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Network cost allocation games based on threshold
discounting

Darko Skorin-Kapov
∗

Abstract. Consider networks in which each pair of nodes needs
to communicate. The communication flow between any pair of nodes
can be delivered through a direct link or via some connecting path in the
network. By discounting the cost of flow through links for which the high
flow volume is anticipated, network designers exploit economies of scale.
This approach encourages the concentration of flows and use of relatively
small number of links. This led to the design of well known hub networks
and more recently hub-like networks. Applications include telecommu-
nications, airline traffic flow, and mail delivery networks. The cost of
services delivered through such networks is distributed among its users
who may be individuals or organizations with possibly conflicting inter-
ests. The cooperation of these users is essential for the exploitation of
economies of scale. Consequently, there is a need to find a fair distrib-
ution of the cost of providing the service among network users. In this
paper, we present a survey of some recent results in the development
of cooperative game theory based mechanisms to efficiently characterize
cost allocation solutions for hub and hub-like networks. Specifically, we
formulate the associated hub and hub-like network cost allocation games.
Then, while paying special attention to users’ contribution to economies
of scale, we demonstrate that some attractive cost allocation solutions,
which provide users with the incentive to cooperate, can be efficiently
computed.
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1. Introduction

The objective for designers of communication networks is often to minimize the
cost, while satisfying various service constraints like reliability, congestion, speed,
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capacity and coverage. Economies of scale play an important role in their considera-
tions. Namely, the creation of high capacity links and concentration of flows reduces
the number of needed links and the unit flow cost. Applications of this approach
are seen, for example, in high capacity lines of backbone networks in telecommu-
nications and in high volume traffic between major airports in air transportation
networks.

Most of the related work in the literature was performed in the context of the
hub networks. In those networks, a certain subset of focal nodes (i.e. hubs) is fully
interconnected, while other nodes are connected to those hubs and the economies
of scale are achieved by discounting the cost of traffic among hubs. The hub net-
works were extensively studied over the last couple of decades (see for example,
[1],[2],[6],[7],[8],[9],[19] and [20]). Numerous computational studies showed that hub
networks are quite attractive and practical. Nevertheless, the restrictions imposed
with the hub network model are sometimes too prohibitive. For example, in some
cases a high traffic between a non-hub and a hub node is not discounted and/or
the traffic between two hubs is not big enough to warrant any discounts. For an
extensive discussion on these issues see [10].

Recently, Podnar et al. [10] introduced the network model in which each pair
of nodes can communicate via any path, and the cost of sending flow through each
link is discounted if and only if the amount of flow exceeds certain threshold. This
approach also gives incentive to concentrate flows. It seems however, that the above
threshold based discounting model is even more ’efficient’ than hub networks in its
use of a relatively small number of links and in the exploitation of economies of scale.
We will refer to the threshold based discounting network model as to the hub-like
network (HLN) model. Podnar et al. in [10] provided combinatorial formulations
and efficient heuristic for finding the minimum cost HLN.

The cost of services delivered through hub and hub-like networks is distributed
among users who may be individuals or organizations with possibly conflicting in-
terests. The cooperation of these users is essential for the exploitation of economies
of scale. Consequently, there is a need to find a fair distribution of the cost of pro-
viding the service among network users. Failing to do so may cause some users to
secede and seek services from some other competing network. Such secession would
inevitably result in a higher cost per unit of delivered service.

A cooperative game theory was used to analyze several classes of network cost
allocation problems in the literature. Some examples include: spanning tree games
([5]), Steiner tree games ([14]), network flow games ([3],[4]), cost allocation arising
from routing in networks ([11]), capacitated network design games ([13],[18]). For
a survey and numerous references on cost allocation models in networks see [12].
A common approach to above papers is the formulation of the associated cost allo-
cation problem as a cooperative game in the characteristic function form, followed
by the evaluation of various solution concepts such as core, nucleolus, kernel, the
least ε-core, Shapley value, etc. It is well known that these game theoretic so-
lution concepts are computationally prohibitive even for relatively small problems.
Moreover, there are no general practical algorithms for the computation of these so-
lutions. Consequently, researchers have concentrated on individual classes of games
to demonstrate that computation of cost allocation solution concepts is sometimes
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feasible in the context of a particular problem.
We take a similar approach in the study of the cost allocation problem in hub and

