On some subspaces of an FK-space

İ. Dağadur

Abstract. In this paper we study the subspaces C_1S, C_1W, C_1F and C_1B for a locally convex FK-space X containing ϕ, the space of finite sequences.

Key words: FK-space, AK-space, σK-space, σB-space, C_1-summability method

AMS subject classifications: Primary 46A45; Secondary 47B37, 40H05.

Received February 23, 2002 Accepted March 27, 2002

1. Introduction and notation

Let w denote the space of all complex-valued sequences. An FK-space is a locally convex vector subspace of w which is also a Fréchet space (complete linear metric) with continuous coordinates. A BK-space is a normed FK-space. The basic properties of FK-spaces may be found in [7], [8] and [10]. We now define the Cesàro summability matrix which is used throughout this paper: The Cesàro mean is given by the matrix C_1 whose nkth entry is

$$C_1[n, k] = \begin{cases} \frac{1}{n+1}, & \text{if } 0 \leq k \leq n \\ 0, & \text{if } k > n. \end{cases}$$

The sequence spaces

$$\sigma_0 = \left\{ x \in w : \lim_{n} \frac{1}{n} \sum_{j=1}^{n} x_j = 0 \right\},$$

$$\sigma b = \left\{ x \in w : \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_j \right| < \infty \right\}.$$
and
\[
\sigma s = \left\{ x \in w : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} \text{ exists} \right\}
\]
are BK-spaces with the norm
\[
\|x\|_{\sigma s} = \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} x_{k} \right|
\]
and
\[
\|x\|_{\sigma b} = \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} \right|
\]
respectively ([1], [2] and [9]).

Throughout the paper \(\delta^j \), \((j = 1, 2, ...), \) the sequence \((0, 0, ..., 0, 1, 0, ...)\) with the one in the \(j \)-th position; \(\phi \) the linear span of the \(\delta^j \)'s. The topological dual of \(X \) is denoted by \(X' \). A sequence \(x \) in a locally convex sequence space \(X \) is said to have the property AK (respectively \(\sigma K \)) if \(x^{(n)} \to x \) (respectively \(\frac{1}{n} \sum_{k=1}^{n} x^{(k)} \to x \)) in \(X \) where \(x^{(n)} = (x_1, x_2, ..., x_n, 0, ...) = \sum_{k=1}^{n} x_k \delta^k \). It is known that if an FK-space \(\phi \subset X \) is said to have \(\sigma B \) if \(\left\{ \frac{1}{n} \sum_{k=1}^{n} x^{(k)} \right\} \) is a bounded set in \(X \) for each \(x \in X \).

Also, an FK-space \(X \) is said to have \(F\sigma K \) (functional \(\sigma K \)) if \(X \subset C_1 F^+ \) i.e., \(X = C_1 F \) ([1], [2] and [4]).

We recall (see [3] and [4]) that the \(f, \sigma - \) and \(\sigma b - \) duals of a subset \(X \) of \(w \) are defined to be
\[
X^f = \{ \{ f(\delta^k) \} : f \in X' \},
\]
\[
X^\sigma = \left\{ x \in w : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} y_{j} \text{ exists for all } y \in X \right\}
\]
\[
= \{ x \in w : x.y \in \sigma s \text{ for all } y \in X \},
\]
\[
X^{\sigma b} = \left\{ x \in w : \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} \right| < \infty \text{ for all } y \in X \right\}
\]
\[
= \{ x \in w : x.y \in \sigma b \text{ for all } y \in X \},
\]
respectively, where \(x.y = (x_n y_n) \).
2. Some subspaces of X

Following [4] we recall some important subspaces of a locally convex FK-space X containing ϕ.

Definition 1. Let X be an FK-space $\supset \phi$. Then

$$W := W(X) = \left\{ x \in X : x^{(k)} \to x$$(weakly) in X $\right\}$$

$$C_1W := C_1W(X) = \left\{ x \in X : \frac{1}{n} \sum_{k=1}^{n} x^{(k)} \to x$$(weakly) in X $\right\}$$

$$= \left\{ x \in X : f(x) = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} x \delta \{j\} \text{ for all } f \in X' \right\}$$

$$= \left\{ x \in X : x \text{ has } S\sigma K \text{ in } X \right\}$$

$$C_1S := C_1S(X) = \left\{ x \in X : \frac{1}{n} \sum_{k=1}^{n} x^{(k)} \to x \right\}$$

