\}]^{-}
$$

(the closed linear span of the action of \mathcal{I} on V).
Clearly, $V_{\mathcal{I}}$ is a closed submodule of V. It can be also regarded as a Hilbert C^{*}-module over \mathcal{I}.

In general, there exist closed submodules which are not ideal submodules. For instance, if a C^{*}-algebra \mathcal{A} is regarded as a Hilbert \mathcal{A}-module (with the inner product $\langle a, b\rangle=a^{*} b$), then ideal submodules of \mathcal{A} are precisely ideals in \mathcal{A}, while closed submodules of \mathcal{A} are closed right ideals in \mathcal{A}.

We proceed with a couple of basic properties of ideal submodules. Our first proposition is already known ([10]).

Proposition 1.2. Let V be a Hilbert C^{*}-module over \mathcal{A}, and let \mathcal{I} be an ideal in A. Then $V_{\mathcal{I}}=V \mathcal{I}=\{v b: v \in V, b \in \mathcal{I}\}$.

Proof. The associated ideal submodule $V_{\mathcal{I}}$ is by definition equal to $V_{\mathcal{I}}=$ $[V \mathcal{I}]^{-}=[\{v b: v \in V, b \in \mathcal{I}\}]^{-}$. Regarding $V_{\mathcal{I}}$ as a Hilbert \mathcal{I}-module we may apply the Hewitt-Cohen factorization theorem ([6], Theorem 4.1, see also [7], Proposition 2.31): for each $x \in V_{\mathcal{I}}$ there exist $y \in V_{\mathcal{I}}$ and $b \in \mathcal{I}$ such that $x=y b$. This shows $V \mathcal{I} \subseteq[V \mathcal{I}]^{-}=V_{\mathcal{I}} \subseteq V_{\mathcal{I}} \mathcal{I} \subseteq V \mathcal{I}$, i.e. $V_{\mathcal{I}}=V \mathcal{I}$.
Proposition 1.3. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an ideal in \mathcal{A}, and $V_{\mathcal{I}}$ the associated ideal submodule. Then

$$
V_{\mathcal{I}}=\{x \in V:\langle x, x\rangle \in \mathcal{I}\}=\{x \in V:\langle x, v\rangle \in \mathcal{I}, \forall v \in V\} .
$$

If V is full, then $V_{\mathcal{I}}$ is full as a Hilbert \mathcal{I}-module.
Proof. $\langle v b, v b\rangle=b^{*}\langle v, v\rangle b \in \mathcal{I}, \forall b \in \mathcal{I}, \forall v \in V$. This shows $x=v b \in V_{\mathcal{I}} \Rightarrow$ $\langle x, x\rangle \in \mathcal{I}$. A well known formula ([9], Lemma 15.2.9)

$$
x=\lim _{n} x\left(\langle x, x\rangle+\frac{1}{n}\right)^{-1}\langle x, x\rangle, \forall x \in V
$$

implies the converse. The second equality is now an immediate consequence.
Suppose that V is full as a Hilbert C^{*}-module over \mathcal{A}. Then there is an approximate unit $\left(a_{\lambda}\right)$ for \mathcal{A} such that each a_{λ} is a finite sum of the form $a_{\lambda}=\sum_{i=1}^{n(\lambda)}\left\langle x_{i}^{\lambda}, x_{i}^{\lambda}\right\rangle$ ([1], Remark 1.9). Take any positive $b \in \mathcal{I}$, let ε be given.

Since $\left(a_{\lambda}\right)$ is an approximate unit for \mathcal{A}, there exists λ such that $\left\|b^{1 / 2}-a_{\lambda} b^{1 / 2}\right\|$ is small enough so that $\left\|b^{1 / 2}\left(b^{1 / 2}-a_{\lambda} b^{1 / 2}\right)\right\|<\varepsilon$. It remains to observe that the left-hand side of the above inequality can be rewritten in the form

$$
\left\|b-b^{1 / 2} a_{\lambda} b^{1 / 2}\right\|=\left\|b-\sum_{i=1}^{n(\lambda)}\left\langle x_{i}^{\lambda} b^{1 / 2}, x_{i}^{\lambda} b^{1 / 2}\right\rangle\right\|
$$

This shows that b can be approximated by inner products of elements from V_{I}, i.e. $b \in\left\langle V_{\mathcal{I}}, V_{\mathcal{I}}\right\rangle$.

Now we introduce a natural Hilbert C^{*}-module structure on the quotient of a Hilbert C^{*}-module over an ideal submodule.

Definition 1.4. Let V be a Hilbert C^{*}-module over \mathcal{A}, \mathcal{I} an ideal in \mathcal{A}, and $V_{\mathcal{I}}$ the associated ideal submodule. Denote by $\pi: \mathcal{A} \rightarrow \mathcal{A} / \mathcal{I}$ and $q: V \rightarrow V / V_{\mathcal{I}}$ the quotient maps. A right action of $\mathcal{A} / \mathcal{I}$ on the linear space $V / V_{\mathcal{I}}$ is defined by $q(v) \pi(a)=q(v a)$.

The action of $\mathcal{A} / \mathcal{I}$ on the quotient $V / V_{\mathcal{I}}$ given by $q(v) \pi(a)=q(v a)$ is well defined precisely because $V_{\mathcal{I}}$ is an ideal submodule of V. Indeed, if $\pi(a)=\pi\left(a^{\prime}\right)$ then $q(v) \pi(a)=q(v) \pi\left(a^{\prime}\right)$ is ensured by definition of an ideal submodule: $v b \in$ $V_{\mathcal{I}}, \forall b \in \mathcal{I}, \forall v \in V$.

If X is an arbitrary closed submodule of V one can also consider the quotient of linear spaces V / X. Further, denote by $\mathcal{I}=\langle X, X\rangle \subseteq \mathcal{A}$ the closed linear span of
the set of all $\langle x, y\rangle, x, y \in X$. Since X is by assumption a closed submodule of V, \mathcal{I} is an ideal in \mathcal{A}.

Now an action of $\mathcal{A} / \mathcal{I}$ on V / X given by $q(x) \pi(a)=q(x a)$ will be unambiguously defined if and only if $v b \in X$ is satisfied for each $b \in \mathcal{I}$ and $v \in V$; i.e. $V \mathcal{I} \subseteq X$. Since X is a closed submodule, this implies $V_{\mathcal{I}} \subseteq X$. Because the reverse inclusion is always satisfied, we conclude: the action of $\mathcal{A} / \mathcal{I}$ on V / X is well defined if and only if X is the ideal submodule $V_{\mathcal{I}}$ associated with $\mathcal{I}=\langle X, X\rangle$.

Remark 1.5. The role of ideal submodules in the preceding discussion should be compared with Proposition 3.25 in [7]. Recall that each right Hilbert \mathcal{A}-module V is also equipped with a natural left Hilbert $\boldsymbol{K}(V)$-module structure. Moreover, there is a standard Hilbert $\boldsymbol{K}(V)-\mathcal{A}$ bimodule structure on V. Now one easily show the following assertions (which are stated without proofs):
(1) Each ideal submodule $V_{\mathcal{I}}$ of V is also an ideal submodule of the left Hilbert $\boldsymbol{K}(V)$-module V.
(2) Let X be a closed submodule of a right Hilbert C^{*}-module V. Then X is an ideal submodule of V if and only if X is a closed subbimodule of the Hilbert $\boldsymbol{K}(V)-\mathcal{A}$ bimodule V.

The following theorem is known ([7], Proposition 3.25, [10], Lemma 3.1). We state it for the sake of completeness.

Theorem 1.6. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an ideal in \mathcal{A}, and $V_{\mathcal{I}}$ the associated ideal submodule. Then $V / V_{\mathcal{I}}$ equipped with a right $\mathcal{A} / \mathcal{I}$-action from Definition 1.4 is a pre-Hilbert $\mathcal{A} / \mathcal{I}$-module with the inner product given by $\langle q(v), q(w)\rangle=$ $\pi(\langle v, w\rangle)$. The resulting norm $\|q(v)\|=\|\pi(\langle v, v\rangle)\|^{1 / 2}$ coincides with the quotient norm $d\left(v, V_{\mathcal{I}}\right)$ defined on the quotient of Banach spaces $V / V_{\mathcal{I}}$. In particular, $V / V_{\mathcal{I}}$ is complete, hence a Hilbert C^{*}-module over $\mathcal{A} / \mathcal{I}$.

Remark 1.7. $V / V_{\mathcal{I}}$ is a full $\mathcal{A} / \mathcal{I}$-module if and only if V is full. This follows at once from the evident equality $\left\langle V / V_{\mathcal{I}}, V / V_{\mathcal{I}}\right\rangle=\pi(\langle V, V\rangle)$.

