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The icosahedral quasicrystals of five-fold symmetry in two, three, and four dimensions are re-
lated to the corresponding regular polytopes exhibiting five-fold symmetry, namely the regular
pentagon (H2 reflection group), the regular icosahedron �3,5� (H3 reflection group), and the
regular four-dimensional polytope �3,3,5� (H4 reflection group). These quasicrystals exhibit-
ing five-fold symmetry can be generated by projections from indecomposable root lattices with
twice the number of dimensions, namely A4�H2, D6�H3, E8�H4. Because of the subgroup
relationships H2 � H3 � H4, study of the projection E8�H4 provides information on all of the
possible icosahedral quasicrystals. Similar projections from other indecomposable root lattices
can generate quasicrystals of other symmetries. Four-dimensional root lattices are sufficient for
projections to two-dimensional quasicrystals of eight-fold and twelve-fold symmetries. How-
ever, root lattices of at least six-dimensions (e.g., the A6 lattice) are required to generate two-
dimensional quasicrystals of seven-fold symmetry. This might account for the absence of
seven-fold symmetry in experimentally observed quasicrystals.
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INTRODUCTION

The symmetries that cannot be exhibited by true crystal
lattices include five-fold, eight-fold, and twelve-fold sym-
metry. For this reason crystallographers were startled by
the discovery by Shechtman and coworkers1 that rapidly
solidified aluminum-manganese alloys of approximate
composition Al6Mn gave electron diffraction patterns
having apparently sharp spots and five-fold symmetry
axes. Subsequent work2 led to the discovery of a number
of related alloys, particularly aluminum-rich alloys, ex-
hibiting five-fold and other crystallographically forbid-
den symmetries. These materials are now called quasi-
crystals.3,4,5,6 Such quasicrystals are seen to represent a
new type of incommensurate crystal structure whose Fourier
transform consists of a � function as for periodic crystals

but with point symmetries incompatible with traditional
crystallography. More specifically, ordered solid state
quasicrystalline structures with five-fold symmetry ex-
hibit quasiperiodicity in two dimensions and periodicity
in the third.

Quasicrystals are seen to exhibit lower order than true
crystals but a higher order than truly amorphous materials.
The order in icosahedral quasicrystals, i.e., quasicrystals
exhibiting five-fold symmetry, can formally be described
in six-dimensional hyperspace in which the atoms are
three-dimensional subspaces. The actual icosahedral quasi-
crystal structures are then three-dimensional projections
of this six-dimensional hyperspace.7,8,9

The use of such projection models to describe quasi-
crystal structures requires an understanding of higher di-
mensional crystal lattices from which such projections to
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two or three dimensions can be made. The simplest such
higher dimensional lattices are the primitive hypercubic
lattices Z n, which are generated from all integral linear
combinations of unit vectors along n orthogonal Carte-
sian axes. However, in many cases more complicated higher
dimensional lattices are required, such as various types
of centered hypercubic lattices. These higher dimensional
lattices correspond to the root lattices, which are gener-
ated from all integral linear combinations of the vectors
(roots) of so-called root systems.10,11 These root systems
form a certain class of vector stars with specific allowed
symmetries, lengths, and angles.10,11,12 Such root sys-
tems arise in different contexts such as crystallographic
finite reflection groups10,12 or finite-dimensional semi-
simple Lie algebras.11 The connection between root lat-
tices and quasicrystals was first presented in a short let-
ter by Baake, Joseph, Kramer, and Schlottmann13 with
particular attention to two-dimensional quasilattices hav-
ing rotational symmetries of orders 5, 8, 10, and 12.

This paper extends this connection between root lat-
tices and quasicrystals to the important three-dimensional
case of icosahedral quasicrystals with a more detailed
survey of the key areas of mathematics involved in this
connection. In addition the existence of root lattices is
related to the existence of regular polytopes in higher di-
mensional spaces, which is also examined in this paper.

