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Some relations concerning k-chordal and

k-tangential polygons
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Abstract. In papers [6] and [7] the k-chordal and the k-tangential
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1. Preliminaries

A polygon with vertices A1 . . . An (in this order) will be denoted by A1 . . . An and
the lengths of the sides of A1 . . . An will be denoted by a1, . . . , an, where ai =
| AiAi+1 |, i = 1, 2, . . . , n. For the interior angle at the vertex Ai we write αi or
∠Ai, i.e. ∠Ai = ∠An−1+iAiAi+1, i = 1, . . . , n. Of course, indices are calculated
modulo n.

For convenience we list some definitions given in [6] and [7].
Definition 1. Let A = A1 . . . An be a chordal polygon and let C be its circum-

circle. By SAi and ŜAi we denote the semicircles of C such that

SAi ∪ ŜAi = C, Ai ∈ SAi ∩ ŜAi .

The polygon A is said to be of the first kind if the following is fulfilled:
1. all vertices A1 . . . An do not lie on the same semicircle,
2. for every three consecutive vertices Ai, Ai+1, Ai+2 it holds

Ai ∈ SAi+1 ⇒ Ai+2 ∈ ŜAi+1

3. any two consecutive vertices Ai, Ai+1 do not lie on the same diameter.
Definition 2. Let A = A1 . . . An be a chordal polygon and let k be a positive

integer. The polygon A is said to be a k-chordal polygon if it is of the first kind and
if there holds

n∑
i=1

∠AiCAi+1 = 2kπ, (1)
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where C is the centre of the circumcircle of the polygon A.
Using (1) it is easy to see that the angles of a k-chordal polygon A1 . . . An satisfy

the relation:

n∑
i=1

∠Ai = (n− 2k)π. (2)

Definition 3. Let A = A1 . . . An be a tangential polygon and let k be a positive
integer so that k ≤ �n−1

2 	, that is, k ≤ n−1
2 if n is odd, and k ≤ n−2

2 if n is even.
The polygon A will be called a k-tangential polygon if any two of its consecutive
sides have only one common point, and if there holds

β1 + · · · + βn = (n− 2k)
π

2
, (3)

where 2βi = ∠Ai, i = 1, ..., n.
Consequently, a tangential polygon A is k-tangential if

ϕ1 + · · · + ϕn = 2kπ, (4)

where ϕi = ∠AiCAi+1 and C is the centre of the circle inscribed into the polygon
A.

The integer k in relations (1)-(4) can be at most n−1
2 if n is odd and n−2

2 if n is
even.

Remark 1. In the following considerations we shall denote the angles β1, . . . , βn

such that

βi = ∠CAiAi+1, if it is a question of a chordal polygon,

βi =
1
2
∠Ai, if it is a question of a tangential polygon.

2. Some inequalities concerning the radius of k-chordal and
k-tangential polygons

At first we prove some results concerning a k-chordal polygon.
Theorem 1. Let a1, . . . , an be the lengths of the sides of a k-chordal polygon

A = A1 . . . An and let a1 = min{a1 . . . an}. If there exist angles γ1, . . . , γn such
that

γ1 + · · · + γn = (n− 2k)
π

2
, 0 < γi <

π

2
, 1 = 1, . . . , n, (5)

a1 sin γ1 = a2 sinγ2 = . . . = an sin γn. (6)



k-chordal and k-tangential polygons 23

Then

2r >

n∑
i=1

a2
i

n∑
i=1

ai − 1
2

(
n∑

i=1

1
ai

)
a2
1 sin2(n− 2k)

π

2n

, (7)

where r is the radius of the circumcircle of the polygon A.
Proof. Since βi = ∠CAiAi+1, i = 1, . . . , n, we have the following relations

β1 + · · · + βn = (n− 2k)
π

2
, 0 < βi <

π

2
, i = 1, . . . , n (8)

2r cosβi = ai, i = 1, . . . , n (9)

from which it follows

2rai cosβi = a2
i , i = 1, . . . , n

2r =

n∑
i=1

a2
i

n∑
i=1

ai cosβi

. (10)

In addition to the angles β1, . . . , βn there are infinitely many angles γ1, . . . , γn such
that

γ1 + · · · + γn = (n− 2k)
π

2
, 0 < γi <

π

2
, i = 1, . . . , n.