Example 1.8. Let us briefly describe an application of Theorem 1.6. Consider a Hilbert C^{*}-module V over \mathcal{A} and a surjective morphism of C^{*}-algebras $\varphi: \mathcal{A} \rightarrow \mathcal{B}$. Define

$$
N_{\varphi}=\{x \in V: \varphi(\langle x, x\rangle)=0\} .
$$

One easily shows that N_{φ} is a closed submodule of V. There is a standard construction ([2], p. 19) which provides a pre-Hilbert \mathcal{B}-module structure on V / N_{φ} : one defines $q(v) \varphi(a)=q(v a)$ and $\langle q(x), q(y)\rangle=\varphi(\langle x, y\rangle)$. However, it seems to be overlooked that V / N_{φ} is already complete with respect to the resulting norm.

To prove this, first observe that $\mathcal{A} / \operatorname{Ker} \varphi$ and \mathcal{B} are isomorphic C^{*}-algebras. This enables us to regard V / N_{φ} as a Hilbert $\mathcal{A} / \operatorname{Ker} \varphi$-module. Now, $N_{\varphi}=\{x \in$ $V:\langle x, x\rangle \in \operatorname{Ker} \varphi\}=($ by Proposition 1.3 $)=V_{\text {Ker甲 }}$; i.e. $\quad N_{\varphi}$ is the ideal submodule associated to the ideal Ker φ. It remains to apply Theorem1.6.

Theorem 1.6 also implies that a property of the Rieffel correspondence is that, assuming that two C^{*}-algebras are Morita equivalent, the corresponding ideals and
quotients are Morita equivalent themselves (Proposition 3.25 in [7]). We shall proceed in a different direction. Our goal is to compare the C^{*}-algebras of all adjointable and "compact" operators acting on a Hilbert C^{*}-module V with the corresponding algebras of operators on an ideal submodule $V_{\mathcal{I}}$ and the quotient $V / V_{\mathcal{I}}$, respectively.

To fix our notation, we recall the definition of the ideal of all "compact" operators on a Hilbert C^{*}-module V. Given $v, w \in V$, let $\theta_{v, w}: V \rightarrow V$ denote the operator defined by $\theta_{v, w}(x)=v\langle w, x\rangle$. Each $\theta_{v, w}$ is an adjointable operator on V and the linear span

$$
\left[\left\{\theta_{v, w}: v, w \in V\right\}\right]
$$

is a two-sided ideal in $\boldsymbol{B}(V)$. Its closure in the operator norm

$$
\boldsymbol{K}(V)=\left[\left\{\theta_{v, w}: v, w \in V\right\}\right]^{-} \subseteq \boldsymbol{B}(V)
$$

is an ideal in $\boldsymbol{B}(V)$ and elements of $\boldsymbol{K}(V)$ are called "compact" operators.
Let V be a Hilbert \mathcal{A}-module. Assume that \mathcal{I} is an ideal in \mathcal{A}, and let $V_{\mathcal{I}}$ be the associated ideal submodule. Observe that $V_{\mathcal{I}}$ is invariant for each $T \in \boldsymbol{B}(V)$; namely $T(v b)=(T v) b \in V_{\mathcal{I}}, \forall b \in \mathcal{I}, \forall v \in V$. Consequently, there is an operator $T \mid V_{\mathcal{I}}$ on $V_{\mathcal{I}}$ induced by T such that $\left(T \mid V_{\mathcal{I}}\right)^{*}=T^{*} \mid V_{\mathcal{I}}$. This gives a well defined map $\alpha: \boldsymbol{B}(V) \rightarrow \boldsymbol{B}\left(V_{\mathcal{I}}\right), \alpha(T)=T \mid V_{\mathcal{I}}$. Clearly, α is a morphism of C^{*}-algebras.

We shall prove that the map α is an injection if and only if \mathcal{I} is an essential ideal in \mathcal{A}. (An ideal \mathcal{I} in a C^{*}-algebra \mathcal{A} is said to be essential if its annihilator $\mathcal{I}^{\perp}=\{a \in \mathcal{A}: a \mathcal{I}=\{0\}\}$ is trivial: $\mathcal{I}^{\perp}=\{0\}$.)

To do this, we need a few simple results on ideal submodules associated to essential ideals. We start with a property of essential ideals which is certainly known. Since we are unable to provide a reference, the proof is included.

Lemma 1.9. Let \mathcal{I} be an ideal in a C^{*}-algebra \mathcal{A}. Then \mathcal{I} is an essential ideal in \mathcal{A} if and only if there exists a faithful representation $\rho: \mathcal{A} \rightarrow \boldsymbol{B}(H)$ of \mathcal{A} on a Hilbert space H such that \mathcal{I} acts non-degenerately on H.

Proof. Suppose $\mathcal{I} \subset \mathcal{A} \subseteq \boldsymbol{B}(H)$ such that \mathcal{I} acts non-degenerately on H. Let $\left(u_{\lambda}\right)$ be an approximate unit for \mathcal{I}. Then $\xi=\lim _{\lambda} u_{\lambda} \xi, \forall \xi \in H$. Now $a \in \mathcal{I}^{\perp}$ implies $a u_{\lambda}=0, \forall \lambda$, hence $a=0$.

To prove the converse, suppose that \mathcal{I} is an essential ideal in \mathcal{A}. Taking any faithful representation of \mathcal{A} we may write $\mathcal{I} \subset \mathcal{A} \subseteq \boldsymbol{B}(H)$. Define $H_{0}=[\mathcal{I} H]^{-}$. Clearly, \mathcal{I} acts non degenerately on H_{0}. Since \mathcal{I} is an ideal in \mathcal{A}, H_{0} reduces \mathcal{A}. We shall show that $a \mapsto a \mid H_{0}$ is also a faithful representation of \mathcal{A}. Let $a \mid H_{0}=0$. Since H_{0} is invariant for each $b \in \mathcal{I}$, this implies $a b \mid H_{0}=0, \forall b \in \mathcal{I}$. On the other hand, $a b \in \mathcal{I}$ shows $a b \mid H_{0}^{\perp}=0, \forall b \in \mathcal{I}$ (observe $H_{0}^{\perp}=\cap_{b \in \mathcal{I}} \operatorname{Ker} b$). This gives $a b=0, \forall b \in \mathcal{I}$ and, since \mathcal{I} is essential, $a=0$.

Lemma 1.10. Let \mathcal{I} be an ideal in a C^{*}-algebra \mathcal{A}. The following conditions are mutually equivalent:
(a) \mathcal{I} is an essential ideal in \mathcal{A}.
(b) $\|a\|=\sup _{b \in \mathcal{I},\|b\| \leq 1}\|a b\|, \forall a \in \mathcal{A}$.
(c) $\|a\|=\sup _{b \in \mathcal{I},\|b\| \leq 1}\|b a\|, \forall a \in \mathcal{A}$.
(d) $\|a\|=\sup _{b \in \mathcal{T},\|b\| \leq 1}\left\|b a b^{*}\right\|, \forall a \in \mathcal{A}^{+}$.

Proof. $(a) \Rightarrow(b)$: By Lemma 1.9 we may assume $\mathcal{I} \subset \mathcal{A} \subseteq \boldsymbol{B}(H)$ such that \mathcal{I} acts non-degenerately on H. Given $a \in \mathcal{A}$, we have to show $\|a\| \leq \sup _{b \in \mathcal{I},\|b\| \leq 1}\|a b\|$ (the opposite inequality is trivial). Let $\left(u_{\lambda}\right)$ be an approximate unit for \mathcal{I}. Then $\xi=\lim _{\lambda} u_{\lambda} \xi, \forall \xi \in H$. Take $\|\xi\| \leq 1$. Then

$$
\|a \xi\|=\lim _{\lambda}\left\|a u_{\lambda} \xi\right\| \leq \lim \sup _{\lambda}\left\|a u_{\lambda}\right\|\|\xi\| \leq \sup _{b \in \mathcal{T},\|b\| \leq 1}\|a b\| .
$$

$(b) \Leftrightarrow(c)$ is obvious (by taking adjoints).
$(c) \Rightarrow(d)$: Let a be positive. Then

$$
\|a\|=\left\|a^{1 / 2}\right\|^{2}=\text { by }(\mathrm{c})=\sup _{b \in \mathcal{I},\|b\| \leq 1}\left\|b a^{1 / 2}\right\|^{2}=\sup _{b \in \mathcal{I},\|b\| \leq 1}\left\|b a b^{*}\right\| .
$$

$(d) \Rightarrow(a)$: Take any $a \in \mathcal{I}^{\perp}$. Then (d) applied to $a^{*} a$ gives $a^{*} a=0$, thus $\mathcal{I}^{\perp}=\{0\}$.