REGULAR POLYTOPES FROM REGULAR
TESSELLATIONS

The term polytope generalizes the two-dimensional con-
cept of polygon and the three-dimensional concept of
polyhedron to any number of dimensions.14 Thus an

n-dimensional polytope is a connected set (»complex«)
of facets of each dimension less than n where the 0-di-
mensional facets are called vertices, the 1-dimensional
facets are called edges, the 2-dimensional facets are
called faces, the 3-dimensional facets are called cells,
etc. Such a polytope is a regular polytope when the com-
ponent facets of each dimension are identical regular
polytopes and all facets of each dimension are equiva-
lent (i.e., transitive as discussed below). In two-dimen-
sions the regular polytopes are the infinite number of
regular polygons whereas in three dimensions the regu-
lar polytopes are the five regular »Platonic« polyhedra
(Figure 1 and Table I).

The concept of a tessellation is useful for generating
regular polytopes of low dimension as well as related lat-
tices. In this connection, embedding a network of poly-
gons into a surface can be described as a tiling or tessella-
tion of the surface.15 In a formal sense a tiling or tessella-
tion of a surface is a countable family of closed sets T =
�T1,T2…� which cover the surface without gaps or over-
laps. More explicitly, the union of the sets T1,T2… (which
are known as the tiles of T) is the whole surface and the
interiors of the sets Ti are pairwise disjoint. In the tessella-
tions of interest in this paper, the tiles are the polygons,
which, in the case of tessellations corresponding to poly-
hedra, are the faces of the polyhedra. Tessellations can be
described in terms of their flags, where a flag is a triple
(V, E, F) consisting of a vertex V, and edge E, and a face
F which are mutually incident. A tiling T is called regular
if its symmetry group G(T) is transitive on the flags of T.
A regular tessellation consisting of q regular p-gons at
each vertex can be described by the so-called Schäfli no-
tation �p,q�. The Schäfli notation can be generalized to
higher dimensions in the obvious way.

First consider regular tessellations in the Euclidean
plane, i.e., a flat surface of zero curvature. In the Euclidean
plane, the angle of a regular p-gon, �p�, is (1 – 2/p)ð;

hence q equal �p}'s (of any size) will fit together around

a common vertex if this angle is equal to 2ð/q, leading to
the relationship

(p – 2)(q – 2) = 4 (1)
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TABLE I. Properties of the regular (Platonic) polyhedra

Polyhedron Face
type

Vertex
degrees

Number
of edges

Number
of faces

Number
of vertices

Tetrahedron
�3,3�

Triangle 3 6 4 4

Octahedron
�3,4�

Triangle 4 12 8 6

Cube �4,3� Square 3 12 6 8

Icosahedron
�3,5�

Triangle 5 30 20 12

Dodecahedron
�5,3�

Pentagon 3 30 12 20

Figure 1. The five regular »Platonic« polyhedra showing their Schäfli
symbols and the dual pairs. Note that the tetrahedron is self-dual.



There are only three integral solutions of equation
(1), which lead to the three regular tessellations of the
plane �4,4�, �6,3�, and �3,6� depicted in Figure 2. The
tessellation �6,3� is familiar in chemistry as the struc-
ture of graphite whereas the tessellation �4,4� corre-
sponds to the checkerboard.

Now consider the regular tessellations of the sphere
that correspond to the regular polyhedra (Figure 1). The
angle of a regular spherical polygon �p� is greater than
(1 – 2/p)ð and gradually increases from this value to ð

when the circumradius increases from 0 to ð/2. Thus if

(p – 2)(q – 2) < 4 (2)

the size of �p} can be adjusted so that its angle is exactly

2ð/q; then q such �p�'s will fit together around a com-
mon vertex leading to the regular spherical tessellations
�2,q�, �p,2�, �3,3�, �3,4�, �4,3�, �3,5�, and �5,3�. The
tessellation �2,q�, formed by q lunes (i.e., spherical
polygons with two vertices and two edges) joining two
antipodal points, is called the q-gonal hosohedron.16 The
tessellation �p,2�, formed by two p-gons, each covering
a hemisphere, is called the p-gonal dihedron, since it has
two faces. The remaining five regular spherical tessella-
tions correspond to the five regular polyhedra (Figure 1
and Table I).