We shall prove that
n∑

i=1

ai cos γi = maximum if the angles γ1, . . . , γn satisfy

a1 sin γ1 = a2 sinγ2 = . . . = an sinγn.

First we shall prove the following lemma.
Lemma 1. If a1 and a2 are positive numbers and

γ1 + γ2 = s, 0 < s < π, 0 < γi <
π

2
, i = 1, 2

then the function f(γ1, γ2) = a1 cos γ1 + a2 cos γ2 assumes maximum if a1 sin γ1 =
a2 sinγ2.

Proof. Let g(γ1) = a1 cos γ1 + a2 cos(s− γ1), then

g′(γ1) = −a1 sin γ1 + a2 sin(s− γ1),

g′′(γ1) = −a1 cos γ1 − a2 cos(s− γ1) < 0,
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a1 sin γ1 + a2 sin(s− γ1) = 0 ⇒ a1 sin γ1 = a2 sin(s− γ2).

✷

From the above lemma it is clear that the sum
n∑

i=1

ai cos γi assumes maximum

if for each sum

ai cos γi + aj cos γj , i, j ∈ {1, . . . , n}

there holds ai sin γi = aj sinγj , since we can put γi + γj = s.
Now, we are going to prove that the inequality (7) is valid if (6) is fulfiled. Based

on the assumption that equations (6) exist, we can write

ai sin γi = λ, i = 1, . . . , n

from which it follows

cos γi =

√
1 −

(
λ

ai

)2

< 1 − 1
2

(
λ

ai

)2

, i = 1, . . . , n,

n∑
i=1

ai

[
1 − 1

2

(
λ

ai

)2
]
>

n∑
i=1

ai cos γi ≥
n∑

i=1

ai cosβi

so that instead of (10) we can write

2r >

n∑
i=1

a2
i

n∑
i=1

ai − 1
2

(
n∑

i=1

1
ai

)
λ2

. (11)

Since γi = arcsin λ
ai
, i = 1, . . . , n we have the equation

n∑
i=1

arcsin
λ

ai
= (n− 2k)

π

2
, (12)

or (
λ

a1
+ · · · + λ

an

)
+

1
6

[(
λ

a1

)3

+ · · · +
(
λ

an

)3
]

+ · · · = (n− 2k)
π

2
. (13)

Since by assumption a1 = min{a1, . . . , an}, from (13) it follows that(
λ

a1
+ · · · + λ

a1

)
+

1
6

[(
λ

a1

)3

+ · · · +
(
λ

a1

)3
]

+ · · · ≥ (n− 2k)
π

2
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or

arcsin
λ

a1
≥ (n− 2k)

π

2n
.

Hence

λ ≥ a1 sin(n− 2k)
π

2n
. (14)

Now using (11) and (14) we readily get (7). So, Theorem 1 is proved. ✷

Before stating some of its corollaries here is an example. If A1 . . . A5 is a l-chordal
pentagon as shown in Figure 1, then there are angles γ1, . . . , γ5 such that

γ1 + · · · + γ5 = (5 − 2)
π

2
, a1 sin γ1 = . . . = a5 sin γ5

if instead of the drawn circles these can be drawn greater such that the above
equalities are valid. (For these drawn ones it is γ1 + · · · + γ5 < 3π

2 . Let us remark
that in the case when a side is small enough, then there are no angles γ1, . . . , γ5
such that γ1 + . . .+ γ5 = 3π

2 .)

