Wiener Index of Zig-zag Polyhex Nanotubes*

Peter E. Johna,** and Mircea V. Diudea ${ }^{\text {b }}$
${ }^{a}$ Technical University Ilmenau, Institute of Mathematics, PSF 100565, D-98684 Ilmenau, Germany
${ }^{\mathrm{b}}$ Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 3400 Cluj, Romania

RECEIVED FEBRUARY 14, 2003; REVISED MAY 5, 2003; ACCEPTED JULY 1, 2003

Key words
Wiener index
single walled carbon nanotubes (SWNT) zig-zag polyhex nanotubes

Abstract

A method for deriving formulas for evaluating the sum of all distances, known as the Wiener index, of the »zig-zag« nanotubes is given. A similar method was applied to the general »square« connected layers.

INTRODUCTION

Carbon nanotubes were discovered in 1991 by Iijima ${ }^{1}$ as multi walled structures and in 1993 as single walled carbon nanotubes (briefly denoted SWNT) independently by Iijima's group ${ }^{2}$ and Bethune's group ${ }^{3}$ from IBM. SWNTs can be seen as a rolled-up graphite sheet in the cylindrical form.

Carbon nanotubes show remarkable mechanical properties. Experimental studies have shown that they belong to the stiffest and elastic known materials. ${ }^{4-6}$ These mechanical characteristics clearly predestinate nanotubes for advanced composites.

Thermal conductivity along their axis could exceed that of the type II-a diamond, which has the highest thermal conductivity of any material measured. ${ }^{7,8}$

SWNTs can exhibit either metallic or semiconductor behavior depending only on the diameter and helicity. ${ }^{9}$ These properties suggest that nanotubes could lead to a new generation of nanoscopic electronic devices. Experiments are under way in several industrial laboratories.

Let $\mathrm{G}=(V, E)$ be a connected graph with the vertex set $V=V(\mathrm{G})$. For vertices $i, j \in V(\mathrm{G})$, we denote by $d(i, j)$ the topological distance (i.e., the number of edges on the shortest path) joining the two vertices of G. The Wiener index ${ }^{10} W$ of graph G is the half sum of distances over all its vertex pairs (i, j) :

$$
\begin{equation*}
W=W(\mathrm{G})=(1 / 2) \cdot \sum_{(i, j)} d(i, j) \tag{1}
\end{equation*}
$$

This paper focuses on $(n, 0)$ zig-zag polyhex SWNTs, proposing a mathematical method for calculating W in the corresponding graphs. Abundant literature appeared on this topic in chemical graph theory (see for example Refs. 11-15). Since the polyhex nanotubes were modeled by one of us (M. V. D.) starting from a cylinder tessellated by squares, the actual method for calculating W was extended for that case.

In the following, our notations ${ }^{16-18}$ for tubes will be: $\mathrm{T}=\mathrm{T}(p, q)=\mathrm{TUHC}_{6}[2 p, q]$ and $\mathrm{T}^{\prime}=\mathrm{T}^{\prime}(p, q)=\mathrm{TUC}_{4}[p$, q] for polyhex and square tubes, respectively (Figure 1).

[^0]
TUHC $_{6}[20, q]$ »zig-zag $<$

$\mathrm{TUC}_{4}[4, q]$

Figure 1. A polyhex (left) and a square (right) lattice covering a cylinder.

Note that graphs T and T^{\prime} are bipartite (the vertices can be colored white and black so that adjacent vertices have different colors).

The method for calculating the Wiener index $W=$ $W(\mathrm{~T}(p, q))$ is described in the following section. Calculation of $W^{\prime}=W\left(\mathrm{~T}^{\prime}(p, q)\right)$ is a special case of a more general problem, which is the topic of the third section hereof.

METHOD

Evaluating topological distance in a hexagonal zig-zag lattice can be split with respect to the white and black vertices, as illustrated in Figure 2 ($p=2$ gives the number of horizontal hexagons and $q=4$ denotes the number of horizontal »zig-zag«lines).

Figure 2. White and black points in a »zig-zag« polyhex net.