Proposition 1.11. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an essential ideal in \mathcal{A}, and V_{I} be the associated ideal submodule. Then
(1) $\|v\|=\sup _{b \in \tau,\|b\| \leq 1}\|v b\|, \forall v \in V$ and
(2) $\|v\|=\sup _{y \in V_{\mathcal{I}},\|y\| \leq 1}\|\langle v, y\rangle\|, \forall v \in V$.

Conversely, if V is a full \mathcal{A}-module in which (1) or (2) is satisfied with respect to (the ideal submodule associated with) some ideal \mathcal{I} in \mathcal{A}, then \mathcal{I} is an essential ideal in \mathcal{A}.

Proof. Take any $v \in V$. Using Lemma 1.10(d) we find

$$
\|v\|^{2}=\|\langle v, v\rangle\|=\sup _{b \in \mathcal{I},\|b\| \leq 1}\left\|b^{*}\langle v, v\rangle b\right\|=\sup _{b \in \mathcal{I},\|b\| \leq 1}\|v b\|^{2} .
$$

To prove the second formula, take any $v \in V$ such that $\|v\|=1$. Then

$$
\begin{aligned}
\|v\|=\|v\|^{2} & =\|\langle v, v\rangle\|=(\text { by Lemma 1.10(b) })=\sup _{b \in \mathcal{I},\|b\| \leq 1}\|\langle v, v\rangle b\| \\
& =\sup _{b \in \mathcal{I},\|b\| \leq 1}\|\langle v, v b\rangle\| \leq \sup _{y \in V_{\mathcal{I}},\|y\| \leq 1}\|\langle v, y\rangle\| \leq\|v\| .
\end{aligned}
$$

To prove the converse, suppose that V is a full \mathcal{A}-module and \mathcal{I} is not essential so that $\mathcal{I}^{\perp} \neq\{0\}$. Take any $c \in \mathcal{I}^{\perp}, c \neq 0$. Then there exists $v \in V$ such that $v c \neq 0$. Indeed, $v c=0, \forall v \in V$ would imply $\langle v, v c\rangle=0, \forall v \in V$ or $\langle v, v\rangle c=0, \forall v \in V$. Since V is full, it would follow $c^{*} c=0$, thus $c=0$.

After all, it remains to observe that $x=v c \neq 0$ with $c \in \mathcal{I}^{\perp}$ contradicts to (1) and (2), respectively.

Theorem 1.12. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an ideal in \mathcal{A}, and $V_{\mathcal{I}}$ the associated ideal submodule. If \mathcal{I} is an essential ideal in \mathcal{A}, then the map $\alpha: \boldsymbol{B}(V) \rightarrow$ $\boldsymbol{B}\left(V_{\mathcal{I}}\right), \alpha(T)=T \mid V_{\mathcal{I}}$ is an injection. Conversely, if V is full and if α is injective, then \mathcal{I} is an essential ideal in \mathcal{A}.

Proof. Suppose $\alpha(T)=T \mid V_{\mathcal{I}}=0$ for some T. Observe that, since $V_{\mathcal{I}}$ is an ideal submodule, $v b \in V_{\mathcal{I}}, \forall b \in \mathcal{I}, \forall v \in V$. Since by assumption T vanishes on $V_{\mathcal{I}}$, this implies $T(v b)=0, \forall b \in \mathcal{I}, \forall v \in V$. Now, taking arbitrary $v \in V$, we find

$$
\|T v\|=(\text { by Proposition 1.11 })=\sup _{b \in \mathcal{I},\|b\| \leq 1}\|(T v) b\|=\sup _{b \in \mathcal{I},\|b\| \leq 1}\|T(v b)\|=0 .
$$

To prove the converse, let V be full and α injective. Assume that \mathcal{I} is not essential. For $c \in \mathcal{I}^{\perp}, c \neq 0$, find $v \in V$ such that $v c \neq 0$ (as in the preceding proof). Then $\theta_{v c, v c} \neq 0$, but $\alpha\left(\theta_{v c, v c}\right)=\theta_{v c, v c} \mid V_{\mathcal{I}}=0-$ a contradiction.

Remark 1.13. In general, α is not surjective, even if \mathcal{I} is an essential ideal in \mathcal{A}. As an example, consider a nonunital C^{*}-algebra \mathcal{A} contained as an essential ideal in a unital C^{*}-algebra \mathcal{B}. Assume further that \mathcal{B} is not the maximal unitization of \mathcal{A}, i.e. that \mathcal{B} is properly contained in the multiplier algebra $M(\mathcal{A})$. Consider \mathcal{B} as a Hilbert \mathcal{B}-module. It is well known that, since \mathcal{B} is unital, $\boldsymbol{K}(\mathcal{B})=\boldsymbol{B}(\mathcal{B})=\mathcal{B}$. Further, \mathcal{A} is an ideal submodule of \mathcal{B} associated with the essential ideal \mathcal{A} of \mathcal{B}. We also know $\boldsymbol{K}(\mathcal{A})=\mathcal{A}$ and $\boldsymbol{B}(\mathcal{A})=M(\mathcal{A})$. One easily concludes that the map $\alpha: B(\mathcal{B})=\mathcal{B} \rightarrow \boldsymbol{B}(\mathcal{A})=M(\mathcal{A})$ from Theorem 1.12 acts as the inclusion $\mathcal{B} \hookrightarrow M(\mathcal{A})$; thus, by assumption, α is not a surjection.

Consider again an arbitrary Hilbert \mathcal{A}-module and an ideal \mathcal{I} in \mathcal{A}. Using the map α one can easily determine $\boldsymbol{K}\left(V_{\mathcal{I}}\right)$. Our next proposition, in which $\boldsymbol{K}\left(V_{\mathcal{I}}\right)$ is recognized as an ideal in $\boldsymbol{K}(V)$, is known; hence we state it without proof. For the proof we refer to [7], Theorem 3.22. (Alternatively, it can be deduced from Theorem 1.12 above after observing that for each ideal \mathcal{I} in \mathcal{A}, we have $V_{\mathcal{I}} \oplus V_{\mathcal{I}^{\perp}}=$ $V_{\mathcal{I} \oplus \mathcal{I}^{\perp} .}$)

Proposition 1.14. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an ideal in \mathcal{A}, and $V_{\mathcal{I}}$ be the associated ideal submodule. Then $\boldsymbol{J}=\left[\left\{\theta_{x, y}: x, y \in V_{\mathcal{I}}\right\}\right]^{-} \subseteq \boldsymbol{K}(V)$ is an ideal in $\boldsymbol{K}(V)$ and the restriction $\alpha^{\prime}=\alpha \mid \boldsymbol{J}: \boldsymbol{J} \rightarrow \boldsymbol{K}\left(V_{I}\right)$ is an isomorphism of C^{*}-algebras.

Remark 1.15. Using the same notation as above one easily concludes that $V_{\mathcal{I}}$ is also an ideal submodule of the left $\boldsymbol{K}(V)$-module V (with the inner product $\left.[x, y]=\theta_{x, y}\right)$ associated with the ideal $\boldsymbol{J}=\left[\left\{\theta_{x, y}: x, y \in V_{I}\right\}\right]^{-} \subseteq \boldsymbol{K}(V)$. As in Proposition 1.3 one obtains $V_{\mathcal{I}}=\left\{x \in V: \theta_{x, v} \in \boldsymbol{J}, \forall v \in V\right\}$.

Corollary 1.16. Let V be a full Hilbert \mathcal{A}-module, \mathcal{I} an ideal in \mathcal{A}, $t V_{\mathcal{I}}$ the associated ideal submodule. Then:
(i) $\boldsymbol{J}=\left[\left\{\theta_{x, y}: x, y \in V_{\mathcal{I}}\right\}\right]^{-} \simeq \boldsymbol{K}\left(V_{\mathcal{I}}\right)$ is an essential ideal in $\boldsymbol{K}(V)$ if and only if \mathcal{I} is an essential ideal in \mathcal{A}.
(ii) $\boldsymbol{J}=\boldsymbol{K}(V)$ if and only if $\mathcal{I}=\mathcal{A}$.

Proof. Assume that \mathcal{I} is an essential ideal in \mathcal{A} and take $T \in \boldsymbol{K}(V)$ such that $T \perp \boldsymbol{J}$. By the preceding remark for each v in V and x in $V_{\mathcal{I}}$ the operator $\theta_{v, x}$ belongs to \boldsymbol{J}, hence $T \theta_{v, x}=\theta_{T v, x}=0$. In particular, $T v\langle x, y\rangle=0, \forall x, y \in V_{\mathcal{I}}$. Since V is full, V_{I} is a full \mathcal{I}-module and now the first assertion of Proposition 1.11 implies $T v=0$.