A3 A2

A1

A4

A5

a2
γ2

γ3

a3

γ4 γ5 a5

γ1

a1

C

Figure 1.

Now we state some of the corollaries of Theorem 1.
Corollary 1. There are angles γ1, . . . , γn such that (5) and (6) hold if and

only if

a1

H(a1, . . . , an)
+

1
6

a3
1

H(a3
1, . . . , a

3
n)

+ · · · ≥ (n− 2k)
π

2n
(15)
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where H(ai
1, . . . , a

i
n) is the harmonic mean of ai

1, . . . , a
i
n.

Proof. It is clear from (13) since λ may be at most a1. ✷

Corollary 2. A sufficient condition for the existence of the angles γ1, . . . , γn

such that (5) and (6) hold is the inequality

a1 ≥ H(a1, . . . , an) sin(n− 2k)
π

2n
(16)

Proof. If (16) holds, then obviously (15) holds, too. Namely, if

a1

H(a1, . . . , an)
+

1
6

[
a1

H(a1, . . . , an)

]3
+ · · · ≥ (n− 2k)

π

2n
,

then certainly (15) is valid because of the property of the arithmetics mean. ✷

Corollary 3. If there exists a k-chordal polygon whose sides have the lengths
1
a1
, . . . , 1

an
and 2k

n ≥ sin(n− 2k) π
2n , then there exist angles γ1, . . . , γn such that (5)

and (6) hold.
Proof. We shall use Corollary2 in [6]. If a1, . . . , an are the lengths of the sides

of the k-chordal polygon A, then
n∑

i=1

ai > 2kaj, j = 1, . . . , n. (17)

If
1
a1
, . . . ,

1
an

are also the lengths of the sides of a k-chordal polygon, then

1
a1

+ · · · + 1
an
>

2k
a1

or

a1 >
2k
n
H(a1, . . . , an). (18)

Accordingly, if
2k
n

≥ sin(n− 2k)
π

2n
then (16) is valid. ✷

Corollary 4. If n is odd and k is maximal, i.e. k =
n− 1

2
, then there exist the

angles γ1, . . . , γn such that (5) and (6) hold.

Proof. If k =
n− 1

2
, then equation (5) can be written as

γ1 + . . .+ γn =
π

2
,

and obviously there is λ such that
n∑

i=1

arcsin
λ

ai
=
π

2
. ✷

Corollary 5. If n = 3 and a, b, c are the lengths of the sides of an acute triangle,
then

2r >
a2 + b2 + c2

a+ b+ c− 3
8

a2

H(a, b, c)

(19)
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where a = min{a, b, c}. In connection with this, the following remarks may be
interesting.

Remark 2. Since √
1 −

(
λ

a

)2

< 1 − 1
2

(
λ

a

)2

,

inequality (19) follows from the inequality

2r ≥ a2 + b2 + c2√
a2 − λ2 +

√
b2 − λ2 +

√
c2 − λ2

, (20)

where λ = a sin
π

6
. Here the equality appears for a = b = c.

Analogously holds for inequality (7).
Remark 3. In the case when n = 3, Corollary 4 can be also proved as follows:

γ1 + γ2 + γ3 = π
2 ,

cos(γ1 + γ2) = sinγ3,
cos γ1 cos γ2 = sinγ1 sin γ2 + sin γ3,√

1 − (λ
a

)2√
1 − (λ

b

)2
= λ

a
λ
b + λ

c ,

2abcλ3 + (a2b2 + b2c2 + c2a2)λ2 − a2b2c2 = 0.

The above equation in λ has one positive root and it lies between 0 and a since
f(0) < 0, f(a) > 0, where f(λ) = 2abcλ3 + (a2b2 + b2c2 + c2a2)λ2 − a2b2c2. For
example, if a1 = a = 7, a2 = b = 8, a3 = c = 10 (Figure 2), then λ = 4.063986
and γ1 = 35.49060749, γ2 = 30.53058949, γ3 = 23.97880303.

