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Some relations concerning k-chordal and
k-tangential polygons
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Abstract. In papers [6] and [7] the k-chordal and the k-tangential
polygons are defined and some of their properties are proved. In this
paper we shall consider some of their other properties. Theorems 1-4
are proved.
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1. Preliminaries

A polygon with vertices A; ... A, (in this order) will be denoted by A4; ... A, and
the lengths of the sides of A;...A, will be denoted by ai,...,a,, where a; =
| AjAiv1 |, 4 = 1,2,... ,n. For the interior angle at the vertex A; we write a; or
LA e LA = A, 11A; A1, i=1,...,n. Of course, indices are calculated
modulo n.

For convenience we list some definitions given in [6] and [7].

Definition 1. Let A= A; ... A, be a chordal polygon and let C' be its circum-
circle. By Sa, and Sa, we denote the semicircles of C' such that

Sa, US4, =C, A;j€54,N84,.

The polygon A is said to be of the first kind if the following is fulfilled:
1. all vertices Ay ... A, do not lie on the same semicircle,
2. for every three consecutive vertices A;, A;yr1, Ajyo it holds

Ai c SA,i+1 = Ai+2 S SA,i+1

3. any two consecutive vertices A;, A;11 do not lie on the same diameter.

Definition 2. Let A = A;... A, be a chordal polygon and let k be a positive
integer. The polygon A is said to be a k-chordal polygon if it is of the first kind and
if there holds

n
Z AAlCAH_l = 2]{}71', (1)
=1
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where C' is the centre of the circumcircle of the polygon A.
Using (1) it is easy to see that the angles of a k-chordal polygon A; ... A4, satisfy
the relation:

En: ZA; = (n — 2k). (2)
=1

Definition 3. Let A= A;... A, be a tangential polygon and let k be a positive
integer so that k < L"T_lj7 that is, k < "T_l if m is odd, and k < "7_2 if m is even.
The polygon A will be called a k-tangential polygon if any two of its consecutive
sides have only one common point, and if there holds

Bit-oot B = (n—2k), (3)

where 203; = ZA;, i=1,...,n.
Consequently, a tangential polygon A is k-tangential if

o1+ + on = 2km, 4)

where p; = ZA;CA;11 and C is the centre of the circle inscribed into the polygon
A.

The integer k in relations (1)-(4) can be at most 2 if n is odd and 252 if n is
even.

Remark 1. In the following considerations we shall denote the angles 31, ... , Bn
such that

Bi = LCA;Aj1, if it is a question of a chordal polygon,

1
B; = §4Ai7 if it is a question of a tangential polygon.

2. Some inequalities concerning the radius of k-chordal and
k-tangential polygons

At first we prove some results concerning a k-chordal polygon.

Theorem 1. Let ay,...,a, be the lengths of the sides of a k-chordal polygon
A= A... A, and let a; = min{ay...an}. If there exist angles v1,... ,vn such
that

a18iny; = agsinys, = ... = a, siny,. (6)
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Then

>
S i=1
;ai - % (Z %) a?sin?(n — 2/{:)%

i=1

2r , (7)

where r is the radius of the circumcircle of the polygon A.

Proof. Since 8; = LCA;A;11, i=1,...,n, we have the following relations
™ T
ﬂ1+-~-+ﬂn:(n—2k)§, O<ﬂi<§, i=1,...,n (8)
2rcosfBi=a;, i=1,...,n (9)

from which it follows

2 .
2ra;cos By =a;, i=1,...,n

== (10)
Z a; cos (3;
i=1
In addition to the angles 31, ... , 3, there are infinitely many angles 71, ... , 7y, such

that

™ ™ .

2 )
n
We shall prove that Z a; cosvy; = maximum if the angles v1,... , 7, satisfy
i=1
a1siny; = agsinys = ... = a, siny,.

First we shall prove the following lemma.
Lemma 1. If a; and as are positive numbers and

™
T1+712=s 0<s<m, O<%<§, i=1,2

then the function f(y1,72) = a1 cosvy1 + az cosys assumes mazimum if a siny; =
asg Sinys.
Proof. Let g(y1) = a3 cosy1 + az cos(s — 1), then

g/('Yl) = —aysin~y; + agsin(s — 1),

g"(11) = —ay cosy1 —ag cos(s — 1) <0,
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arsiny; +agsin(s —v1) =0 = ajsiny; = agsin(s — 72).