The concept of duality is important in the study of
polyhedra as well as higher dimensional polytopes. In
three dimensions a given polyhedron P can be converted
into its dual P* by locating the vertices of P* above the
centers of the faces of P and the centers of the faces of
P* above the vertices of P. Two vertices in the dual P*
are connected by an edge when the corresponding faces
in P share an edge. The process of dualization has the
following properties:

(i) The numbers of vertices (v and v*), edges (e and
e*), and faces (f and f*) in a pair of dual polyhedra P and
P* satisfy the relationships v* = f, e = e*, f = v*.

(ii) Dual polyhedra have the same symmetry elements
and thus belong to the same symmetry point group.

(iii) Dualization of the dual of a polyhedron leads to
the original polyhedron.

(iv) The degrees of the vertices of the polyhedron cor-
respond to the number of edges in the corresponding face
polygons of its dual. Thus the duals of the deltahedra are
trivalent polyhedra, i.e., polyhedra in which all vertices are
of degree 3.

(v) The dual of a regular polyhedron �p,q� in the
Schäfli notation is �q,p�.

The dual pairs for the Platonic polyhedra consist of the
cube/octahedron and dodecahedron/icosahedron (Figure 1).
The tetrahedron is self-dual, i.e., the dual of a tetrahedron
is another tetrahedron. Also the concept of duality can be
extended from standard polyhedra embedded in the surface
of a sphere to polygonal networks embedded in surfaces of
non-zero genus. In this connection the author has studied
the Dyck and Klein tessellations of genus 3 surfaces with
octagons and heptagons, respectively.17,18,19,20,21 Such Pla-
tonic tessellations and their duals are of interest in connec-
tion with possible structures of zeolite-like carbon and bo-
ron nitride allotropes with negative curvature.

Now consider regular polytopes of higher dimension
(n � 3). In any dimension there are always the following
three regular polytopes:

(i) The simplex �n with a Schäfli symbol of the type
�3,…,3� analogous to the tetrahedron in three dimensions;

(ii) The cross polytope �n with a Schäfli symbol of
the type �3,…,4� analogous to the octahedron in three
dimensions;

(iii) The hypercube or measure polytope �n with a
Schäfli symbol of the type �4,…,3� analogous to the
cube in three dimensions.22

The cross polytope �n and the corresponding hyper-
cube �n for any given value of n are mutually dual simi-
lar to the cube and octahedron in three dimensions.

In five or more dimensions the three polytopes �n,
�n, and �n are the only possible regular polytopes.22,23

However, in four dimensions there are the following six
regular polytopes (Figure 3):

(i) The simplex �4 or �3,3,3� with 5 vertices, 10
edges, 10 triangular faces, and 5 tetrahedral cells with
an automorphism group (i.e., a four-dimensional sym-
metry point group) of order 5! = 120. Each vertex is of
degree 4. This polytope is derived from embedding the
complete graph K5 into four-dimensional space and is
self-dual.

(ii) The cross polytope �4 or �3,3,4� with 8 vertices,
24 edges, 32 triangular faces, and 16 tetrahedral cells.
The 8 vertices of �3,3,4� are located along the four Car-
tesian axes with coordinates of the type (	xi,0,0,0) where
0 < i 
 4. The 24 edges of �3,3,4� connect each vertex
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Figure 2. The three regular tessellations of the plane, namely the
self-dual �4,4� checkerboard tessellation and the �6,3���3,6�

dual pair.



with every other vertex except for its antipode on the
same axis so that each vertex is of degree 6.

(iii) The hypercube or tesseract �4 or �4,3,3� with 16
vertices, 32 edges, 24 square faces, and 8 cubic cells. Each
vertex is of degree 4.