hub-like networks. Namely, we will show that attractive cost allocation solutions
are possible in the context of some practical problems. In order to analyze the cost
allocation problem we will define hub and hub-like games. In defining those games
special attention will be paid to users’ contribution to economies of scale. Then, we
will demonstrate that those network games are decomposable, thus enabling us to
simplify the cost allocation problem. Finally, we will efficiently characterize some
attractive cost allocation solutions, which encourage cooperation of users.

The plan of the paper follows. In Section 2, we present combinatorial formu-
lations of hub and hub-like optimization problems. Specifically, we formulate the
minimum cost hub network and the minimum cost hub like network problems. In
addition, we define some basic game theoretic concepts. In Section 3, we outline
some cost optimization results on hub and hub-like networks. In Section 4, we dis-
cuss various cost allocation games associated with these problems. In particular, we
formulate hub network and hub-like network cost allocation games based on thresh-
old discounting. Section 5 provides the analysis of the core of the above cooperative
games. In Section 6, we summarize our findings and present concluding remarks.

2. Definitions and preliminaries

The linear mixed integer programming formulation of the single allocation hub
network problem (HNP) by Skorin-Kapov et al. [20] can be summarized as follows.
Let N be the set of users as well as the set of potential hub locations. For i, j, k,m ∈
N , let us define the following variables: xijkm =the fraction of flow from location
(origin) i to location (destination) j, routed via hubs at locations k and m in that
order; zik = 1 if non-hub location i is allocated to hub k, and 0 otherwise. The input
data are given as: p =the required number of hubs to be open; fij = the flow from
location i to location j; cij =the cost per unit of flow from location i to location
j (it is proportional to the distance and it is assumed that cij ≥ 0); 0 ≤ α ≤ 1
is the discount on the unit cost of flow between hubs. Observe that the cost per
unit of flow between origin i and destination j, routed via hubs k and m in that
order, is given by cik + αckm + cmj . We assume that cii = 0, i = 1,, ..., n, so the
above formula remains valid when i and/or j is a hub.The HNP is then:

min
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

fij (cik + αckm + cmj)xijkm (1)

s.t.

∑
k∈N

zkk = p (2)

∑
k∈N

zik = 1, i ∈ N (3)
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zik ≤ zkk, i ∈ N, k ∈ N (4)

∑
m∈N

xijkm = zik, i ∈ N, j ∈ N, k ∈ N (5)

∑
k∈N

xijkm = zjm, i ∈ N, j ∈ N,m ∈ N (6)

zik ∈ {0, 1}, i ∈ N, k ∈ N (7)

xijkm ≥ 0, i ∈ N, j ∈ N, k ∈ N,m ∈ N (8)

The objective is to minimize the overall transportation cost (1) subject to the
following constraints: there should be exactly p hubs (2), each node should be
allocated to exactly one hub (3), a non-hub node i can be allocated to node k only
if a hub is established at k (4), the entire flow from origin i to destination j will
be routed via link (i, k) iff i is allocated to hub k independently of destination (5),
the entire flow from origin i to destination j will be routed via (m, j) if and only if
j is assigned to hub m independently of origin (6), hub assignment indicators are
restricted to 0 or 1 (7), and flow variables x are non negative (8).

Next,we state the 4-dimensional formulation of the HLN problem from [10]. Let
N be the set of nodes. The cost of sending the unit of flow is assigned to every link
by cost matrix D = (dkm). Input matrix F = (fij) contains the required amounts of
flow associated with every origin-destination pair (i, j).The decision variables are
given as follows. Variable x1ij

kmcaptures the fraction of flow that goes from node
i to node j via link (k,m)which is not discounted. Variable x2ij

km is the fraction
of flow from i to j (via (k,m)) that is discounted. Parameter α, 0< α < 1 is the
discount factor. Binary variable ykm is 1 if link (k,m) is discounted and 0 otherwise.
The HLN problem is then:

min
∑

i,j,k,m, i�=j,k �=m,m �=i,k �=j

dkm(x1ij
km + αx2ij

km) (9)

s.t.
∑

i,j, i�=j,i�=m,j �=k

x2ij
km ≥ ykmM, for all k,m : k �= m (10)

x2ij
km ≤ ykmfij , for all i, j,k,m : i �= j, k �= m,m �= i, k �= j (11)