O

n
From the above lemma it is clear that the sum Z a; COSy; assumes maximum
i=1
if for each sum
a; cosvy; +ajcosvy;, i,j€{l,...,n}
there holds a; sin~y; = a; sin+y;, since we can put ; +; = s.
Now, we are going to prove that the inequality (7) is valid if (6) is fulfiled. Based
on the assumption that equations (6) exist, we can write

a;siny, =X\, i=1,...,n

from which it follows
A2 1/A\°
cosy; = 1—<—> <1——<—> , t=1,...,n,
a; 2 a;

n 2 n n
Zai [1 — % (%) ] > Zaicos% > Zaicosﬁi
i=1 g i=1 i=1

so that instead of (10) we can write

2r > — ! - (11)
ai— = (Z i) X2
2\ =g
i=1 i=1
Since ~; = arcsin a%, i=1,...,n we have the equation
Zarcsm— = (n—2k)=, (12)
i=1 i
or
A AN 1A A\ m
A i Y A Z coo=(n—2k)=. 13
(e 2) ot [ o ()]s oz
Since by assumption a; = minf{as,... ,a,}, from (13) it follows that

()\ /\> 1
a1 al 6

@) )

+--~2(n—2k)g
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or
A T
in— > (n—2k)—.
arcsma1 > (n )2n
Hence
A > ap sin(n — 2k) — (14)
ay sin(n — 2k)—.
2 ai on
Now using (11) and (14) we readily get (7). So, Theorem 1 is proved. O
Before stating some of its corollaries here is an example. If A; ... A5 is a l-chordal
pentagon as shown in Figure 1, then there are angles 71,... ,7s such that
™ . .
Y+t =0-2)=, aisiny; =...=assin"ys

2

if instead of the drawn circles these can be drawn greater such that the above
equalities are valid. (For these drawn ones it is v3 + -+ + 75 < 37“ Let us remark
that in the case when a side is small enough, then there are no angles v1,...,75
such that v +... 4+ v = 37”)

A3 az A2
V2
3 1
as J'1
C A
Ay ‘
4 Y as
As
Figure 1.

Now we state some of the corollaries of Theorem 1.
Corollary 1. There are angles v1,... ,v, such that (5) and (6) hold if and
only if
ay 1 ajy s

o> (n—2k)5- (15)
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where H(a',...  al) is the harmonic mean of ai,... ,a.
Proof. It is clear from (13) since A may be at most a;. O
Corollary 2. A sufficient condition for the existence of the angles y1,... ,Vn
such that (5) and (6) hold is the inequality
a1 > H(ay,...,ap) sin(n—?k’)ln (16)
Proof. If (16) holds, then obviously (15) holds, too. Namely, if
aq 1 aq 3 m
ul cee> (n — 2k)—
H(al,...,an)+6[H(al,...,an)} + = (n )2n7
then certainly (15) is valid because of the property of the arithmetics mean. O
Corollary 3. If there exists a k-chordal polygon whose sides have the lengths
L ..., L and 2 > sin(n—2k) X, then there exist angles v1,... ,yn such that (5)

and (6) hold.
Proof. We shall use Corollary2 in [6]. If a1, ... ,a, are the lengths of the sides
of the k-chordal polygon A, then

> ai>2ka;, j=1,...,n. (17)
i=1
1 1 .
If po EEE by are also the lengths of the sides of a k-chordal polygon, then
1 n
1 1 2k
aq Qp, aq
or
2k
ay > ZH(al’”' ,0p). (18)
. o2k 7T . .
Accordingly, if — > sin(n — 2k)2— then (16) is valid. O
n n

-1
Corollary 4. If nis odd and k is mazimal, i.e. k = nT, then there exist the
angles Y1, ... ,yn such that (5) and (6) hold.

Proof. If k = _ , then equation (5) can be written as
oo
’yl—|—...—|—’yn—§,
- A
and obviously there is A such that Z arcsin > = = O
a; 2

i=1
Corollary 5. Ifn = 3 and a, b, c are the lengths of the sides of an acute triangle,
then

a’® +b% + 2
3o
8 H(a,b,c)

2r >

(19)
at+b+c—
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where a = min{a,b,c}. In connection with this, the following remarks may be

interesting.
A\’ IO
a 2 \a

Remark 2. Since
inequality (19) follows from the inequality
222 4 .2
o > a‘+b"+c ,
Va2 — X2 4+ /b2 — X2 4+ /c2 — )2

s
where A\ = asin —. Here the equality appears for a =b = c.

Analogously holds for inequality (7).
Remark 3. In the case when n = 3, Corollary4 can be also proved as follows:

Mmtrty = 35
cos(y1 +72) = sinns,
coSypCcosy2 = siny;sin-ys + sinvys,
A)2 M2 AN A
1-(3) \/1—(3) = vt
2abeX3 + (a?b? + b?c? + 2a?)A\? — a?b?c? = 0.