(iv) The self-dual �3,4,3� polytope with 24 vertices,
96 edges, 96 triangular faces, and 24 octahedral cells
with an automorphism group of order 3·24·4! = 1152.
Each vertex is of degree 8. This polytope is obtained by
truncating the vertices of the �3,3,4� cross polytope �4

so that both the vertex figures and truncated cells coinci-
dentally become congruent regular octahedra. There are
no regular polytopes analogues to the �3,4,3� polytope
in either three dimensions or more than four dimensions.

(v) The �3,3,5� polytope with 120 vertices, 720 edges,
1200 triangular faces, and 600 tetrahedral cells. Each ver-
tex is of degree 12. This polytope may be regarded as the
four-dimensional analogue of the three-dimensional icosa-
hedron (Figure 1).

(vi) The �5,3,3� polytope with 600 vertices, 1200
edges, 720 pentagonal faces, and 120 dodecahedral cells.
Each vertex is of degree 4. This polytope may be regarded
as the four-dimensional analogue of the three-dimensional
regular dodecahedron.

The cross polytope �3,3,4� and the hypercube �4,3,3�

form a dual pair having an automorphism group of order
24·4 = 384. Similarly the �3,3,5� and �5,3,3� polytopes
form a dual pair with an automorphism group of order
1202 = 14400.

Of particular interest in connection with the theory
of icosahedral quasicrystals to be discussed in this paper
is the fact that the regular icosahedron has a four-dimen-
sional analogue, namely the �3,3,5� polytope, but no
regular polytope analogues beyond four dimensions.

ROOT LATTICES FROM REFLECTION GROUPS

In order to provide a clearer geometric picture, this pa-
per derives root lattices from reflection groups10 rather
than from Lie groups.11 In this connection consider a ka-
leidoscope whose three mirrors (or walls) cut the sphere
in a spherical triangle having angles ð/2, ð/3, and ð/5

(Figure 4a). The reflections in these walls generate a

group of order 120 called the H3 reflection group. The
whole surface of the sphere is divided into 120 triangles,
one for each group element. In this specific example the
H3 reflection group is isomorphic to the icosahedral
point group Ih.

The group H3 is an example of a finite or spherical
reflection group. Such groups are called irreducible if
they cannot be generated by direct products of smaller
irreducible groups. In general, such irreducible reflec-

tion groups are generated by reflections in the walls of a

spherical simplex, all of whose dihedral angles are sub-

multiples of ð. The infinite cone bounded by the reflect-

ing walls or hyperplanes (i.e., the kaleidoscope) is a fun-
damental region of the reflection group. If Ri is the re-
flection in the ith wall of the fundamental region, a set
of generating relations for the corresponding reflection
group can be generated by the following set of defining
relations:

Ri
2 = (Ri Rj)

pij = 1 (i, j = 1,…,n) (1)
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Figure 3. Projections of the six regular four-dimensional polytopes
and their Schäfli symbols. For clarity only the »front« portions of
the large �3,3,5� and �5,3,3� polytopes are shown.

Figure 4. (a) Generation of the H3 reflection group (� Ih point group);
(b) The Coxeter-Dynkin diagram for the H3 reflection group.



In Eq. (1) ð/pij is the angle between the ith and jth
walls. Coxeter has proven that every finite group with a
set of defining relations of this form is a reflection
group. Such reflection groups can be described by a
Coxeter-Dynkin diagram, which has one vertex for each
wall with two vertices being joined by a line labeled
with the exponents p in the defining relations (Eq. 1).
Certain abbreviations are customarily used for lines la-
belled with small values of p, as shown in Figure 5a.
The Coxeter-Dynkin diagram for the reflection group H3

is given in Figure 4b.