The proof of the second assertion is similar, hence omitted.
We end this section with the corresponding result on quotients. Let \mathcal{I} be an ideal in \mathcal{A}, and let $V_{\mathcal{I}}$ be the associated ideal submodule. Since $V_{\mathcal{I}}$ is invariant for each $T \in \boldsymbol{B}(V)$, there is a well defined induced operator \hat{T} on $V / V_{\mathcal{I}}$ given by $\hat{T}(q(v))=q(T v)$. Moreover, \hat{T} is adjointable because $(\hat{T})^{*}=\hat{T}^{*}$. This enables us to define $\beta: \boldsymbol{B}(V) \rightarrow \boldsymbol{B}\left(V / V_{I}\right), \beta(T)=\hat{T}$. Obviously, β is a morphism of C^{*}-algebras.

The following proposition is proved by applying β to the ideal $\boldsymbol{K}(V)$ of all "compact" operators on V. However, as the result is already known ([7], Proposition 3.25 , see also [10]), we omit the proof.

Proposition 1.17. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an ideal in \mathcal{A}, $V_{\mathcal{I}}$ the associated ideal submodule, and let $\boldsymbol{J}=\left[\left\{\theta_{x, y}: x, y \in V_{I}\right\}\right]^{-} \subseteq \boldsymbol{K}(V)$ be as in Proposition 1.14. Then $\boldsymbol{K}(V) / \boldsymbol{J}$ and $\boldsymbol{K}\left(V / V_{\mathcal{I}}\right)$ are isomorphic C^{*}-algebras.

Corollary 1.18. Let V be a Hilbert \mathcal{A}-module, \mathcal{I} an ideal in \mathcal{A}, and $V_{\mathcal{I}}$ the associated ideal submodule. Then the map $\beta: \boldsymbol{B}(V) \rightarrow \boldsymbol{B}\left(V / V_{\mathcal{I}}\right), \beta(T)=\hat{T}$ is the unique morphism of C^{*}-algebras satisfying $\beta\left(\theta_{x, y}\right)=\theta_{q(x), q(y)}, \forall x, y \in V$ and $\beta(\boldsymbol{K}(V))=\boldsymbol{K}\left(V / V_{I}\right)$. If V is countably generated, then β is surjective.

Proof. The equality $\beta\left(\theta_{x, y}\right)=\theta_{q(x), q(y)}, \forall x, y \in V$ is verified by a direct calculation. Since β is a morphism of C^{*}-algebras, this ensures $\beta(\boldsymbol{K}(V))=\boldsymbol{K}\left(V / V_{\mathcal{I}}\right)$. Now the small extension theorem applies (see [9], Propositions 2.2.16 and 2.3.7) because $\boldsymbol{B}(V)$ and $\boldsymbol{B}\left(V / V_{\mathcal{I}}\right)$ are the multiplier algebras of $\beta(\boldsymbol{K}(V))$, resp. $\boldsymbol{K}\left(V / V_{\mathcal{I}}\right)$. Thus $\beta: \boldsymbol{B}(V) \rightarrow \boldsymbol{B}\left(V / V_{\mathcal{I}}\right)$ is uniquely determined as the extension of $\beta^{\prime}=\beta \mid \boldsymbol{K}(V)$: $\boldsymbol{K}(V) \rightarrow \boldsymbol{K}\left(V / V_{\mathcal{I}}\right)$ by strict continuity.

The last assertion follows from Tietze's extension theorem. First, if V is countably generated, then $\boldsymbol{K}(V)$ is a σ-unital C^{*}-algebra ([4], Proposition 6.7]). Since $\beta^{\prime}: \boldsymbol{K}(V) \rightarrow \boldsymbol{K}\left(V / V_{\mathcal{I}}\right)$ is a surjection, Proposition 6.8 from [4] implies that β is also a surjective map.

2. Morphisms of Hilbert C^{*}-modules

In this section we introduce a class of module maps of Hilbert C^{*}-modules, not necessarily over the same C^{*}-algebra (cf. [2], p. 9, [4], p. 24 and also [7], p. 57). The motivating example is provided by the quotient map $q: V \rightarrow V / V_{I}$ taking values in the quotient module of V over an ideal submodule $V_{\mathcal{I}}$ satisfying $\langle q(x), q(y)\rangle=$ $\pi(\langle x, y\rangle)$.

Definition 2.1. Let V and W be Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a morphism of C^{*}-algebras. A map $\Phi: V \rightarrow W$ is said to be a φ-morphism of Hilbert C^{*}-modules if $\langle\Phi(x), \Phi(y)\rangle=\varphi(\langle x, y\rangle)$ is satisfied for all x, y in V.

Using polarization, one immediately concludes that Φ is a φ-morphism if and only if $\langle\Phi(x), \Phi(x)\rangle=\varphi(\langle x, x\rangle)$ is satisfied for each x in V.

It is also easy to show that each φ-morphism is necessarily a linear operator and a module map in the sense $\Phi(v a) \Phi(v) \varphi(a), \forall v \in V, \forall a \in \mathcal{A}$.

Further, let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ and $\psi: \mathcal{B} \rightarrow \mathcal{C}$ be morphisms of C^{*}-algebras and let V, W, Z be Hilbert C^{*}-modules over $\mathcal{A}, \mathcal{B}, \mathcal{C}$, respectively. If $\Phi: V \rightarrow W$ is a φ morphism and $\Psi: W \rightarrow Z$ is a ψ-morphism, then obviously $\Psi \Phi: V \rightarrow Z$ is a $\psi \varphi$-morphism of Hilbert C^{*}-modules.

Example 2.2. Consider a Hilbert C^{*}-module V over a C^{*}-algebra \mathcal{A}. Let \mathcal{I} be an ideal in \mathcal{A}, and let $V_{\mathcal{I}}$ be the associated ideal submodule. Then we have an exact sequence of C^{*}-algebras $\mathcal{I} \xrightarrow{i} \mathcal{A} \xrightarrow{\pi} \mathcal{A} / \mathcal{I}$ and the corresponding sequence of Hilbert C^{*}-modules $V_{\mathcal{I}} \xrightarrow{j} V \xrightarrow{q} V / V_{\mathcal{I}} . \quad(H e r e ~ i$ and j denote inclusions while π and q denote canonical quotient maps). Obviously, j is an i-morphism and q is a π-morphism in the sense of the above definition.

Theorem 2.3. Let V and W be Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a morphism of C^{*}-algebras and let $\Phi: V \rightarrow W$ be a φ-morphism of Hilbert C^{*}-modules. Then Φ is a contraction satisfying $\operatorname{Ker} \Phi=$ $V_{\text {Ker } \varphi . ~ I f ~} \varphi$ is an injection, then Φ is an isometry, hence also injective. If V is a full \mathcal{A}-module and if Φ is injective, then φ is also an injection.

Proof. $\langle\Phi(x), \Phi(y)\rangle=\varphi(\langle x, y\rangle) \Rightarrow\|\Phi(x)\|^{2}=\|\langle\Phi(x), \Phi(x)\rangle\|=\|\varphi(\langle x, x\rangle)\| \leq$ $\|\langle x, x\rangle\|=\|x\|^{2}, \forall x \in V$. This proves that Φ is a contraction. The same calculation also shows: if φ is an injection, then the inequality above is replaced by the equality, hence Φ is also an isometry.

Obviously, $\operatorname{Ker} \Phi$ is a closed submodule of V such that $V_{\operatorname{Ker} \varphi} \subseteq \operatorname{Ker} \Phi$.
Further, $x \in \operatorname{Ker} \Phi \Rightarrow\langle\Phi(x), \Phi(x)\rangle=0 \Rightarrow \varphi(\langle x, x\rangle)=0$; i.e. $\langle x, x\rangle \in \operatorname{Ker} \varphi$. By Proposition 1.3 we conclude $x \in V_{\text {Ker } \varphi}$ which gives $\operatorname{Ker} \Phi \subseteq V_{\text {Ker } \varphi}$.

Finally, suppose that Φ is an injection. Then $\operatorname{Ker} \Phi=V_{\text {Ker } \varphi}=\{0\}$. Take any $a \in \operatorname{Ker} \varphi$. Then the last equality means $x a=0, \forall x \in V$. In particular, $\langle y, x a\rangle=\langle y, x\rangle a=0, \forall x, y \in V$. Since V is by hypothesis full, this implies $a=0$.