∑
m:m �=i

(x1ij
im + x2ij

im) = fij , for all i, j : i �= j (12)
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∑
k:k �=l,k �=j

(x1ij
kl + x2ij

kl) =
∑

m:m �=l,m �=i

(x1ij
ml + x2ij

ml), for all l, i, j: l �= i, j, i �= j

(13)

x1, x2 ≥ 0, y − binary. (14)

If the flow through a link (k,m) is discounted, then it must be greater than the
thresholdM (constraints (10)). In the case when the link (k,m) is not discounted,
the variables x2ij

km are set to zero (constraint (11)). The complete flow fij must
leave the origin i (constraint (12)). Conservation of flow follows from constraint
(13). Non-negativity and integrality is assured by constraints (14). The complexity
of this model is (O(n4)). The computational studies in [10] showed that the LP
relaxation of this model is also very tight.

In order to analyze the cost allocation problem associated with the HLN prob-
lem, we need to introduce the following game theoretic definitions and notation.
Let P = {1, 2, ..., n} be a finite set of players, and let c : 2P → R, with c(∅) = 0,
be a characteristic function defined over subsets of P referred to as coalitions. If
c(P ) designates a cost that has to be shared by all the players, then the pair (P ;c)
is called a (cost) cooperative game, or simply a game. For x ∈ R

|P | and S ⊆ P ,
let x(S) ≡ ∑

j∈S xj .We can interpret x(S) as the part of the total cost paid by
the coalition S. A cost allocation vector x in a game (P ; c) satisfies x(P ) = c(P ),
and the solution theory of cooperative games is concerned with the selection of a
reasonable subset of cost allocation vectors.

Central to the solution theory of cooperative games is the concept of solution
referred to as the core of a game. The core of a game (P, c) consists of all vectors
x ∈ R

|P | such that x(S) ≤ c(S) for all S ⊆ P , and x(P ) = c(P ). Observe that the
core consists of all allocation vectors x which provide no incentive for any coalition
to secede. In general, the core of a game may be empty.

3. Optimization results

Since optimal or best known solutions to the HNP and the HLN problems serve as
an input to our cost allocation considerations, we point to several important related
optimization results from the literature.

Note that the single allocation version of the HNP, as defined in (1)− (8), was
preceded by O’Kelly’s [8] formulation as a quadratic integer programming prob-
lem. It received considerable attention by the research community during the last
decade. Since modeling of the HNP leads to NP-hard problems, the researchers
have naturally resorted to the development of heuristic solutions. It is important to
mention the well known Civil Aeronautics Board (CAB) benchmark data-set (data
collected on airline traffic between major US cities in early seventies) on which much
of the computational testing from the literature was performed, thus enabling some
comparison.

A number of heuristic algorithms to solve the HNP location problem have been
proposed, including: complete evaluation of all locational patterns with respect to
allocations based on distances, such as nearest hub allocation and allocation to one
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of the two nearest hubs [8]; exchange and clustering heuristics [6]; tabu search and
GRASP strategies with distance based allocations [7]; tabu search method with
allocations of non-hub nodes based jointly on distances as well as on flows between
the nodes [19]. For an extensive survey of these methods, see [2].

For the CAB data set, the best known solutions for the single allocation HNP
were obtained by the tabu search heuristic (TABUHUB) developed by Skorin-Kapov
and Skorin-Kapov [19]. The quality of the above mentioned tabu search heuristic
was further confirmed by obtaining good lower bounds for cases when distances
satisfy the triangle inequality (O’Kelly et al., [9]).