$$= \left\{ x \in X : x \text{ has } \sigma K \text{ in } X \right\}$$

$$= \left\{ x \in X : x = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} x \delta \right\}$$

$$C_1F^+ := C_1F^+(X) = \left\{ x \in w : \left(\frac{1}{n} \sum_{k=1}^{n} x^{(k)} \right) \text{ is weakly Cauchy in } X \right\}$$

$$= \left\{ x \in w : (x_n f (\delta^n)) \in \sigma s \text{ for all } f \in X' \right\}$$

$$C_1B^+ := C_1B^+(X) = \left\{ x \in w : \left(\frac{1}{n} \sum_{k=1}^{n} x^{(k)} \right) \text{ is bounded in } X \right\}$$

$$= \left\{ x \in w : (x_n f (\delta^n)) \in \sigma b \text{ for all } f \in X' \right\}$$

also

$$C_1F := C_1F^+ \cap X \text{ and } C_1B := C_1B^+ \cap X.$$

We note that subspaces W and C_1W are closely related to conullity and Cesàro conullity of the FK-space X (see [5] and [6]).

We now study some inclusions which are analogous to those given in [8; Chapter 10].

Theorem 2. Let X be an FK-space $\supset \phi$. Then

$$\phi \subset C_1S \subset C_1W \subset C_1F \subset C_1B \subset X \text{ and } \phi \subset C_1S \subset C_1W \subset \overline{\phi}.$$

Proof. The only non-trivial part is $C_1W \subset \overline{\phi}$. Let $f \in X'$ and $f = 0$ on ϕ. The definition of C_1W shows that $f = 0$ on C_1W. Hence, the Hahn-Banach theorem gives the result.

Theorem 3. The subspaces $E = C_1S, C_1W, C_1F, C_1F^+, C_1B, \text{ and } C_1B^+$ of X FK-space are monotone i.e., if $X \subset Y$ then $E(X) \subset E(Y)$.

Proof. The inclusion map $i : X \to Y$ is continuous by Corollary 4.2.4 of [8], so $\frac{1}{n} \sum_{k=1}^{n} x^{(k)} \to x$ in X implies the same in Y. This proves the assertion for C_1S. For C_1W it follows from the fact that i is weakly continuous by (4.0.11) of [8]. Now
Let
\[\text{Theorem 8.} \]
Let \(\sigma_0 \) be an \(AK \)-space. Then
\[\sigma_0 \subset C_1 S \subset C_1 W. \]

Proof. By Definition 1, \(\sigma \) in \(C_1 B^+ \) if and only if \(\sigma = \sigma b \) for each \(\sigma \in \sigma b \).

Theorem 5. Let \(X \) be an FK-space \(\sigma \). Then \(C_1 B^+ = X^f \sigma. \)

Proof. By Definition 1, \(z \in C_1 B^+ \) if and only if \(z \in \sigma b \) for each \(\sigma \in \sigma b \).

Theorem 6. Let \(X \) be an FK-space \(\sigma \). Then \(C_1 B^+ \) is the same for all FK-spaces \(Y \) between \(\sigma \) and \(X \); i.e., \(\sigma \subset Y \subset X \) implies \(C_1 B^+(Y) \subset C_1 B^+(X) \). Here the closure of \(\sigma \) is calculated in \(X \).

Proof. By Theorem 3 we have \(C_1 B^+(\sigma) \subset C_1 B^+(Y) \subset C_1 B^+(X) \). By Theorem 5 and by (7.2.4) of [8] the first and the last are equal.

Theorem 7. Let \(X \) be an FK-space such that \(C_1 B \supset \sigma \). Then \(\sigma \) has \(\sigma K \) and \(C_1 S = C_1 W = \sigma. \)

Proof. Suppose first that \(X \) has \(\sigma K \). Define \(f_n : X \to X \) by
\[
 f_n(x) = x - \frac{1}{n} \sum_{k=1}^{n} x^{(k)}.
\]

Then \(\{f_n\} \) is pointwise bounded, hence equicontinuous by (7.0.2) of [8]. Since \(f_n \to 0 \) on \(\sigma \) then also \(f_n \to 0 \) on \(\sigma \) by (7.0.3) of [8]. This is the desired conclusion.

Theorem 8. Let \(X \) be an FK-space \(\sigma \). Then \(C_1 F^+ = X^f \sigma. \)

Proof. This may be proved as in Theorem 5, with \(\sigma K \) instead of \(\sigma b \).