Lemma 2.4. Let V and W be Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a morphism of C^{*}-algebras and let $\Phi: V \rightarrow W$ be a φ-morphism of Hilbert C^{*}-modules. Denote by $\hat{\varphi}$ and $\hat{\Phi}$ the maps induced on the quotients by φ and Φ, respectively:

$$
\hat{\varphi}: \mathcal{A} / \operatorname{Ker} \varphi \rightarrow \mathcal{B}, \quad \hat{\varphi}(\pi(a))=\varphi(a), \quad \hat{\Phi}: V / \operatorname{Ker} \Phi \rightarrow W, \quad \hat{\Phi}(q(v))=\Phi(v)
$$

Then $\hat{\Phi}$ is a well defined $\hat{\varphi}$-morphism of Hilbert C^{*}-modules $V / \operatorname{Ker} \Phi$ and W.
Proof. First, by Theorem 2.3, $\operatorname{Ker} \Phi=V_{\text {Ker } \varphi}$. This ensures that $V / \operatorname{Ker} \Phi=$ $V / V_{\text {Ker } \varphi}$ is a Hilbert $\mathcal{A} / \operatorname{Ker} \varphi$-module. Both maps are obviously well defined, so we only need to check that $\hat{\Phi}$ is a $\hat{\varphi}$-morphism. Indeed:

$$
\langle\hat{\Phi}(q(v)), \hat{\Phi}(q(w))\rangle\langle\Phi(v), \Phi(w)\rangle=\varphi(\langle v, w\rangle) \hat{\varphi}(\pi(\langle v, w\rangle))=\hat{\varphi}(\langle q(v), q(w)\rangle)
$$

Proposition 2.5. Let V and W be Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a morphism of C^{*}-algebras and let $\Phi: V \rightarrow W$ be a φ-morphism of Hilbert C^{*}-modules. Then $\operatorname{Im} \Phi$ is a closed subspace of W. It is also a Hilbert C^{*}-module over the C^{*}-algebra $\operatorname{Im} \varphi \subseteq \mathcal{B}$ such that $\langle\operatorname{Im} \Phi, \operatorname{Im} \Phi\rangle=$ $\varphi(\langle V, V\rangle)$. If V is a full \mathcal{A}-module, then $\operatorname{Im} \Phi$ is a full $\operatorname{Im} \varphi$-module. In particular, if Φ is surjective, and if W is a full \mathcal{B}-module, then φ is also a surjection.

Proof. First suppose that φ is injective. Then by Theorem 2.3 Φ is an isometry which implies that $\operatorname{Im} \Phi$ is a closed subspace of W. Also, $\Phi(v) \varphi(a)=\Phi(v a) \in \operatorname{Im} \Phi$ and $\langle\Phi(v), \Phi(w)\rangle=\varphi(\langle v, w\rangle) \in \operatorname{Im} \varphi$. This shows that $\operatorname{Im} \Phi$ is a Hilbert $\operatorname{Im} \varphi$ module. The last equality also proves $\langle\operatorname{Im} \Phi, \operatorname{Im} \Phi\rangle=\varphi(\langle V, V\rangle)$.

If V is full, this implies $\langle\operatorname{Im} \Phi, \operatorname{Im} \Phi\rangle=\varphi(\mathcal{A})$ which means that $\operatorname{Im} \Phi$ is a full $\operatorname{Im} \varphi$-module. If Φ is a surjection and if W is full, we additionally get $\mathcal{B}=\langle W, W\rangle=$ $\langle\operatorname{Im} \Phi, \operatorname{Im} \Phi\rangle=\varphi(\langle V, V\rangle)$, hence φ is also a surjection.

To prove the general case, take the maps $\hat{\varphi}$ and $\hat{\Phi}$ from Lemma 2.4. Since $\hat{\varphi}$ is an injection, we may apply the first part of the proof.

To do this, one has only to observe $\operatorname{Im} \varphi=\operatorname{Im} \hat{\varphi}, \operatorname{Im} \Phi=\operatorname{Im} \hat{\Phi}$ and $\langle\operatorname{Im} \Phi, \operatorname{Im} \Phi\rangle \hat{\varphi}$ $\left(\left\langle V / V_{\text {Ker } \varphi}, V / V_{\text {Ker } \varphi}\right\rangle\right) \hat{\varphi}(\pi(\langle V, V\rangle))=\varphi(\langle V, V\rangle)$.
(The equality $\left\langle V / V_{\text {Ker } \varphi}, V / V_{\operatorname{Ker} \varphi}\right\rangle \pi(\langle V, V\rangle)$ is noted in Remark 1.7.)
Remark 2.6. Let us observe: if V is a full \mathcal{A}-module and if φ and Φ are surjective, then W is also a full \mathcal{B}-module.

On the other hand, we cannot conclude that Φ is a surjection if φ is surjective, even if V and W are full. As an example we may take $V=\mathcal{A}, W=\mathcal{A} \oplus \mathcal{A}$, $\varphi=i d, \Phi(a)=(a, 0)$.

Example 2.7. Let \mathcal{A} and \mathcal{B} be C^{*}-algebras considered as Hilbert C^{*}-modules over \mathcal{A} and \mathcal{B}, respectively. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a morphism of C^{*}-algebras and let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be a surjective φ-morphism of Hilbert C^{*}-modules \mathcal{A} and \mathcal{B}. Then there exists an isometry m in the multiplier C^{*}-algebra of $\mathcal{B}, m \in M(\mathcal{B})$, such that $\Phi(a)=m \varphi(a), \forall a \in \mathcal{A}$.

To prove this, let us take any approximate unit $\left(e_{j}\right)$ for \mathcal{A}. We shall show that $\left(\Phi\left(e_{j}\right)\right)$ is a net in \mathcal{B} strictly convergent in $M(\mathcal{B})$. First observe that \mathcal{A} and \mathcal{B} are full, so φ is also surjective.

For each $b \in \mathcal{B}$ there exists $a \in \mathcal{A}$ such that $\varphi(a)=b$. Now, $\Phi\left(e_{j}\right) b=$ $\Phi\left(e_{j}\right) \varphi(a)=\Phi\left(e_{j} a\right)$ converges since $\left(e_{j}\right)$ is an approximate unit for \mathcal{A} and Φ is continuous. On the other hand, since Φ is by assumption a surjection, there exists $c \in \mathcal{A}$ such that $(\Phi(c))^{*}=b$. This implies $b \Phi\left(e_{j}\right)=(\Phi(c))^{*} \Phi\left(e_{j}\right)=\left\langle\Phi(c), \Phi\left(e_{j}\right)\right\rangle=$ $\varphi\left(\left\langle c, e_{j}\right\rangle\right)=\varphi\left(c^{*} e_{j}\right)$, hence $b \Phi\left(e_{j}\right)$ converges too.

Let $m \in M(\mathcal{B})$ be the strict limit: $m=($ st. $) \lim _{j} \Phi\left(e_{j}\right)$; i.e. $m b=\lim _{j} \Phi\left(e_{j}\right) b$, $b m=\lim _{j} b \Phi\left(e_{j}\right), \forall b \in \mathcal{B}$. Using continuity of Φ we get $\Phi(a)=\Phi\left(\lim _{j} e_{j} a\right) \lim _{j} \Phi\left(e_{j} a\right)$ $=\lim _{j} \Phi\left(e_{j}\right) \varphi(a)=m \varphi(a), \forall a \in \mathcal{A}$. It remains to show that m is an isometry. First, $\langle\Phi(x), \Phi(y)\rangle=\langle m \varphi(x), m \varphi(x)\rangle=\varphi(x)^{*} m^{*} m \varphi(y)$. On the other hand, $\langle\Phi(x), \Phi(y)\rangle=\varphi(\langle x, y\rangle)=\varphi\left(x^{*} y\right)=\varphi(x)^{*} \varphi(y)$. Since φ is a surjection, this gives $b m^{*} m c=b c, \forall b, c \in \mathcal{B}$ i.e. $\left(b m^{*} m-b\right) c=0, \forall b, c \in \mathcal{B}$. Taking $c=\left(b m^{*} m-b\right)^{*}$ we find $b m^{*} m-b=0, \forall b \in \mathcal{B}$. The last equality can be written in the form
$b\left(m^{*} m-1\right)=0, \forall b \in \mathcal{B}$. Since \mathcal{B} in an essential ideal in $M(\mathcal{B})$, this implies $m^{*} m-1=0$.

Definition 2.8. Let \mathcal{A} and \mathcal{B} be C^{*}-algebras, and let V and W be Hilbert C^{*} modules over \mathcal{A} and \mathcal{B}, respectively. $A \operatorname{map} \Phi: V \rightarrow W$ is said to be a unitary operator if there exists an injective morphism of C^{*}-algebras $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ such that Φ is a surjective φ-morphism.

Remark 2.9.