Campbell [1] formulated the single and multiple allocation versions of the HNP
as mixed 0/1 linear programs. However, integrality restrictions imposed on a sub-
set of variables, coupled with a large size of formulations (for a network of size n,
the number of variables is O(n4)) restrict the suitability of those formulations to
small instances. Since LP relaxations of Campbell’s models resulted with highly
fractional solutions, tighter LP relaxations were needed. Skorin-Kapov et al. [20]
have proposed new mixed 0/1 linear formulations (presented herein (1)−(8)) whose
linear programming relaxations often provide integral solutions. For the CAB data
set, the LP relaxations proposed in their study resulted in almost all cases with
integral solutions. Where this was not the case, the LP objective function value for
the multiple (respectively, single) allocation case was less than 0.1% (respectively,
1%) below the optimal integer objective function value. Specifically, all considered
instances of CAB data set were solved to optimality. Note that these problems are
already large (the above LP relaxations for the case with 25 nodes and 4 hubs have
391,250 variables and 31,901 constraints). However, the results of these studies
suggest that TABUHUB algorithm could be used with a reasonable confidence on
larger problems, since for all considered cases of CAB data it achieved optimal solu-
tions. Those results should be used as an input to our hub network cost allocation
games considered in Section 4.

As mentioned in the introduction the HNP design has many advantages but
also some deficiencies. In particular, the prescribed discount for the cost of traf-
fic between hubs might be applied to relatively low traffic volume and some high
volume between non-hub node and hub might not get deserved discount. Podnar
et al. in [10] addressed these issues by introducing networks with threshold based
discounting. Therein the discount is warranted to any high volume flow, regardless
of the link through which it goes. There are no hubs in those networks. We call
them hub-like networks, since in those networks the amalgamation of flows tends
to resemble those in hub networks.

In [10], the authors presented several heuristic algorithms to solve the HLN
problem. Moreover, they performed extensive computational experiments on the
CAB (Civil Aeronautics Board) benchmark data set. The efficiency of their formu-
lations and heuristic was demonstrated by obtaining the gaps between the upper
and the lower bound within few percent. Those solutions will be used as the input
to hub-like network cost allocation games presented in Section 5.
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4. Cost allocation games

In this section, we will use a game theoretic approach to describe the cost allocation
problem in hub and hub-like networks. Specifically, we will formulate corresponding
cooperative cost allocation network games that capture the user’s contribution to
economies of scale discounting. We will refer to those games as hub and hub-like
network games.

4.1. Hub network games

The total cost of delivering the service through hub network is obtained from the
optimal (or best known) objective function value to the HNP ((1) − (8)). The
objective is to fairly allocate this cost among hub network users. This problem was
first formulated as the cooperative game by D. Skorin-Kapov in [15].

There are several concerns in deriving the definition of the cost allocation game.
The first dilemma is how to define the set of players for the hub game. One natural
choice is to identify the set of players P with the set of nodes (users) N , namely,
P = N . Since we need to satisfy the flow requirements for all pairs of users (nodes),
the other natural choice for the set of players is the set of all node pairs, namely
P = N ∗N .

In case when P = N, the characteristic function is c : 2P → R and the value of
c(P ) is the entire cost of delivering service through the hub network, which can be
obtained from the best known objective function value of the HNP. The value of the
characteristic function for each subset of players S, S ⊆ P, c(S) should describe the
cost associated with the delivery of service to S.This could, for example, represent
the cost of communication between users in S only, or c(S) could represent the cost
of all the communication generated by users in S (i.e.between users in S and users
in N).

On the other hand, if players are pairs of users, namely P = N ∗ N and T ⊆
P, c(T ) should be the cost of sending traffic between pairs of users in T . The
assumption here is that the cost allocated to each pair would be later equally divided
between nodes in the pair.

Moreover, in both cases (i.e. P = N and P = N ∗ N) there is a question how
should the above cost c(S), for S ⊂ P, be determined. It could represent the cost of
delivering service to S in the globally optimal network associated with the optimal
solution to the HNP, or from some network that subset of players S could potentially
construct in order to optimally provide the service only to players in S.

There are advantages, as well as drawbacks, of these approaches. If we set
players to be nodes (users) (i.e. P = N), and the value of c(s) for the coalition S
is representing the cost of traffic between nodes in S only, we ignore the demand
for communication of players in S with players out of S. It is easy to see that such
characteristic function would be too restrictive. For example, core constraints for
(N, c) would imply that all single player coalitions should not pay anything (for
each i ∈ N , 0 = c({i}) ≥ x({i}).