Theorem 9. Let \(X \) be an FK-space \(\sigma \). Then \(C_1 F^+ \) is the same for all FK-spaces \(Y \) between \(\sigma \) and \(X \); i.e., \(\sigma \subset Y \subset X \) implies \(C_1 F^+(Y) \subset C_1 F^+(X) \). (The closure of \(\sigma \) is calculated in \(X \).)

The proof is similar to that of Theorem 6.

Lemma 10. Let \(X \) be an FK-space in which \(\sigma \) has \(\sigma K \). Then \(C_1 F^+ = (\sigma)^{\sigma} \).

Proof. Observe that \(C_1 F^+ = X^f \sigma \) by Theorem 8. Since \(X^f = (\sigma)^{f} \) by Theorem 7.2.4 of [8], we have \(X^f = (\sigma)^{f} \). Hence, by Theorem 1.9 of [4] the result follows.

Theorem 11. Let \(X \) be an FK-space \(\sigma \). Then \(X \) has \(F \sigma K \) if and only if \(\sigma \) has \(\sigma K \) and \(X \subset (\sigma)^{\sigma} \).

Proof. Necessity. \(X \) has \(\sigma K \) since \(C_1 F \subset C_1 B \) so \(\sigma \) has \(\sigma K \) by Theorem 7. The remainder of the proof follows from Lemma 10. Sufficiency is given by Lemma 10.

Theorem 12. Let \(X \) be an FK-space \(\sigma \). The following are equivalent:

(i) \(X \) has \(F \sigma K \),
(ii) $X \subset C_1 S^{\sigma}$,
(iii) $X \subset C_1 W^{\sigma}$,
(iv) $X \subset C_1 F^{\sigma}$,
(v) $X^{\sigma} = C_1 S^{\sigma}$,
(vi) $X^{\sigma} = C_1 F^{\sigma}$.

Proof. Observe that (ii) implies (iii) and (iii) implies (iv) and that they are trivial since

$$C_1 S \subset C_1 W \subset C_1 F.$$

If (iv) is true, then $X^f \subset C_1 F^{\sigma} = X^{\sigma \sigma} \subset X^{\sigma}$ so (i) is true by Theorem 1.9 of [4]. If (i) holds, then Theorem 11 implies that $\overline{\phi} = C_1 S$ and that (ii) holds. The equivalence of (v), (vi) with the others is clear.

Theorem 13. Let X be an FK-space $\supset \phi$. The following are equivalent:

(i) X has $S\sigma K$,
(ii) X has σK,
(iii) $X^{\sigma} = X'$.

Proof. Clearly (ii) implies (i). Conversely if X has $S\sigma K$ it must have AD for $C_1 W \subset \overline{\phi}$ by Theorem 2. It also has σB since $C_1 W \subset C_1 B$. Thus X has σK by Theorem 7, this proves that (i) and (ii) are equivalent. Assume that (iii) holds. Let $f \in X'$, then there exists $u \in X^{\sigma}$ such that

$$f(x) = \lim_{n} \frac{1}{n} \sum_{k=1}^{\infty} \sum_{j=1}^{k} u_j x_j$$

for $x \in X$. Since $f(\hat{\delta}^j) = u_j$, it follows that each $x \in C_1 W$ which shows that (iii) implies (i). That (ii) implies (iii) is known (see [2], page 97).

Theorem 14. Let X be an FK-space $\supset \phi$. The following are equivalent:

(i) $C_1 W$ is closed in X,
(ii) $\overline{\phi} \subset C_1 B$,
(iii) $\overline{\phi} \subset C_1 F$,
(iv) $\overline{\phi} = C_1 W$,
(v) $\overline{\phi} = C_1 S$,
(vi) $C_1 S$ is closed in X.

Proof. (ii) implies (v): By Theorem 7, $\overline{\phi}$ has σK, i.e. $\overline{\phi} \subset C_1 S$. The opposite inclusion is Theorem 2. Note that (v) implies (iv), (iv) implies (iii) and (iii) implies (ii) because

$$C_1 S \subset C_1 W \subset \overline{\phi}, C_1 W \subset C_1 F \subset C_1 B;$$

(i) implies (iv) and (vi) implies (v) since $\phi \subset C_1 S \subset C_1 W \subset \overline{\phi}$. Finally (iv) implies (i) and (v) implies (vi).
References