(a) Each unitary operator of Hilbert C^{*}-modules is necessarily (by Theorem 2.3) an isometry.
(b) Since Φ is a surjection, Proposition 2.5 implies $\langle W, W\rangle=\varphi(\langle V, V\rangle) \simeq\langle V, V\rangle$. If W is additionally a full \mathcal{B}-module, then φ is also surjective, hence an isomorphism of C^{*}-algebras.
(c) If V is a Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A} and if $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is an isomorphism of C^{*}-algebras, then V can also be regarded a Hilbert \mathcal{B}-module and the identity map is obviously a unitary operator between these two versions of V.
Conversely, if V and W are full unitary equivalent Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively (in the sense that there exists a unitary operator $\Phi: V \rightarrow W)$, then \mathcal{A} and \mathcal{B} are isomorphic C^{*}-algebras.
(d) Suppose that V and W are full Hilbert C^{*}-modules over \mathcal{A} and \mathcal{B}, respectively. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be an isomorphism of C^{*}-algebras. Then a surjective operator $\Phi: V \rightarrow W$ satisfying $\Phi(v a) \Phi(v) \varphi(a), \forall v \in V, \forall a \in \mathcal{A}$ is a unitary operator of Hilbert C^{*}-modules if and only if Φ is an isometry.
To see this, we have to show that Φ, having the property $\|\Phi(v)\|=\|v\|, \forall v \in$ V, also satisfies the condition from Definition 2.1. This can be done by repeating the nice argument from [4], Theorem 3.5.
Take $x \in V$ and $b \in \mathcal{B}$. Then there exists $a \in \mathcal{A}$ such that $\varphi(a)=b$ and

$$
\begin{aligned}
\left\|\langle\Phi(x), \Phi(x)\rangle^{1 / 2} b\right\|^{2} & =\left\|b^{*}\langle\Phi(x), \Phi(x)\rangle b\right\|=\|\langle\Phi(x) b, \Phi(x) b\rangle\| \\
& =\|\langle\Phi(x) \varphi(a), \Phi(x) \varphi(a)\rangle\|=\|\langle\Phi(x a), \Phi(x a)\rangle\| \\
& =\|\Phi(x a)\|^{2}=\|x a\|^{2}=\|\langle x a, x a\rangle\|=\|\varphi(\langle x a, x a\rangle)\| \\
& =\left\|\varphi(\langle x, x\rangle)^{1 / 2} \varphi(a)\right\|^{2}=\left\|\varphi(\langle x, x\rangle)^{1 / 2} b\right\|^{2} .
\end{aligned}
$$

By Lemma 3.4 from [4] this implies $\langle\Phi(x), \Phi(x)\rangle^{1 / 2}=\varphi(\langle x, x\rangle)^{1 / 2}$.
(e) Unitary equivalence of full Hilbert C^{*}-modules is an equivalence relation.
(f) Suppose that V and W are full Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively such that $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is an isomorphism and that $\Phi: V \rightarrow W$ is a unitary φ-morphism. Then $\Phi^{-1}: W \rightarrow V$ is a unitary φ^{-1}-morphism. Then we also have

$$
\langle w, \Phi(x)\rangle=\varphi\left(\left\langle\Phi^{-1}(w), x\right\rangle\right), \forall x \in V, w \in W
$$

Indeed, putting $w=\Phi(v)$, one obtains

$$
\left.\langle w, \Phi(x)\rangle=\langle\Phi(v), \Phi(x)\rangle=\varphi(\langle v, x\rangle)=\varphi\left(\Phi^{-1}(w), x\right\rangle\right)
$$

Example 2.10. Consider an arbitrary C^{*}-algebra \mathcal{A} regarded as a Hilbert \mathcal{A}-module with $\langle a, b\rangle=a^{*} b$. It is well known that the map $\gamma: \mathcal{A} \rightarrow \boldsymbol{K}(\mathcal{A}), \gamma(a)=T_{a}, T_{a}(x)=$ ax is an isomorphism of C^{*}-algebras. Its unique extension to the corresponding multiplier algebras ([9], Proposition 2.2.16) $\bar{\gamma}: M(\mathcal{A}) \rightarrow \boldsymbol{B}(\mathcal{A})$ is also an isomorphism of C^{*}-algebras and acts in the same way: $\bar{\gamma}(m)=T_{m}, T_{m}(x)=m x$.

Let V be a Hilbert \mathcal{A}-module, let us denote $V_{d}=\boldsymbol{B}(\mathcal{A}, V)$. It is well known that V_{d} is a Hilbert $\boldsymbol{B}(\mathcal{A})$-module with the $\boldsymbol{B}(\mathcal{A})$-valued inner product $\left\langle r_{1}, r_{2}\right\rangle=r_{1}^{*} r_{2}$ such that the resulting norm coincides with the operator norm on V_{d}.

Further, each $v \in V$ induces the map $r_{v} \in V_{d}$ given by $r_{v}(a)=v a$. It is also known ([7], Lemma 2.32) that $\left\{r_{v}: v \in V\right\}=\boldsymbol{K}(\mathcal{A}, V) \subseteq V_{d}$.
(Observe that each $v \in V$ also induces the $\operatorname{map} l_{v}: V \rightarrow \mathcal{A}$ defined by $l_{v}(x)=$ $\langle v, x\rangle$. Notice that $l_{v}^{*}=r_{v}$ and $\left\{l_{v}: v \in V\right\}=\boldsymbol{K}(V, \mathcal{A}) \subseteq \boldsymbol{B}(V, \mathcal{A})$.)

Now one can easily verify the following assertions:
(1) $\Gamma: V \rightarrow V_{d}, \Gamma(v)=r_{v}$ is a γ-morphism of Hilbert C^{*}-modules.
(2) Im Γ is the ideal submodule of V_{d} associated with the ideal $\boldsymbol{K}(\mathcal{A})$ of $\boldsymbol{B}(\mathcal{A})$.
(3) $\Gamma: V \rightarrow \operatorname{Im} \Gamma=\boldsymbol{K}(\mathcal{A}, V)$ is a unitary γ-morphism of Hilbert C^{*}-modules.

Proposition 2.11. Let V and W be Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B} respectively, let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be an injective morphism and let $\Phi: V \rightarrow W$ be a unitary φ-morphism. Then the map $\Phi^{+}: \boldsymbol{B}(V) \rightarrow \boldsymbol{B}(W), \Phi^{+}(T)=\Phi T \Phi^{-1}$ is an isomorphism of C^{*}-algebras. Moreover, $\Phi^{+}\left(\theta_{x, y}\right)=\theta_{\Phi(x), \Phi(y)}, \forall x, y \in V$ and $\Phi^{+}(\boldsymbol{K}(V))=\boldsymbol{K}(W)$.

Proof. First observe that $\Phi^{+}(T)=\Phi T \Phi^{-1}$ is an adjointable operator, in fact we claim $\left(\Phi T \Phi^{-1}\right)^{*}=\Phi T^{*} \Phi^{-1}$. Indeed,

$$
\begin{aligned}
\left\langle w_{1}, \Phi T \Phi^{-1} w_{2}\right\rangle & =(\text { Remark 2.9 }(f))=\varphi\left(\left\langle\Phi^{-1} w_{1}, T \Phi^{-1} w_{2}\right\rangle\right) \\
& =\varphi\left(\left\langle T^{*} \Phi^{-1} w_{1}, \Phi^{-1} w_{2}\right\rangle\right)=(\text { Remark2.9(f)) } \\
& =\left\langle\Phi T^{*} \Phi^{-1} w_{1}, w_{2}\right\rangle
\end{aligned}
$$

Now one easily verifies that Φ^{+}is an isomorphism of C^{*}-algebras. Further,

$$
\begin{aligned}
\Phi^{+}\left(\theta_{x, y}\right)(w) & =\Phi \theta_{x, y} \Phi^{-1}(w)=(\text { puting } \Phi(v)=w)=\Phi\left(\theta_{x, y}(v)\right) \\
& =\Phi(x\langle y, v\rangle)=\Phi(x) \varphi(\langle y, v\rangle)=\Phi(x)\langle\Phi(y), \Phi(v)\rangle \\
& =\theta_{\Phi(x), \Phi(y)}(w)
\end{aligned}
$$

The last statement is an immediate consequence.

Remark 2.12.