If we change the approach and for S ⊂ N, assume that the value of the charac-
teristic function c(S) represents the cost of the entire communication initiated by
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players in S,we would face a different problem. Namely, the characteristic func-
tion would attribute the entire cost of traffic from users in S to users out of S, to
coalition S. This may lead to unfairness if the flow matrix is not symmetric.

The above problems arising from the fact that each coalition communicates with
users who do not belong to that coalition can be taken care of by a different choice
of players. Namely, we could define players as pairs of users, i.e. P = N ∗N.

Finally, for T ⊂ P=N ∗N,we are concerned with the interpretation of the value
of the characteristic function c(T ). It should be the cost of providing service to pairs
in T.We might assume that the coalition T , even when acting on its own, would
use the globally optimal network, or we might assume that c(T ) could represent the
cost of service obtained if coalition T re-optimize and create their own subnetwork.

If we assume that the coalition T , if acting on its own, would construct another
network which would serve T optimally, the computation of cost allocation solution
concepts would become very prohibitive. In particular, in order to compute the
characteristic function value for each coalition, we would have to solve an NP-hard
problem.

In view of these considerations we choose players to be the pairs of users, i.e.
P = N ∗N , and we assume that for T ⊂ P, c(T ) represent the cost of providing the
service to pairs in T in the globally optimal network. Note however that in HNP
the number of hubs is predetermined and we expect heavy traffic between hubs.
However, if coalition T acts on its own, the generated traffic might be too small to
justify the discount applied to inter hub communication. Consequently, the above
characteristic functions of the hub game might be too generous to certain coalitions.

We are now ready to define the hub game that takes into account all the above
considerations, as well as the coalition’s contribution to economies of scale. Let
xijkm be an optimal solution to (1) − (8). Then, for each T ⊆ P = N ∗ N ,
fT

km =
∑

i∈T

∑
j∈N fijxijkm is the total amount of flow generated by users in

T , which is routed via hubs k,m. We assume that the cost of traffic between
two hubs can be discounted by α if its amount exceeds certain threshold M .
The indicator yT

kmwhether the amount of traffic between hubs k and m gener-
ated by subset T is above M can be defined as follows: yT

km = 1 if fT
km ≥ M

and zero otherwise. Next we define the characteristic function of the hub game
(N ∗ N,c) that allows the discounts only in case of heavy corresponding inter hub
traffic. For each T ⊆ N ∗N ,

c(T ) =
∑

(i,j)∈T

∑
k∈N

∑
m∈N fij(cik +αyT

kmckm +(1− yT
km)ckm + cmj)xijkm ,

where xijkm is an optimal solution to (1)− (8).

4.2. Hub-like network games

The total cost of delivering the service through a hub-like network is obtained
from the best known objective function value to the HLN problem ((9) − 14)).
The objective is to allocate this cost among network users in a ’fair’ manner. In
order to define the hub-like network game, we need to define the players and the
characteristic function on the set of all coalitions (all subsets of players).

When choosing a set of players, we face similar considerations as in the case of
hub games. Namely, if nodes are players, i.e. P = N , for each subset of players
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S, the value of the characteristic function c′(S) could represent the cost of providing
service to S. If c′(S) captures only the cost of traffic between nodes in S and ignores
the demand for communication of players in S with players out of S, the definition
would be too restrictive and similarly to the case in hub games it would lead to an
empty core. On the other hand, if we attempt to capture with c′(S) the cost of
all traffic involving users in S, then the characteristic function would attribute the
entire cost of traffic between users in S and users in N to coalition S.This would
again lead to unfairness if the flow matrix is not symmetric.