A3 A1

γ3

γ2

γ1

A2

b

c

a

Figure 2.

Analogously holds in the case when n > 3. But in this case it may be very difficult
to solve the equation obtained in λ. So, if A1 . . . A5 is a 2-chordal pentagon, then
we have

γ1 + γ2 + γ3 + γ4 + γ5 =
π

2
,
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cos(γ1 + γ2 + γ3 + γ4) = sin γ5,

cos(γ1 + γ2) cos(γ3 + γ4) − sin(γ1 + γ2) sin(γ3 + γ4) = sin γ5,

and so on. But it may be interesting that using the expressions

sin γi =
λ

ai
, cos γi =

√
1 −

(
λ

ai

)2

, i = 1, . . . , 5

we obtain the equation which has a unique positive solution λ.
Corollary 6. Let (for simplicity) in equation (13) in the case when n = 4 there

be written a, b, c, d instead of a1, a2, a3, a4, and let a = min{a, b, c, d}. Then there
are angles γ1, γ2, γ3, γ4 such that (5) and (6) hold in the case when n = 4 if and
only if

a2

2
≤ u

v
≤ a2,

where

u = − 1
a4

− 1
b4

− 1
c4

− 1
d4

+
2
a2b2

+
2
a2c2

+
2
a2d2

+
2
b2c2

+
2
b2d2

+
2
c2d2

+
8
abcd

,

v =
4

a2b2c2
+

4
b2c2d2

+
4

c2d2a2
+

4
d2a2b2

+
4

a3bcd
+

4
ab3cd

+
4

abc3d
+

4
abcd3

.

Proof. From γ1 + γ2 + γ3 + γ4 = π, a sinγi = λ, i = 1, 2, 3, 4, using the
equality

cos(γ1 + γ2) = − cos(γ3 + γ4),

it can be found that

4
(

1 − λ2

a2

)(
1 − λ2

b2

)(
1 − λ2

c2

)(
1 − λ2

d2

)
=

[(
1 − λ2

a2

)(
1 − λ2

b2

)
+
(

1 − λ2

c2

)(
1 − λ2

d2

)
+

λ4

a2b2
+

λ4

c2d2
+

2λ4

abcd

]2
from which it follows that

uλ4 − vλ6 = 0.

Consequently, λ =
√

u
v . Let as remark that by (14), λ ≥ a

√
2

2 . ✷

In connection with this, let us remark that
√
u = 4 area of the chordal quadrangle

whose sides have the lengths
1
a
,
1
b
,
1
c
,
1
d
.

Corollary 7. The value λ given by (13) satisfies the following condition

λ ≤ H(a1, . . . , an) sin(n− 2k)
π

2n
. (21)
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Proof. Using (13) by the appropriate property of the aritmetic mean we get
the inequality

n
λ
a1

+ . . .+ λ
an

n
+

1
6
n

(
λ
a1

+ . . .+ λ
an

n

)3

+ . . . ≤ (n− 2k)
π

2

or

arcsin
λ
a1

+ . . .+ λ
an

n
≤ (n− 2k)

π

2n
,

from which it follows that (21) is valid. ✷

Thus, the solution in λ of equation (13) cannot exceed the right-hand side of
(21).
If λ is the solution of equation (13), then from (10), that is, from

2r ≥

n∑
i=1

a2
i

n∑
i=1

ai cos γi

or 2r ≥

n∑
i=1

a2
i

n∑
i=1

√
a2

i − a2
i sin2 γi

we have

2r ≥

n∑
i=1

a2
i

n∑
i=1

√
a2

i − λ2

, (22)

2r >

n∑
i=1

a2
i

n∑
i=1

ai

√1 − 1
2

(
λ

ai

)2
 , (23)

The equality can appear in (22), but not in (23).
Let us consider the case when

λ = H(a1, . . . , an) sin(n− 2k)
π

2n
(24)

Of course, we have such case when a k-chordal polygon is equilateral. Namely, then
(22) can be written as

2r =
a

cos(n− 2k) π
2n

, (25)
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and this is true since by this the diameter of a k-chordal equilateral polygon whose
sides have the length a is given.
The following theorem is concerned with the radius of a k-tangential polygon.