Finite reflection groups can be classified into crys-
tallographic and non-crystallographic reflection groups.
In the crystallographic reflection groups, the values of p

can only have the values 2, 3, 4, and 6, since only such
reflection groups are associated with crystal lattices. The
Coxeter-Dynkin diagrams for the only finite indecompos-
able non-crystallographic reflection groups are given in
Figure 5b. The groups with two vertices in their Coxeter-
Dynkin diagrams correspond to the symmetries of the
regular polygons �p� as two-dimensional point groups.
The group H3 as noted above (Figure 4) corresponds to
the symmetry point group Ih of the regular icosahedron
�3,5� or its dual, namely the regular dodecahedron �5,3�

(Figure 1). Similarly the group H4 corresponds to the four-
dimensional symmetry point group of the regular four-
dimensional polytope �3,3,5� or its dual �5,3,3� (Figure 3).

The crystallographic reflection groups each corre-
spond to a so-called root lattice. In this connection each
reflecting hyperplane is specified by a vector perpendic-
ular to it, which is called a root vector or simply a root.
The root vectors perpendicular to the walls of the funda-
mental region are called the fundamental roots for the
group whereas the entire set of root vectors is called a
root system. The entire root system arises from all im-
ages of the fundamental roots under the actions of the
group. The root system generates a lattice called the root
lattice and the fundamental roots form an integral basis
for the root lattice.

The above procedure defines a lattice  from the
root system. Conversely, given a lattice , a root (vec-
tor) for  can be defined as a vector r �  for which the
associated reflection

x � x – 2
x r

r r

�

�
r (2)

is a symmetry of . If  is integral and unimodular, the
roots correspond to the vectors of norm 1 or 2 in ,
which are called the short and long roots, respectively.
The roots corresponding to the walls of any one funda-
mental region are a set of fundamental roots for the lat-
tice . If  is not a root lattice, the fundamental roots in
general are not a basis for .

Table II lists all of the indecomposable finite root
systems, which necessarily correspond to all of the inde-
composable crystallographic finite reflection groups.
The first column is the usual designation for the root
system. These designations use early letters of the alpha-
bet with subscripts corresponding to the dimension of
the corresponding lattice. The second column lists the
lattice corresponding to the root system in question. If
all of the roots are of the same length, then the lattice is
the same as that of the root system. However, if the root
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TABLE II. The indecomposable finite root systems

Root system Lattice Number of root vectors Construction

An An n(n+1) Projection of ei – ej (i, j = 1 to n–1) into n-space

Bn Z n 2n2 �	ei, 	ei	ej� where (i, j = 1 to n)

Cn Dn 2n2 �	2ei, 	ei	ej� where (i, j = 1 to n)

Dn Dn 2n(n–1) �	ei	ej� where (i, j = 1 to n)

G2 A2 12 �(1,0),(3/2, 3/2)� and six-fold rotations of these points

F4 D4 48 B4��1/2(	e1	e2	e3	e4)�

E6 E6 72 A5��	 2e7,1/2(	e1	e2	e3	e4	e5	e6)	e7/ 2� with 3+3–

E7 E7 126 A7��1/2(	e1	e2	e3	e4	e5	e6	e7	e8)� with 4+4–

E8 E8 240 D8��1/2(	e1	e2	e3	e4	e5	e6	e7	e8)� with even # +

Figure 5. (a) Abbreviations used in Coxeter-Dynkin diagrams; (b)
The Coxeter-Dynkin diagrams for the only finite indecomposable
non-crystallographic reflection groups, namely H2, H3, and H4.



system has both short and long roots of different lengths,
then the corresponding lattice is that of another root sys-
tem where all of the roots are of the same length. In this
connection the designation Z n is the primitive n-dimen-
sional (hyper)cubic lattice generated by points where all
of the coordinates are integers. Figure 6 shows the fun-
damental roots for the readily visualized two-dimen-
sional lattices A2, B2, C2, D2, and G2.

From Table II and the examples in Figure 6 the root
systems An, Dn, and En are seen to have all roots of the
same length whereas the root systems Bn, Cn, G2, and F4

have roots of two different lengths. Thus although all of
the root systems in Table II are indecomposable, the root
systems An, Dn, and En are in a sense more »fundamental«
or »basic« than the others and are sufficient to model
crystallographic and quasicrystallographic lattices.