Since we need to satisfy the flow requirements for all pairs of users (nodes), we
choose for a set of players the set of all node pairs, i.e. P = N ∗ N . Consider
now the definition of the characteristic function c′ : 2P → R. If P = N ∗ N, the
value of c′(P ) is simply the entire cost of delivering service through the hub-like
network and it can be obtained from the best known objective function value of
the HLN problem. The dilemma is how to define the value of the characteristic
function for each subset of players Q ⊆ P = N ∗ N . (The detailed discussion of
different versions of characteristic functions for this problem is provided in [16].)
One approach could be to define characteristic function c′, such that c′(Q) reflects
the cost of providing service to Q in the globally best known HLN. In this case,
it is easy to compute the characteristic function value for each coalition Q. The
drawback of this approach is that a coalitionQ might benefit by getting the discount
on the cost of flow through a certain link (k,m), even if Q by itself does not generate
sufficient amount of traffic to warrant the discount on (k,m). This could make the
characteristic function c′ too generous to certain coalitions.

Finally, we informally introduce the characteristic function c′,which assigns the
value to each coalition that is based on the globally optimal solution and which
takes into account the coalition’s contribution to economies of scale. For ∅ �= Q ⊆
N ∗N, c′(Q) is the cost of satisfying the communication requirements for all pairs
of users in Q. The value c′(Q) is essentially the sum of the cost of flow generated by
Q through links in the optimal (best known) network. Note however, that special
attention is paid to economies of scale. Specifically, the important notion here is that
the cost of flow generated by Q through a particular link is discounted, if and only if,
the amount of this flow exceeds the threshold M . It appears that the characteristic
function c′ captures the economic side of the problem by taking into account the
coalition’s contribution to economies of scale. Moreover, the characteristic function
c′ is computationally promising. Consequently, we will define the hub-like game as
a pair (N ∗N, c′).

Next we will work on the formal definition of the hub-like network game. Recall
that our objective is to allocate the cost of service provided by hub-like network
in a computationally practical manner. To accomplish this goal we will employ a
divide and conquer strategy. Specifically, in the next section, we will demonstrate
that the cost allocation problem of the entire network can be decomposed into cost
allocation problems associated with specific links. For that purpose, for each link
(k,m), we will first define the so-called link game (N ∗N, ckm),which will deal with
the fair allocation of the cost of the flow that goes through the link (k,m). The
hub-like game will then be defined as the composition of link games.

We now define the characteristic functions ckm and c′. For an empty set, ckm(∅) =
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0 and c′(∅) = 0. For ∅ �= Q ⊆ N ∗N , let ckm(Q) be the cost of flow that players in
coalition Q send through link (k,m) in the optimal hub like network. We assume
here that the coalition Q uses the same links as in an optimal solution to the HLN
problem. The difference is that the cost of the above flow through a particular link
(k,m) is discounted if and only if Q itself generates enough traffic for the discount
(i.e. the amount of flow through link (k,m) generated by the coalition Q exceeds the
threshold M).

We define ckm as follows. For ∅ �= Q ⊆ N ∗N,

ckm(Q) = dkm(x1(Q)ijkm + αx2(Q)ijkm),

where

x1(Q)ijkm =




∑
(i,j)∈Q x1ij

km + x2ij
km, if

∑
(i,j)∈Q x2ij

km < M

and x1ij
km, x2

ij
km is optimal to (9)-(14)

0, otherwise.

and

x2(Q)ijkm =




∑
(i,j)∈Q x2ij

km, if
∑

(i,j)∈Q x2ij
km ≥ M

and x2ij
km is optimal to (9)-(14)

0, otherwise.

The pair (N ∗N, ckm) is a link game. Further, for each ∅ �= Q ⊆ N ∗N,we define
c′(Q) =

∑
(k,m) ckm(Q). The hub-like network game is a pair (N ∗N, c′).

5. Cost allocation solutions

Next we will analyze the core of hub network and hub-like network games. Recall
that the core consists of all cost allocation vectors that provide no incentive for any
coalition to secede. Specifically, each cost allocation vector in the core allocates to
each coalition of players at most the cost needed to provide service to that coalition.
Namely, there is no cross-subsidization. In this Section, we will show that the core
of the hub and hub-like network games can be efficiently characterized.