Theorem 2. Let A = A1 . . . An be a given k-tangential polygon and let t1, . . . , tn
be the lengths of its tangents. Then(

1
t1

+ · · · + 1
tn

)
cos
[
(n− 2k)

π

2n

]
> 2k

(
1 − 2k

n

)
1
r
, (26)

where r is the radius of the circle inscribed into A.
Proof. Let β1, . . . , βn be the angles such that

βi = ∠CAiAi+1, i = 1, . . . , n.

Then by Theorem 1 from paper [6]

n∑
i=1

cosβi > 2k cosβj , j = 1, . . . , n.

From this (since r = tjtg βj) it follows that

r

n∑
i=1

cosβi > 2ktj sinβj , j = 1, . . . , n (27)

or

r

2k

(
1
t1

+ · · · + 1
tn

) n∑
i=1

cosβi >
n∑

j=1

sinβj (28)

Since sin(πx) > 2x if 0 < x < 1
2 and sinα > 2

πα if 0 < α < π
2 (see proof

of Theorem 1. in [6]), we have

n∑
j=1

sinβj >
2
π

(β1 + · · · + βn) = n− 2k. (29)

Also we have
n∑

i=1

cosβi ≤ n cos(n− 2k)
π

2n
(30)

since the sum
n∑

i=1

cosβi is maximal when β1 = · · · = βn. From (28), (29) and (30)

we get (26). ✷

Theorem 3. Let A = A1 . . . An be a k-chordal polygon and let a1 . . . an be the
lengths of its sides. If n is even and the lengths b1, . . . , bn are such that

a2
i + b2i = 4r2, i = 1, . . . , n
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where r is the radius of the circle circumscribed to A, then there is an (n
2 − k)-

chordal polygon with the property that b1, . . . , bn are lengths of its sides and that
the radius of its circumscribed circle is the same as the radius of the circumcircle
of A.

Proof. If A is a k-chordal polygon, then

n∑
i=1

βi = (n− 2k)
π

2
, βi = ∠CAiAi+1, i = 1, . . . , n

where C is the centre of the circle circumscribed to A.
Let B = B1 . . . Bn be a polygon such that

Bi = Ai, i = 1, 3, . . . , n− 1

Bi = A′
i, i = 2, 4, . . . , n

where C is the midpoint of AiA
′
i, i = 2, 4, . . . , n. Then the polygon B is an

(n
2 − k)-chordal polygon since

n∑
i=1

∠CBiBi+1 =
n∑

i=1

(π
2
− βi

)
= n

π

2
−

n∑
i=1

βi = n
π

2
− (n− 2k)

π

2
=
[
n− 2

(n
2
− k
)] π

2
. ✷

Here is an example. See Figure 3. If n = 6 and A1 . . . A6 is a l-chordal hexagon,
then B1 . . . B6 is a 2-chordal hexagon.

A5 = B5
B2

A6

B4

A1 = B1
A2

B6

A3 = B3

A4

C

β1

π
2−β1

Figure 3.
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In the following theorem we shall use the symbol Sn
j introduced in [7] with the fol-

lowing meaning: If t1, . . . , tn are given lengths, then Sn
j is the sum of all

(
n
j

)
pro-

ducts of the form ti1 . . . tij where i1, . . . , ij are different indices of the set {1, . . . , n},
that is

Sn
j =

∑
1≤i1<···<ij≤n

ti1 . . . tij .