CRYSTALLOGRAPHIC LATTICES FROM ROOT
LATTICES

The Dn root lattices generate cubic and hypercubic crys-
tallographic lattices. Thus for a Dn root lattice the root
vectors are the vectors 	ei 	ej (i, j = 1,2,…,n), where ei is
the unit vector along coordinate i. There are 2n(n–1) such
vectors. The root lattice D2 corresponds to the �4,4� pla-
nar checkerboard tessellation (Figure 2a). The fundamen-
tal roots of the D3 lattice are located at the edge midpoints

of a cube with the origin as its center (the »left« cube in-
dicated in light solid lines in Figure 7). The correspond-
ing three-dimensional lattice is the face-centered cubic
lattice with the »right« cube in bold solid lines in Figure 7
as a unit cell.

The An root lattices are generated by a projection
method which is related to the projection method used to
generate quasicrystalline lattices from higher dimensional
crystalline lattices discussed later in this paper. Thus the
root vectors for An can be constructed by taking n + 1 mu-
tually orthogonal unit vectors. These vectors are then
used to form all possible n(n+1) root vectors of the form
ei – ej (i, j = 1,2,…,n+1) in an (n+1)-dimensional space
and then projecting them onto a suitable n-dimensional
subspace. In the case of the A2 lattice (Figure 6) the fun-
damental root vectors are located at the vertices of a cube
and the projection is on a plane perpendicular to a C3 axis
of the cube (Figure 8). The resulting projection (after ig-
noring the two vertices of the cube projecting onto the or-
igin) leads to the two-dimensional hexagonal lattice �6,3�

(Figure 2) similar to the structure of graphite.

The A3 root lattice can be generated from the 16 ver-
tices of the tesseract �4,3,3� (Figure 3) by a similar pro-
jection procedure from four to three dimensions. The unit
cell of the resulting root lattice is defined by 12 points af-
ter ignoring the four points projecting to the origin. In fact
the A3 root lattice is identical to the D3 root lattice and
thus also corresponds to the face-centered cubic lattice.
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Figure 6. Diagrams of the fundamental roots for the two-dimen-
sional root lattices A2, B2, C2, D2, and G2.

Figure 7. Relationship between the fundamental roots of the D3

lattice (i.e., the edge midpoints of the cube with the edges in light
solid lines) and the face-centered cubic lattice with a unit cell indi-
cated by a cube with edges in bold solid lines.

Figure 8. Generation of the A2 root lattice (the planar �6,3� hex-
agonal lattice in Figure 2b) by a projection from the vertices of a
cube on a plane perpendicular to the C3 axis of the cube.



QUASICRYSTALLOGRAPHIC LATTICES
FROM PROJECTIONS OF CRYSTALLOGRAPHIC
ROOT LATTICES

The icosahedral quasicrystals have quasilattices derived
from the finite non-crystallographic reflection groups H2,
H3, and H4, all of which have five-fold symmetry and
form the subgroup sequence H2 � H3 � H4.24,25 The
two-dimensional reflection group H2 contains the symme-
tries of the regular pentagon and is of order 20. This
quasilattice, which corresponds to Penrose tiling,26 can be
generated by a suitable projection into two dimensions of
the four-dimensional root lattice from the crystallographic
reflection group A4, also of order n(n+1) = (4)(5) = 20 for
n = 4. Similarly, the three-dimensional group H3 contains
the 120 symmetries of the regular icosahedron as indicated
by the operations in the point group Ih. The corresponding
three-dimensional quasilattice can be generated by a suit-
able projection of the six-dimensional root lattice from
the crystallographic reflection group D6 into three dimen-
sions.7,8 Note that the D6 reflection group has 2n(n–1) =
2(6)(5) = 60 root vectors corresponding to the order of the
icosahedral pure rotation group I, which is a subgroup of
index 2 in the full icosahedral group Ih. Finally, the four-
dimensional group H4 contains the symmetries of the
four-dimensional polytope �3,3,5� or its dual �5,3,3�.
The corresponding four-dimensional quasilattice can be
generated by a suitable projection of the eight-dimensional
root lattice from the crystallographic reflection group E8

into four dimensions.27 Note that the E8 reflection group
has 240 root vectors, which is a factor of the 14,400 oper-
ations in the symmetry group of the �3,3,5� polytope.