The above equation in A has one positive root and it lies between 0 and a since
f(0) <0, f(a) > 0, where f(X) = 2abcA® + (a?b? + b2c® + 2a®)N\? — a?b%c?. For
example, ifay =a =7, a2 =0b=8, as=c=10 (Figure2), then A = 4.063986
and 1 = 35.49060749, 2 = 30.53058949, 3 = 23.97880303.

Figure2.

Analogously holds in the case when n > 3. But in this case it may be very difficult
to solve the equation obtained in \. So, if A1...As is a 2-chordal pentagon, then
we have

Y1t+Yr+rt+tratr=2,

N
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cos(y1 + 2 + v3 +74) = sinys,

cos(1 + 72) cos(y3 +74) — sin(y1 + 2) sin(y3 + 74) = sin s,

and so on. But it may be interesting that using the expressions

A A\’
siny; = —, cosvy; = 1—(—)7 1=1,...,5
@

7 a;
we obtain the equation which has a unique positive solution .

Corollary 6. Let (for simplicity) in equation (13) in the case when n = 4 there
be written a,b, c,d instead of a1,as,as,as, and let a = min{a,b,c,d}. Then there
are angles v1,%2,7s, ¥4 such that (5) and (6) hold in the case when n = 4 if and
only if

2

4t
2 —wv
where
1 1 1 1 2 2 2 2 2 2 8
uz_g_b_‘l_c_‘l_d_‘l—i_aQbQ—'—anQ+a2d2+@ b2d2  c2d?  abed’
4 4 4 4 4 4 4 4

T a2bh2e2 + b2c2d? + c2d?q? + d2a?b? + a3bed + ab3cd + abc3d + abed3”

Proof. From v1 +v2 + 73 +71 =7, asinvy; = A, ¢ = 1,2,3,4, using the
equality

cos(y1 +72) = — cos(v3 + 7a),

it can be found that
A2 A2 A2 A2
4(“?) (“ﬁ) (1‘72) (“ﬁ)
A2 A2 A2 A2 A A 2t
- (1=Z)(1-& 1-2)(1-4
K a2>< 62)+< c“‘)( d2>+a2b2+02d2+abcd

from which it follows that

uX* — X8 = 0.
Consequently, A = \/%. Let as remark that by (14), A > GQﬁ O
In connection with this, let us remark that \/u = 4 area of the chordal quadrangle
1111

whose sides have the lengths —, —, —, pi
c
Corollary 7. The value A\ given by (13) satisfies the following condition

A< Hiay,. .. ,an)sin(n—zk)Ql. (21)

n
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Proof. Using (13) by the appropriate property of the aritmetic mean we get
the inequality

3
At (Erera e
or
arcsinM <(n-— Qk)l
n 2n’
from which it follows that (21) is valid. O

Thus, the solution in A of equation (13) cannot exceed the right-hand side of
(21).
If A is the solution of equation (13), then from (10), that is, from

n

n

2 2
> >
i=1 =1

wr>—=1 o 29>

—_ n n
E a; Cos; E a? — a?sin’;
i=1

i=1

we have

2r > , (23)
n 1 A 2
e l1-5(2)
i=1 i
The equality can appear in (22), but not in (23).
Let us consider the case when
A= H(ay,..., an)sin(n — 2k)21 (24)
n

Of course, we have such case when a k-chordal polygon is equilateral. Namely, then
(22) can be written as

a
or=—32 2
" cos(n — 2k) =" (25)
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and this is true since by this the diameter of a k-chordal equilateral polygon whose

sides have the length a is given.

The following theorem is concerned with the radius of a k-tangential polygon.
Theorem 2. Let A= A; ... A, be a given k-tangential polygon and letty, ... ,t,

be the lengths of its tangents. Then

(1+,,.+ti>cos[(n_2k)%]>2k<1_%>1, (26)

tl n T

where 1 is the radius of the circle inscribed into A.
Proof. Let 31,..., 08, be the angles such that

ﬂiZZCAiAH_l, Zzl, , .
Then by Theorem 1 from paper [6]
Zcosﬁi >2kcosfB;, j=1,...,n.
i=1
From this (since r = ¢;tg 3;) it follows that
chosﬂi>2ktjsinﬂj, ji=1,...,n (27)
i=1
or
e o4 ! icosﬁ >is' 16} (28)
R e H : in B,
2k \ tn) = P !