Also we shall use Theorem 2 proved in [7]:
Let n ≥ 3 be any given odd number. Then

Sn
1 r

n−1 − Sn
3 r

n−3 + Sn
5 r

n−5 − · · · + (−1)sSn
n = 0,

Sn+1
1 rn−1 − Sn+1

3 rn−3 + Sn+1
5 rn−5 − · · · + (−1)sSn+1

n = 0.

where s = (1 + 3 + 5 + · · · + n) + 1.
Theorem 4. Let n ≥ 4 be an even number. If A is a k-tangential polygon whose

tangents have the lengths t1, . . . , tn, and if B is the
(

n
2 − k)-tangential polygon

whose tangents have the lengths
1
t1
, . . . ,

1
tn
, then rρ = 1, where r is the radius of

the circle inscribed into A and ρ is the radius of the circle inscribed into B.
Proof. Let Rn

i be obtained from Sn
i putting 1

ti
instead of ti and let s = [1 +

3 + 5 + · · · + (n− 1)] + 1. Then

Rn
1 ρ

n−2 −Rn
3 ρ

n−4 + · · · + (−1)sRn
n−1 = 0, (31)

and if the equation

Sn
1 r

n−2 − Sn
3 r

n−4 + · · · + (−1)sSn
n−1 = 0, (32)

is divided by t1 . . . tn, we obtain

Rn
n−1r

n−2 −Rn
n−3r

n−4 + · · · + (−1)sRn
1 = 0. (33)

For example, if n = 4, we have the equation

(t1 + t2 + t3 + t4)r2 − (t1t2t3 + t2t3t4 + t3t4t1 + t4t1t2) = 0,

from which, dividing by t1t2t3t4, we get

R4
3r

2 −R4
1 = 0 or R4

1

(
1
r

)2

−R4
3 = 0,

where

R4
3 =

1
t1t2t3

+
1

t2t3t4
+

1
t3t4t1

+
1

t4t1t2
,

R4
1 =

1
t1

+
1
t2

+
1
t3

+
1
t4
.
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From (31) and (33) it is clear that for each r there is ρ such that rρ = 1. Thus we
have to prove that

rkρn
k
−k = 1, (34)

where rk is the radius of the k-tangential n-gon whose tangents have the lengths
t1, . . . , tn and ρn

k
−k is the radius of the

(
n
2 − k)-tangential n-gon whose tangents

have the lengths
1
t1
, . . . ,

1
tn
.

The proof is as follows. Let β1, . . . , βn and γ1, . . . , γn be corresponding angles, that
is,

β1 + · · · + βn = (n− 2k)
π

2
,

γ1 + · · · + γn =
[
n−

(n
2
− k
)] π

2
,

ti = rkctgβi,
1
ti

= ρn
2 −kctgγi, i = 1, . . . , n.

From 1 = (rkctgβi)(ρn
2 −kctgγi) we see that rkρn

2 −k = 1 iff γi = π
2 − βi. Hence we

have

n∑
i=1

(π
2
− βi

)
= n

π

2
−

n∑
i=1

βi = n
π

2
− (n− 2k)

π

2
=
[
n− 2

(n
2
− k
)] π

2
.

And Theorem 4 is proved. ✷

Here are some examples. If n = 4, then r1ρ1 = 1. If n = 6, then r1ρ2 = r2ρ1 = 1.
If n = 8, then r1ρ3 = r2ρ2 = r3ρ1 = 1.
Especially, if t1 = . . . = tn = 1, then

rk = tg
(
(n− 2k)

π

2n

)
, k = 1, . . . ,

n− 2
2

,

ρn
2 −k = tg

[(
n− 2

(n
2
− k
)) π

2n

]
= tg

kπ

n
,

rkρn
2 −k = 1,

since tg(n− 2k) π
2n = tg

(
π
2 − kπ

n

)
= ctg kπ

n .

So, if n = 6 and k = 1, the situation is shown in Figure 4, where r1 =
√

3, ρ2 = 1√
3
.
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