5.1. Core of the hub network game

The core of the hub network game (N ∗ N, c) was first analyzed by Skorin-Kapov
[15]. Therein, it was proven that the core of (N ∗N, c) is not empty. Moreover, it
was demonstrated that most of core constraints are redundant, and that the core
of the hub game (N ∗ N, c) can be characterized with the polynomial number of
constraints. Herein, we summarize some results from [15].

Lemma 1. For any two hubs k and m, let Tkm ⊆N∗N consist of all node pairs
(i,j)whose traffic is routed via hubs k,m. Then for each x in the core of the game
(N∗N,c), we have c(Tkm) =x(Tkm).

Corollary 1. The game (N∗N,c) is decomposable and its core is a Cartesian
product of all the cores of games (Tkm,c), where k,m are pairs of hubs. Namely, in
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order to characterize the core of the game (N∗N,c) it is sufficient to characterize,
for all pairs of hubs k,m, the cores of games (Tkm,c).

In view of Corollary 1 it is sufficient to consider the characterization of the core of
the game (N ∗N, c) for the 2-hub location problems. Further, define the excess for
a coalition T relative to the cost allocation x as the quantity e(x, T ) = c(T )−x(T ).
The excess could be interpreted as the level of satisfaction of a coalition T with
the cost allocation x. The following Lemma shows that the excess is monotonically
decreasing for coalitions that produce enough traffic to enable the discount on inter
hub traffic.

Lemma 2. Let T⊆N∗N, be a coalition which generates enough traffic to get the
discount α on the inter hub traffic, and let x be the cost allocation which satisfies the
core constraints associated with coalitions N∗N\(i,j),for all (i,j) ∈N∗N\T. Then, for
each (i,j) ∈N∗N\T :

c(T )− x(T ) ≥ c(T ∪ {(i, j)})− x(T ∪ {(i, j)}).

Now, let the collection S1 = {{(i, j)}| (i, j) ∈ N ∗ N and f
{(i,j)}
km < M} consist

of all single player coalitions which themselves do not generate sufficient amount
of traffic between hubs k and m to warrant the discount α, and let S2 = {N ∗
N\(i, j) | (i, j) ∈ N ∗ N} be the collection of all coalitions that are missing only a
single player. Then the following theorem holds.

Theorem 1. The core constraints associated with coalitions in collections S1

and S2 completely determine the core of the game (N∗N, c).
Theorem 1 implies that most of the core constraints for the hub game are redun-

dant and the core of the hub network game can be efficiently characterized. Indeed,
assume that we use the optimal or the best known solution to the HNP as the
input to our cost allocation problem. Then, in order to characterize the core of 2-
hub game, we only need to generate 2n2 linear constraints from Theorem 1. Then,
Corollary 1 implies that in order to characterize the core of a p-hub network game
(for a fixed number of hubs p), we need to generate only O(n2) constraints.

5.2. Core of the hub-like network game

The core of the hub-like network game was first analyzed by Skorin-Kapov in [16]
and [17]. It was shown therein that the core of that game is not empty and that
some points of its points could be found efficiently. Next, we summarize some of
the results presented in [16].

We first demonstrate that the hub-like network game can be decomposed into
link games. Namely, in order to analyze the core of the hub-like network game it is
sufficient to consider all corresponding link games.

Theorem 2. For each link (k,m), let xkm be a point in the core C(N ∗N, ckm)
of the link game (N ∗N, ckm).Then, x =

∑
(k,m) xkm is in the core C(N ∗N, c′) of

the hub-like game (N ∗N, c′).
Let x be a cost allocation in the hub-like game (N ∗ N, c′). Define allocations

for the related link games, (N ∗ N, ckm), as follows. For each link (k,m) and a
player (i, j) ∈ Q ⊆ N ∗ N, let the portion of the cost covered by the player (i, j) be
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xkm(i, j) = x(i, j) ckm(i,j)
c′(i,j) . If x is in the core C(N ∗ N, c′) of the hub-like game then

for each link (k,m), xkm is in the core C(N∗N, ckm) of the related link game.
Corollary 2. In order to characterize the core C(N*N, c′) of the hub − like

game (N∗N, c′), it is sufficient to characterize the cores C(N∗N, ckm) of link games
(N∗N, ckm),where (k,m) are links in the optimal hub-like network.