The sum of »white« distances, on level k, for $k=0$, $1, \ldots, q-1$, (distances of one white vertex of level 0 to all vertices of level k) is given as:

$$
\begin{align*}
& w_{k}=\sum_{r=1}^{2 p} d\left(x_{02}, x_{k r}\right)=\sum_{r=1}^{2 p} d\left(x_{04}, x_{k r}\right)= \\
& \left\{\begin{array}{rll}
(p+k)^{2}+k, & \text { if } & 0 \leq k<p \\
p(4 k+1), & \text { if } & p \leq k
\end{array}\right. \tag{2}
\end{align*}
$$

and similarly, for »black« distances (distances of one black vertex of level 0 to all vertices of level k) is given as:

$$
\begin{align*}
& b_{k}=\sum_{r=1}^{2 p} d\left(x_{01}, x_{k r}\right)=\sum_{r=1}^{2 p} d\left(x_{03}, x_{k r}\right)= \\
& \left\{\begin{array}{rll}
(p+k)^{2}-k, & \text { if } & 0 \leq k<p \\
p(4 k-1), & \text { if } & p \leq k
\end{array}\right. \tag{3}
\end{align*}
$$

The sum of all white and black distances will be:

$$
s_{k}=w_{k}+b_{k}=\left\{\begin{array}{rll}
2(p+k)^{2}, & \text { if } & 0 \leq k<p \tag{4}\\
8 p k, & \text { if } & p \leq k
\end{array}\right.
$$

The sum of distances at level l is:

$$
\begin{equation*}
S(l)=\sum_{k=0}^{l} s_{k} ; \quad 0 \leq l \leq q-1 \tag{5}
\end{equation*}
$$

If the reference vertex is on a level l, other than zero, the tube can be built up from two »halves«collapsing at level l. Thus, the distance sum can be written as for $0 \leq l \leq q-1$:

$$
\begin{equation*}
\varphi(l)=S(l)+S(q-1-l)-S(0) ; \quad 0 \leq l \leq q-1 \tag{6}
\end{equation*}
$$

The sum for all l levels is now:

$$
\begin{align*}
\sum_{l=0}^{q-1} \varphi(l)= & \varphi(0)+\varphi(1)+\ldots+\varphi(q-1)= \\
= & S(0)+S(q-1)-S(0)+ \\
& S(1)+S(q-2)-S(0)+\ldots \\
& S(q-2)+S(1)-S(0)+ \\
& S(q-1)+S(0)-S(0) \\
= & 2 \cdot \sum_{l=0}^{q-1} S(l)-q \cdot S(0) \tag{7}
\end{align*}
$$

from which the Wiener index is easily calculated by:

$$
\begin{equation*}
W(p, q)=\frac{p}{2} \cdot \sum_{l=0}^{q-1} \varphi(l) \tag{8}
\end{equation*}
$$

In the case of short tubes, $0<q \leq p$, the expansion of (8) leads to:

$$
\begin{equation*}
W(p, q)=\frac{p q}{6} \cdot\left[6 p^{2} q+(4 p+q)\left(q^{2}-1\right)\right] \tag{9}
\end{equation*}
$$

while in the case of long tubes, $p \leq q$, the Wiener index is evaluated by:

$$
\begin{equation*}
W(p, q)=\frac{p^{2}}{6} \cdot\left[p^{2}(4 q-p)+q\left(8 q^{2}-6\right)+p\right] \tag{10}
\end{equation*}
$$

For $p=r t, q=s t(t=1,2, \ldots)$, in short tubes with $r \geq$ $s>0$, (9) becomes:

$$
\begin{equation*}
W(r t, s t)=\frac{r s t^{5}}{6} \cdot\left[6 r^{2} s+4 r s^{2}+s^{3}-\frac{4 r+s}{t^{2}}\right] \tag{11}
\end{equation*}
$$

while in the case of long tubes, with $0<r \leq s,(10)$ reads:

$$
\begin{equation*}
W(r t, s t)=\frac{r^{2} t^{5}}{6} \cdot\left[8 s^{3}+4 r^{2} s-r^{3}-\frac{6 s-r}{t^{2}}\right] \tag{12}
\end{equation*}
$$

(iii) $(p=r q$ (in Eq 9$)$; $s=1$:

$$
\begin{equation*}
W(r q, q)=\frac{r q^{2}}{6} \cdot\left[6 r^{2} q^{3}+(4 r q+q)\left(q^{2}-1\right)\right] \tag{15}
\end{equation*}
$$

and its limit:

$$
\begin{equation*}
\lim _{q \rightarrow \infty}\left[W(r q, q) / q^{5}\right]=r\left(6 r^{2}+4 r+1\right) \tag{14'}
\end{equation*}
$$