(a) Since $\boldsymbol{B}(V)$ and $\boldsymbol{B}(W)$ are the multiplier C^{*}-algebras of $\boldsymbol{K}(V)$ and $\boldsymbol{K}(W)$, we know that Φ^{+}, satisfying $\Phi^{+}\left(\theta_{x, y}\right)=\theta_{\Phi(x), \Phi(y)}, \forall x, y \in V$, is uniquely determined.
(b) If one applies Proposition 2.11 to the case $V=\mathcal{A}, W=\mathcal{B}, \Phi=\varphi$, one obtains the uniquely determined extension of φ ensured by the small extension theorem ([9], Proposition 2.2.16): $\varphi^{+}: \boldsymbol{B}(\mathcal{A}) \rightarrow \boldsymbol{B}(\mathcal{B}), \varphi^{+}(T) \varphi T \varphi^{-1}$.
(c) Proposition 2.11 applied to $V \simeq \Gamma(V)=\boldsymbol{K}(A, V)$ coincides with (a special case of) Proposition 7.1 in [4].

Corollary 2.13. Let V and W be Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a surjective morphism of C^{*}-algebras and let $\Phi: V \rightarrow W$ be a surjective φ-morphism. There exists a morphism of C^{*}-algebras $\Phi^{+}: \boldsymbol{B}(V) \rightarrow$ $\boldsymbol{B}(W)$ satisfying $\Phi^{+}\left(\theta_{x, y}\right)=\theta_{\Phi(x), \Phi(y)}$ and $\Phi^{+}(\boldsymbol{K}(V))=\boldsymbol{K}(W)$.

Proof. Considering the quotient $V / \operatorname{Ker} \Phi$ we first apply Proposition 1.17 and Corollary 1.18. The proof is completed by a direct application of Lemma 2.4 and the preceding proposition.
Remark 2.14. Let V and W be full (right) Hilbert C^{*}-modules over \mathcal{A}, resp. \mathcal{B}, let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a morphism of C^{*}-algebras and let $\Phi: V \rightarrow W$ be a surjective φ-morphism of Hilbert C^{*}-modules. We note that Φ is also a Φ^{+}-morphism of left Hilbert C^{*}-modules V and W (when V and W are regarded as the left Hilbert C^{*}-modules over $\boldsymbol{K}(V)$ and $\boldsymbol{K}(W)$, respectively).

To show this, let us denote by $[\cdot, \cdot]$ the $\boldsymbol{K}(V)$-inner product on V; i.e. $[x, y]=$ $\theta_{x, y}$; the same notation will be used in W. Now the condition from Definition 2.1 is an immediate consequence of the preceding corollary: $[\Phi(x), \Phi(y)]=\theta_{\Phi(x), \Phi(y)}=$ $\Phi^{+}\left(\theta_{x, y}\right)=\Phi^{+}([x, y])$.

Now we are able to describe morphisms of Hilbert C^{*}-modules in terms of the corresponding linking algebras.

Recall that, given a Hilbert \mathcal{A}-module V, the linking algebra $\mathcal{L}(V)$ may be written as the matrix algebra of the form

$$
\mathcal{L}(V)=\left[\begin{array}{cc}
\boldsymbol{K}(\mathcal{A}) & \boldsymbol{K}(V, \mathcal{A}) \\
\boldsymbol{K}(\mathcal{A}, V) & \boldsymbol{K}(V)
\end{array}\right] .
$$

(cf. [7], Lemma 2.32 and Corollary 3.21). Observe that $\mathcal{L}(V)$ is in fact the C^{*} algebra of all "compact" operators acting on $\mathcal{A} \oplus V$. Keeping the notation from Example 2.10 we may write

$$
\mathcal{L}(V)=\left[\begin{array}{cc}
\boldsymbol{K}(\mathcal{A}) & \boldsymbol{K}(V, \mathcal{A}) \\
\boldsymbol{K}(\mathcal{A}, V) & \boldsymbol{K}(V)
\end{array}\right]=\left\{\left[\begin{array}{cc}
T_{a} & l_{y} \\
r_{x} & T
\end{array}\right]: a \in \mathcal{A}, x, y \in V, T \in \boldsymbol{K}(V)\right\} .
$$

Accordingly, we shall also identify the C^{*}-algebras of "compact" operators with the corresponding corners in the linking algebra: $\boldsymbol{K}(\mathcal{A})=\boldsymbol{K}(\mathcal{A} \oplus 0) \subseteq \boldsymbol{K}(\mathcal{A} \oplus V)=$ $\mathcal{L}(V)$ and $\boldsymbol{K}(V)=\boldsymbol{K}(0 \oplus V) \subseteq \boldsymbol{K}(\mathcal{A} \oplus V)=\mathcal{L}(V)$.
Theorem 2.15. Let V and W be full Hilbert C^{*}-modules over \mathcal{A}, resp. \mathcal{B}, let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a morphism of C^{*}-algebras and let $\Phi: V \rightarrow W$ be a surjective φ-morphism of Hilbert C^{*}-modules. Then the map $\rho_{\varphi, \Phi}: \mathcal{L}(V) \rightarrow \mathcal{L}(W)$ defined by

$$
\rho_{\varphi, \Phi}\left(\left[\begin{array}{ll}
T_{a} & l_{y} \\
r_{x} & T
\end{array}\right]\right)=\left[\begin{array}{cc}
T_{\varphi(a)} & l_{\Phi(y)} \\
r_{\Phi(x)} & \Phi^{+}(T)
\end{array}\right]
$$

is a morphism of C^{*}-algebras. Conversely, let $\rho: \mathcal{L}(V) \rightarrow \mathcal{L}(W)$ be a morphism of C^{*}-algebras such that $\rho(\boldsymbol{K}(\mathcal{A})) \subseteq \boldsymbol{K}(\mathcal{B})$ and $\rho(\boldsymbol{K}(V)) \subseteq \boldsymbol{K}(W)$. Then there exist a morphism of C^{*}-algebras $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ and a φ-morphism $\Phi: V \rightarrow W$ such that $\rho=\rho_{\varphi, \Phi}$.

Proof. Clearly, $\rho_{\varphi, \Phi}$ is a linear map. Further,

$$
\begin{aligned}
\rho_{\varphi, \Phi}\left(\left[\begin{array}{ll}
T_{a} & l_{v} \\
r_{w} & T
\end{array}\right]\left[\begin{array}{cc}
T_{b} & l_{x} \\
r_{y} & S
\end{array}\right]\right) & =\rho_{\varphi, \Phi}\left(\left[\begin{array}{cc}
T_{a b}+T_{\langle v, y\rangle} & l_{x a^{*}}+l_{S^{*} v} \\
r_{w b}+r_{T y} & \theta_{w, x}+T S
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
T_{\varphi(a b+\langle v, y\rangle)} & l_{\Phi\left(x a^{*}+S^{*} v\right)} \\
r_{\Phi(w b+T y)} & \Phi^{+}\left(\theta_{w, x}+T S\right)
\end{array}\right] \\
& =\binom{\text { applying } \operatorname{Remark} 2.14 \text { to }}{\text { off-diagonal elements }} \\
& =\left[\begin{array}{cc}
T_{\varphi(a) \varphi(b)}+T_{\langle\Phi(v), \Phi(y)\rangle} & l_{\Phi(x) \varphi\left(a^{*}\right)}+l_{\Phi+\left(S^{*}\right) \Phi(v)} \\
r_{\Phi(w) \varphi(b)}+r_{\Phi+(T) \Phi(y)} & \theta_{\Phi(w), \Phi(x)}+\Phi^{+}(T S)
\end{array}\right] \\
& =\left[\begin{array}{cc}
T_{\varphi(a)} & l_{\Phi(v)} \\
r_{\Phi(w)} \Phi^{+}(T)
\end{array}\right]\left[\begin{array}{cc}
T_{\varphi(b)} & l_{\Phi(x)} \\
r_{\Phi(y)} & \Phi^{+}(S)
\end{array}\right] \\
& =\rho_{\varphi, \Phi}\left(\left[\begin{array}{cc}
T_{a} & l_{v} \\
r_{w} & T
\end{array}\right]\right) \rho_{\varphi, \Phi}\left(\left[\begin{array}{cc}
T_{b} & l_{x} \\
r_{y} & S
\end{array}\right]\right)
\end{aligned}
$$

To prove the converse, first observe that, by assumption, we may write

$$
\rho\left(\left[\begin{array}{cc}
T_{a} & 0 \\
0 & T
\end{array}\right]\right)=\left[\begin{array}{cc}
T_{\varphi(a)} & 0 \\
0 & \Psi(T)
\end{array}\right] .
$$

It should be noted that the definition of φ actually uses the standard identification $a \leftrightarrow T_{a}, a \in \mathcal{A}, T_{a} \in \boldsymbol{K}(\mathcal{A})$ denoted by γ in Example 2.10. Obviously, both φ and Ψ are morphisms of C^{*}-algebras.