Next we provide an efficient characterization of the core of the hub-like game.
Recall that the main computational difficulty is that the core is determined with
an exponential number of constraints. However, we will show that most of the core
constraints for the core of each link game are redundant.

Lemma 3. Consider a link game (N∗N, ckm). Let Q ⊆N∗N, be a coalition
which generates enough traffic to warrant the discount α on the traffic through
link (k,m), and let xkm be the cost allocation which satisfies the core constraints
associated with coalitions N ∗ N\{i, j}, for all (i, j) ∈ N ∗ N \Q. Then, for each
(i, j) ∈ N ∗N\Q :

ckm(Q)− xkm(Q) ≥ ckm(Q ∪ {(i, j)})− xkm(Q ∪ {(i, j)}).

Let f{(i,j)}
km be the amount of flow that the user (i, j) generates through a link

(k,m) in the optimal solution to the HLN problem. For each link (k,m), let the col-
lection Skm

1 = {{(i, j)}| (i, j) ∈ N ∗N and f
{(i,j)}
km < M} consist of all single player

coalitions which themselves do not generate sufficient amount of traffic through the
link (k,m) to warrant the discount α, and let S2 = {N ∗N\{(i, j)} | (i, j) ∈ N ∗N}
be the collection of all coalitions that are missing only a single player. The core can
now be characterized as follows.

Theorem 3. The core constraints associated with coalitions in collections Skm
1

and S2 completely determine the core of the link game (N∗N ,ckm).
Consequently, Corollary 1 and Theorem 3 imply that the core of the hub-like

network game is completely determined with the constraints associated with collec-
tions S1 = {Skm

1 | (k,m) is a link in an optimal hub-like network}, and the collection
S2.

6. Conclusions

In this paper, we surveyed some recent results on the cost allocation problem asso-
ciated with the hub and hub-like network design problem. The objective of these
results was to allocate the network cost in a fair manner using cooperative game
theory approach. Here, by fair we mean that each subset of users should be charged
a share of the network cost which provide them no incentive to seek services from
another network. There are no definite answers to issue of fairness, but theory of
cooperative games proposes several solution concepts. To that end we presented
cooperative games referred to as the hub and hub-like network game, respectively.
Our models emphasize the users’ contribution to economies of scale and utilize the
so-called threshold based discounts.

We considered various choices for the set of players. We opted to identify the
players with the set of pairs of users. In defining the costs for each coalition (char-
acteristic function values), the important issue was whether the cost of traffic for
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a particular coalition should be taken from the globally optimal network, or from
some potential network that is optimal from the point of view of that particular
coalition. Games in which each coalition (subset of users) assumes the potential use
of another network (optimal from their point of view) seem to be computationally
prohibitive for hub and hub-like networks. Note however, that the network optimal
from the point of view of a particular coalition still may involve other users out of
that coalition who would not necessarily support such solution. We conclude that
the most promising practical approach is in using pairs of nodes as players, and
determining the characteristic function values by the use of globally optimal (best
known) optimization solution.

It was confirmed in the literature that the core points associated with the hub
and hub-like network games exist. Moreover, we also showed that they can be
efficiently computed. Specifically, we demonstrated that the HNP network game
can be decomposed into 2-hub games and that the hub-like game can be decomposed
into link games. Using the above decomposition it can be shown that the core
of the hub network game for a fixed number of hubs can be characterized with
O(n2) constraints while the core of the hub-like game can be characterized with
O(n4) constraints. Moreover, the above constraints are associated only with single
member coalitions and grand coalitions that are missing only one player. Due to
this special property, those constraints are very easy to generate.

In summary, we developed a framework for the efficient computation of some hub
and hub-like network cost allocation solutions (the core) in which users are charged
a ’fair’ share with respect to their contribution to economies of scale. Fairness is in
the sense that there is no cross-subsidization. Namely, each coalition of users is not
paying more than they would pay to provide their own service. The most useful
part for the cost allocation practice is our scheme to efficiently generate ’attractive’
cost allocations which give the users incentive to cooperate and exploit economies
of scale via participation in hub and hub-like networks.
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