(iv) $q=s p$ (in Eq. 13); $r=1$:

$$
\begin{gather*}
W(p, s p)=\frac{p^{2}}{6} \cdot\left[p^{2}(4 s p-p)+s p\left(8 s^{2} p^{2}-6\right)+p\right]= \\
\frac{p^{5}}{6} \cdot\left(4 s-1+8 s^{3}-\frac{6 s-1}{p^{2}}\right) \tag{16}
\end{gather*}
$$

and its limit:

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left[W(p, s p) / p^{5}\right]=\frac{1}{6} \cdot\left(8 s^{3}+4 s-1\right) \tag{16'}
\end{equation*}
$$

An example of calculations is given in Figure 3.

Tables I and II list some values for the Wiener index of $\mathrm{T}=\mathrm{T}(p, q)$.

TABLE I. Wiener index of short tubes, $q \leq p$

p	q	W	p	q	W
9	9	107,649	10	10	182,500
9	8	79,920	10	8	104,320
9	7	57,393	10	6	52,100
9	6	39,474	10	5	34,000
9	5	25,605	10	4	20,400
9	4	15,264	10	3	10,720
9	2	3,258	10	2	4,420

TABLE II. Wiener index of long tubes, $q \geq p$

p	q	W	p	q	W
3	3	423	4	4	1,824
3	8	6,468	4	8	12,000
3	16	49,836	4	16	89,696
5	5	5,625	6	6	14,076
5	10	36,750	6	12	91,620
5	15	117,875	6	18	293,580
5	20	274,000	6	24	682,164
7	7	30,527	8	8	59,648
7	14	198,254	8	16	386,816
7	21	634,893	8	24	$1,238,272$
7	28	$1,474,900$	8	32	$2,876,160$

G^{0}
G^{1}

Figure 4. Graph $\widetilde{\mathrm{G}}$: layers connected by »squares«, graph $\mathrm{G}\left(1^{0}\right.$, $2^{0}, 3^{0}, 4^{0}$) is depicted in full line.

Wiener Index in Square Connected Layers

Let G be a graph and G^{j} its copies, at level $j=0,1, \ldots \mathrm{q}-1$ (Figure 4).

Graph G has the vertex set $V=V(\mathrm{G})=\{1,2, \ldots, n\}$ and $W=W(\mathrm{G})$ denotes its Wiener index.

Let $\widetilde{\mathrm{G}}$ be the reunion of G and its q copies, together with the edges joining the copies point by point. Correspondingly, the resulting graph is characterized by $\widetilde{W}=$ $W(\widetilde{\mathrm{G}}) ; \widetilde{\mathrm{G}}$ has the vertex set $\widetilde{V}=\left\{j^{k} ; j=1,2, \ldots, n ; k=\right.$ $0,1, \ldots, q-1\}$. It is easily seen that, for $i, j=1,2, \ldots, n$; and $k, l=0,1, \ldots, q-1\}$, the following relation holds:

$$
\begin{equation*}
d\left(i^{l}, j^{k}\right)=d\left(i^{l}, j^{l}\right)+d\left(j^{l}, j^{k}\right)=d(i, j)+|l-k| \tag{17}
\end{equation*}
$$

Let focus our attention on vertex $i=1,2, \ldots, n$ of G. Then:

$$
\begin{align*}
s_{0}^{i} & =S^{i}(0)=s_{0}^{i}=\sum_{j=1}^{n} d\left(i^{0}, j^{0}\right) \tag{18}\\
s_{k}^{i}=s_{0}^{i}+k \cdot n & =\sum_{j=1}^{n} d\left(i^{0}, j^{k}\right)
\end{align*}
$$

The distance sum at level l will be:

$$
\begin{align*}
S^{i}(l)=\sum_{k=0}^{l} s_{k}^{i}= & \sum_{k=0}^{l}\left(s_{0}^{i}+k \cdot n\right)= \\
& (l+1) \cdot s_{0}^{i}+(l(l+1) / 2) \cdot n \tag{19}
\end{align*}
$$