Take any $x \in V$ and write $\rho\left(\left[\begin{array}{cc}0 & 0 \\ r_{x} & 0\end{array}\right]\right)=\left[\begin{array}{ll}\rho_{11}(x) & \rho_{12}(x) \\ \rho_{21}(x) & \rho_{22}(x)\end{array}\right]$. Then

$$
\begin{aligned}
& \rho\left(\left[\begin{array}{cc}
0 & 0 \\
r_{x} & 0
\end{array}\right]\right)^{*} \rho\left(\left[\begin{array}{cc}
0 & 0 \\
r_{x} & 0
\end{array}\right]\right)=\left[\begin{array}{l}
\rho_{11}(x)^{*} \\
\rho_{12}(x)^{*} \\
\rho_{21}(x)^{*} \\
\rho_{22}(x)^{*}
\end{array}\right]\left[\begin{array}{ll}
\rho_{11}(x) & \rho_{12}(x) \\
\rho_{21}(x) & \rho_{22}(x)
\end{array}\right] \\
= & {\left[\begin{array}{l}
\rho_{11}(x)^{*} \rho_{11}(x)+\rho_{21}(x)^{*} \rho_{21}(x) \rho_{11}(x)^{*} \rho_{12}(x)+\rho_{21}(x)^{*} \rho_{22}(x) \\
\rho_{12}(x)^{*} \rho_{11}(x)+\rho_{22}(x)^{*} \rho_{21}(x) \rho_{12}(x)^{*} \rho_{12}(x)+\rho_{22}(x)^{*} \rho_{22}(x)
\end{array}\right] . }
\end{aligned}
$$

Observing $\left[\begin{array}{cc}0 & 0 \\ r_{x} & 0\end{array}\right]^{*}=\left[\begin{array}{ll}0 & l_{x} \\ 0 & 0\end{array}\right]$ and comparing the above result with

$$
\rho\left(\left[\begin{array}{ll}
0 & l_{x} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
r_{x} & 0
\end{array}\right]\right)=\rho\left(\left[\begin{array}{cc}
T_{\langle x, x\rangle} & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
T_{\varphi(\langle x, x\rangle)} & 0 \\
0 & 0
\end{array}\right]
$$

we find $\rho_{12}(x)=\rho_{22}(x)=0$. Similarly, calculating $\rho\left(\left[\begin{array}{cc}0 & 0 \\ r_{x} & 0\end{array}\right]\right) \rho\left(\left[\begin{array}{cc}0 & 0 \\ r_{x} & 0\end{array}\right]\right)^{*}$, one additionally gets $\rho_{11}=0$. After all, we conclude that ρ may be written in the form $\rho\left(\left[\begin{array}{ll}T_{a} & l_{y} \\ r_{x} & T\end{array}\right]\right)=\left[\begin{array}{cc}T_{\varphi(a)} & l_{\Phi_{2}(y)} \\ r_{\Phi_{1}(x)} & \Psi(T)\end{array}\right]$. Obviously, the induced maps Φ_{1} and Φ_{2} are linear.

Let us show $\Phi_{1}=\Phi_{2}$. Indeed, $\rho\left(\left[\begin{array}{cc}0 & 0 \\ r_{x} & 0\end{array}\right]\right)^{*}=\rho\left(\left[\begin{array}{cc}0 & 0 \\ r_{x} & 0\end{array}\right]^{*}\right)$ implies $\left[\begin{array}{cc}0 & l_{\Phi_{1}(x)} \\ 0 & 0\end{array}\right]=$ $\left[\begin{array}{cc}0 & l_{\Phi_{2}(x)} \\ 0 & 0\end{array}\right]$, thus $\Phi_{1}(x)=\Phi_{2}(x)$ which enables us to write $\Phi_{1}=\Phi_{2}=\Phi$.

Finally,

$$
\rho\left(\left[\begin{array}{cc}
0 & l_{y} \\
r_{x} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & l_{x} \\
r_{y} & 0
\end{array}\right]\right)=\rho\left(\left[\begin{array}{cc}
T_{\langle y, y\rangle} & 0 \\
0 & \theta_{x, x}
\end{array}\right]\right)=\left[\begin{array}{cc}
T_{\varphi(\langle y, y\rangle)} & 0 \\
0 & \Psi\left(\theta_{x, x}\right)
\end{array}\right] .
$$

On the other hand, knowing that ρ is multiplicative, one obtains

$$
\begin{aligned}
& \rho\left(\left[\begin{array}{cc}
0 & l_{y} \\
r_{x} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & l_{x} \\
r_{y} & 0
\end{array}\right]\right)=\rho\left(\left[\begin{array}{cc}
0 & l_{y} \\
r_{x} & 0
\end{array}\right]\right) \rho\left(\left[\begin{array}{cc}
0 & l_{x} \\
r_{y} & 0
\end{array}\right]\right) \\
= & {\left[\begin{array}{cc}
0 & l_{\Phi(y)} \\
r_{\Phi(x)} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & l_{\Phi(x)} \\
r_{\Phi(y)} & 0
\end{array}\right]=\left[\begin{array}{cc}
T_{\langle\Phi(y), \Phi(y)\rangle} & 0 \\
0 & \theta_{\Phi(x), \Phi(x)}
\end{array}\right] . }
\end{aligned}
$$

This is enough (together with Corollary 2.13) to conclude $\rho=\rho_{\varphi, \Phi}$.
Notice that the assumptions $\rho(\boldsymbol{K}(\mathcal{A})) \subseteq \boldsymbol{K}(\mathcal{B})$ and $\rho(\boldsymbol{K}(V)) \subseteq \boldsymbol{K}(W)$ cannot be dropped from the hypothesis of the second assertion in Theorem 2.15.

Let us also note an alternative description of $\rho_{\varphi, \Phi}$. First, define

$$
\varphi \oplus \Phi: \mathcal{A} \oplus V \rightarrow \mathcal{B} \oplus W, \quad(\varphi \oplus \Phi)(a, v)=(\varphi(a), \Phi(v))
$$

One easily verifies that $\varphi \oplus \Phi$ is a φ-morphism of Hilbert C^{*}-modules. After applying Corollary 2.13 it turns out that $(\varphi \oplus \Phi)^{+}=\rho_{\varphi, \Phi}$.

At the end let us mention a similar characterization of ideal submodules in terms of linking algebras: there is a natural bijective correspondence between the set of all ideal submodules of a Hilbert C^{*}-module V and the set of all ideals of the corresponding linking algebra $\mathcal{L}(V)$. Moreover, the ideal submodule associated with an essential ideal corresponds to an essential ideal in $\mathcal{L}(V)$. The proof is an easy calculation similar to the preceding one, hence omitted.

Note added in proof: In Corollary 2.13 as well as in the subsequent Remark 2.14 and Theorem 2.15 the assumption that Φ is surjective is redundant. In fact, the map $\Phi^{+}: \boldsymbol{B}(V) \rightarrow \boldsymbol{B}(W)$ satisfying $\Phi^{+}\left(\theta_{x, y}\right)=\theta_{\Phi(x), \Phi(y)}$ is always well defined. This can be seen using the identification $\boldsymbol{K}(V)=V \otimes_{h \mathcal{A}} V^{*}$ (cf. D. Blecher, A new approach to Hilbert C^{*}-modules, Math. Ann. 307(1997), 253-290). We thank to the anonymous referee for this observation.

References

[1] L. G. Brown, J. A. Mingo, N.-T. Shen, Quasi-multipliers and embeddings of Hilbert C^{*}-bimodules, Can. J. Math. 46(6)(1994), 1150-1174.
[2] K. K. Jensen, K. Thomsen, Elements of KK-theory, Birkhäuser, 1991.
[3] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75(1953), 839853.
[4] C. Lance, Hilbert C^{*}-modules: a toolkit for operator algebraists, London Math. Soc. Lecture Notes Series, vol. 210, Cambridge University Press, Cambridge, 1994.
[5] W. Paschke, Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182(1973), 443-468.
[6] G. K. Pedersen, Factorization in C^{*}-algebras, Exposition Math. 16(1998), 145-156.
[7] I. Raeburn, D. P. Williams, Morita equivalence and continuous-trace C*algebras, Mathematical Surveys and Monographs 60, AMS, Philadelphia, 1998.
[8] M. A. Rieffel, Induced representations of C^{*}-algebras, Advances in Math. 13(1974), 176-257.
[9] N. E. Wegge-Olsen, K-theory and C^{*}-algebras, Oxford University Press, Oxford, 1993.
[10] H. H. Zettl, Ideals in Hilbert modules and invariants under strong Morita equivalence of C^{*}-algebras, Arch. Math. 39(1982), 69-77.

[^0]: *Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: bakic@math.hr
 ${ }^{\dagger}$ Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: guljas@math.hr