Since sin(rz) > 2z if 0<z <3 and sina> 2a if 0<a < Z (see proof
of Theorem 1. in [6]), we have

- 2
D sinBy > =(By+ -+ Bn) =n — 2k (29)
=1 T
Also we have
~ ™
Zcos Bi < ncos(n —2k)— (30)
pt 2n
since the sum Zcos B; is maximal when 8; = --- = (,,. From (28), (29) and (30)
i=1
we get (26). O

Theorem 3. Let A= A;...A, be a k-chordal polygon and let ay ...a, be the
lengths of its sides. If n is even and the lengths by, ... , b, are such that

2,12 4.2
a; +b; =4r°, i=1,...,n
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where 1 is the radius of the circle circumscribed to A, then there is an (5 — k)-
chordal polygon with the property that by,... b, are lengths of its sides and that
the radius of its circumscribed circle is the same as the radius of the circumcircle
of A.

Proof. If A is a k-chordal polygon, then

Zﬁl n—2k B; = LCAAipr, i=1,....n

where C' is the centre of the circle circumscribed to A.
Let B = B;...B, be a polygon such that

BiZAi, i=1,3,...,7’b—1

Ble;, i:2,4,...,n

where C' is the midpoint of A;A}, i = 2,4,...,n. Then the polygon B is an
(% — k)-chordal polygon since

=1

Here is an example. See Figure3. If n = 6 and A; ... Ag is a l-chordal hexagon,
then B ... Bg is a 2-chordal hexagon.

AQ/ Al =

A3=Bg N

Ay

A5=B5

Figure 3.
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In the following theorem we shall use the symbol S} introduced in [7] with the fol-

lowing meaning: If #1,... , ¢, are given lengths, then S7' is the sum of all ( ZL ) pro-
ducts of the form ¢;, ...t;; where iy, ... ,i; are different indices of the set {1,... ,n},
that is

SP= Yty

1<ip < <ij<n

Also we shall use Theorem 2 proved in [7]:
Let n > 3 be any given odd number. Then

ST = SErt T 4 ST — e+ (<1)°8) = 0,

S{H—lrnfl _ S§L+1rn73 + Sgl—i—l,,,nfS — ¥ (_1)85;l+1 —0.

where s=(14+34+5+---4+n)+ 1.
Theorem 4. Letn > 4 be an even number. If A is a k-tangential polygon whose
tangents have the lengths t1,... ,t,, and if B is the (% — k) -tangential polygon

1
whose tangents have the lengths rtRERR then rp = 1, where r is the radius of

the circle inscribed into A and p is the mc%us of the circle inscribed into B.
Proof. Let R} be obtained from S} putting tl instead of ¢; and let s = [1 4
3+5+ -+ (n—1)]+1. Then

R = Ry 4 ()R, =0, (31)
and if the equation
SPrt T =Syt 4 4 (<1)°S)_, =0, (32)
is divided by t; ...t,, we obtain
Rp " 2 — Ry 5"t 4 - (<1)°R} = 0. (33)
For example, if n = 4, we have the equation
(t1 +ta+ts + t4)7"2 — (t1tats + totsty + tatatys + tatita) =0,

from which, dividing by t1tatsts, we get
1\ 2
Ryr> — R =0 or R} (;> ~R3=0,

where

.1 N 1 N 1 N 1
37 ttots | tolsts  tstaly  talits’
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From (31) and (33) it is clear that for each r there is p such that rp = 1. Thus we
have to prove that

TkPR—k = 1, (34)
where ri is the radius of the k-tangential n-gon whose tangents have the lengths
t1,... ,tn and pn_y is the radius of the (% — k)-tangential n-gon whose tangents

1 1
have the lengths rolRERE t_
31
The proof is as follows. Let £1,...,08, and 71, ... , 7, be corresponding angles, that

is,

B+ o= (n—20)F,
= (58]

1 .
t; = ryctgl;, - =pz_pctgy, 1=1,...,n.

(2

From 1 = (rgetgBi)( __kctg’yl) we see that rppn_j = 1iff 3, = § — ;. Hence we
have

n

B (R

And Theorem 4 is proved. O
Here are some examples. If n = 4, then r1p; = 1. If n = 6, then r1py = r9p; = 1.

If n =8, then r1p3 = rops = r3p; = 1.

Especially, if t; = ... =1, =1, then

Tkpz—k =1,

since tg(n — 2k) X =tg (% — £2) = ctgkx
So, if n = 6 and k = 1, the situation is shown in Figure 4, where r; = /3, pa = %
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Figure4.
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