If the reference vertex is at a level l, other than zero, the lattice can be built up from two »halves« collapsing at level l. Thus, the distance sum can be written as:

$$
\begin{equation*}
U^{i}(l)=S^{i}(l)+S^{i}(q-1-l)-S^{i}(0) ; 0 \leq 1 \leq(q-1) \tag{20}
\end{equation*}
$$

The sum for all l levels, up to $q-1$, is now:

$$
\begin{gather*}
\sum_{l=0}^{q-1} U^{i}(l)=2 \sum_{l=0}^{q-1} S^{i}(l)-q \cdot S^{1}(0)=2 \sum_{l=0}^{q-1} S^{i}(l)-q \cdot s_{0}^{i} \tag{21}\\
\sum_{l=0}^{q-1} S^{i}(l)=\sum_{l=0}^{q-1}\left[(l+1) S_{0}^{i}+(l(l+1) / 2) \cdot n\right]= \\
\frac{q(q+1)}{6} \cdot\left[3 \cdot s_{0}^{i}+n \cdot(q-1)\right] \tag{22}
\end{gather*}
$$

The Wiener index contribution at »vertex $i \ll$ is:

$$
\begin{array}{r}
W^{i}=\sum_{l=0}^{q-1} U^{i}(l)=\frac{q(q+1)}{6} \cdot\left[3 \cdot s_{0}^{i}+n \cdot(q-1)\right]- \\
q \cdot s_{0}^{i}=q^{2} \cdot s_{0}^{i}+2 n\binom{q+1}{3} \tag{23}
\end{array}
$$

and the global Wiener index:

$$
\widetilde{W}=\frac{1}{2} \sum_{i=1}^{n} W^{i}=\frac{1}{2} \sum_{i=1}^{n}\left\{q^{2} s_{0}^{i}+2 n\binom{q+1}{3}\right\}=
$$

$$
\begin{equation*}
\frac{1}{2}\left\{q^{2} \cdot \sum_{i=1}^{n} s_{0}^{i}+2 n^{2}\binom{q+1}{3}\right\} \tag{24}
\end{equation*}
$$

With $\sum_{i=1}^{n} s_{0}^{i}=2 W(G)$, relation (24) becomes:

$$
\begin{equation*}
\widetilde{W}=q^{2} \cdot W(G)+n^{2}\binom{q+1}{3} \tag{25}
\end{equation*}
$$

There are some particular cases of interest:
(v) $\mathrm{G}=\mathrm{P}_{n}: \quad W(\mathrm{G})=\binom{n+1}{3}$
and for

$$
\widetilde{\mathrm{G}}=\mathrm{P}_{n} \oplus \mathrm{P}_{m} \text { is }
$$

$\widetilde{W}=W(\widetilde{\mathrm{G}})=m^{2} \cdot W\left(\mathrm{P}_{n}\right)+n^{2} \cdot W\left(P_{\mathrm{m}}\right)=$

$$
\begin{equation*}
m^{2}\binom{n+1}{3}+n^{2}\binom{m+1}{3} \tag{27}
\end{equation*}
$$

If $\mathrm{G}_{1}=\mathrm{P}_{n}$ and $k \geq 2$, then $\mathrm{G}_{k}=\mathrm{P}_{n} \oplus \mathrm{G}_{(\mathrm{k}-1)}$, and if q $=n$, then (24) transforms into a recurrence relation $W_{k}=W\left(\mathrm{G}_{k}\right)$.
Let $n_{k}=n\left(\mathrm{G}_{k}\right)$ denote the number of vertices of G_{k}.
Clearly, $n_{k}=n^{k}$, and

$$
\begin{equation*}
W_{k}=n^{2} \cdot W_{(k-1)}+\left(n_{k}\right)^{2} \cdot\binom{n+1}{3} \tag{28}
\end{equation*}
$$

For $n=2$ and G_{k}, the k-dimensional hypercube will be:

$$
\begin{equation*}
W_{k}=k \cdot 4^{(k-1)} \tag{29}
\end{equation*}
$$

for which the following limit holds:

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[W_{k} /\left(k \cdot\left(n_{k}\right)^{(2+1 / k)}\right)\right]=1 / 8 \tag{29'}
\end{equation*}
$$

Another interesting limit is:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[W_{k} /\left(n_{k}\right)^{(2+1 / k)}\right]=k / 6 \tag{29"}
\end{equation*}
$$

(see also Ref. 15.)
(vi) $\mathrm{G}=\mathrm{C}_{n}$:
$\mathrm{W}(\mathrm{G})=\left(n^{3} / 8\right)$ for n even and $W(\mathrm{G})=\left(\left(n^{3}-n\right) / 8\right)$ for n odd.
In the case $q=n$, the global formula is:

$$
\begin{equation*}
\widetilde{W} \sim\left(\frac{1}{8}+\frac{1}{6}\right) \cdot n^{5}=\frac{7}{24} \cdot n^{5} \tag{30}
\end{equation*}
$$

(vii) Example:

$n=n(\mathrm{G})=4$

$$
W(\mathrm{G})=\frac{1}{2}(4+3+5+4)=8
$$

$$
q=3
$$

$$
\widetilde{\mathrm{G}}=\mathrm{G} \oplus \mathrm{P}_{3}
$$

$$
\begin{aligned}
\widetilde{W}=W(\widetilde{\mathrm{G}})=9 \cdot W(\mathrm{G})+16 \cdot\binom{4}{3}= \\
9 \cdot 8+16 \cdot 4=17 \cdot 8=136
\end{aligned}
$$

Table III includes the Wiener index values in square tubes $\mathrm{T}^{\prime}=\mathrm{T}^{\prime}(p, q)=\mathrm{TUC}_{4}[p, q]$

TABLE III. Wiener index in tubes $T^{\prime}=\operatorname{TUC}_{4}[p, q]$

p	q	W	p	q	W
4	4	288	5	5	875
4	5	520	5	6	1415
4	6	848	5	7	2135
4	7	1288	5	8	3060
4	8	1856	5	9	4215
4	9	2568	5	10	5625

REFERENCES

1. S. Iijima, Nature 354 (1991) 56-58.
2. S. Iijima and T. Ichlhashi, Nature 363 (1993) 603-605.
3. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363 (1993) 605-607.
4. M. Endo, S. Iijima, and M. S. Dresselhaus (Eds.), Carbon Nanotubes, Pergamon, 1996.
5. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277 (1997) 1971-1975.
6. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511-2514.
7. R. S. Ruoff and D. C. Lorents, in: M. Endo, S. Iijima, and M. S. Dresselhaus (Eds.), Carbon Nanotubes, Pergamon, 1996, 143-148.
8. D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, $73^{\text {rd }}$ ed., CRC Press, Boca Raton, 1993, pp. 4-146.
9. T. W. Odom, J.-L. Huang, Ph. Kim, and Ch. M. Lieber, J. Phys. Chem. B 104 (2000) 2794-2809.
10. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17-20.
11. M. V. Diudea and I. Gutman, Croat. Chem. Acta 71 (1998) 21-51.
12. M. V. Diudea, MATCH - Commun. Math. Comput. Chem. 45 (2002) 109-122.
13. P. E. John, MATCH - Commun. Math. Comput. Chem. 31 (1994) 123-132.
14. P. E. John, Preprint M 4/95, Technical University Ilmenau.
15. P. E. John, MATCH - Commun. Math. Comput. Chem. 32 (1995) 207-219.
16. M. V. Diudea and A. Graovac, MATCH - Commun. Math. Comput. Chem. 44 (2001) 93-102.
17. M. V. Diudea, I. Silaghi-Dumitrescu, and B. Parv, MATCH - Commun. Math. Comput. Chem. 44 (2001) 117-133.
18. M. V. Diudea and P. E. John, MATCH - Commun. Math. Comput. Chem. 44 (2001) 103-116.

SAŽETAK

Wienerov indeks za »zig-zag« poliheksagonalne nanocijevi

Peter E. John i Mircea V. Diudea

Dana je metoda za izvađanje formula za izračunavanje Wienerova indeksa za »zig-zag« poliheksagonalne nanocijevi. Slična je metoda primijenjena na poopćene kvadratično povezane slojeve.

[^0]: * Dedicated to Professor Nenad Trinajstić on the occasion of his $65^{\text {th }}$ birthday for his outstanding activity in the field of Chemical Graph Theory.
 ** Author to whom correspondence should be addressed. (E-mail: peter.john@mathematik.TU-Ilmenau.de)