This analysis indicates that all of the possible icosa-
hedral quasilattices, namely the quasilattices derived from
the non-crystallographic finite reflection groups H2, H3,
and H4, can be obtained by a suitable projection from a
root lattice in exactly twice the number of dimensions
(Table II). This appears to relate to the fact that the opera-
tions of period five in the icosahedral quasicrystals (i.e.,
C5) generate the irrational »golden ratio« � = (1 + 5)/2.
Thus for an icosahedral quasilattice of n dimensions, n

coordinates from the overlying 2n-dimensional lattice are
required to generate the rational points of the quasilattice
and another n coordinates are required to generate the
quasilattice points containing the irrationality �.

Two-dimensional quasilattices with periods other than
five can also be generated from projections of higher di-
mensional root lattices into two dimensions. Thus, the
four-dimensional root lattice D4 with 2n(n–1) = 24 root
vectors for n = 4 can be used to generate a quasiperiodic
pattern of either octagonal (8-fold) or dodecagonal (12-fold)
symmetry depending on the projection used.13 Dodeca-
gonal quasicrystals can also be generated by projection
from the F4 root lattice with 48 root vectors.28 In all cases
the unique rotational symmetry of the quasilattice is a fac-
tor of the number of root vectors in the higher dimensional

root lattice used for the projection model. This observation
can be used to determine the minimum number of dimen-
sions required for a crystallographic lattice to generate a
quasicrystal lattice with a given rotational symmetry.

To illustrate this point, consider the problem of us-
ing the projection method to generate a two-dimensional
quasilattice with seven-fold symmetry, a symmetry that
has not been observed experimentally in known quasi-
crystals. In this connection the lowest dimensional root
lattices containing numbers of root vectors that are mul-
tiples of seven are the six-dimensional root lattices A6

with (6)(7) = 42 root vectors and E6 with 126 root vectors.
Thus the generation of a two-dimensional quasilattice with
seven-fold symmetry requires projection from a six-di-
mensional root lattice13 in contrast to a two-dimensional
quasilattice with five-fold symmetry (H2) where projec-
tion from the four-dimensional A4 root lattice is sufficient.
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SA@ETAK

Pravilni politopi, re{etke s korijenskim vektorima i kvazikristali

R. Bruce King

Ikozaedrijski kvazikristali peterostuke simetrije u dvije, tri i ~etiri dimenzije povezani su s odgovaraju}im
pravilnim politopima koji posjeduju peterostruku simetriju: pravilni pentagon (H2 grupa refleksije), pravilni
ikozaedar �3,5� (H3 grupa refleksije) i pravilni ~etverodimenzionalni politop �3,3,5� (H4 grupa refleksije).
Kvazikristali, koji posjeduju peterostruku simetriju mogu se generirati pomo}u projiciranja iz re{etaka s korijen-
skim vektorima (root lattices) s dvostrukim brojem dimenzija: A4 � H2, D6 � H3 i E8 � H4. Zbog odnosa
grupa H2 � H3 � H4, projiciranje E8 � H4 daje podatke o svim mogu}im ikozaedrijskim kvazikristalima. Sli~no
projiciranje iz drugih re{etaka s korijenskim vektorima mo`e poslu`iti za generiranje kvazikristala razli~itih
simetrija. ^etverodimenzionalne re{etke s korijenskim vektorima dovoljne su za projiciranje na dvodimenzio-
nalne kvazikristale osmerostruke i dvanaesterostruke simetrije. Me|utim, generiranje dvodimenzionalnih kva-
zikristala sedmerostruke simetrije zahtjeva re{etke s korijenskim vektorima od najmanje {est dimenzija. To je
mo`da razlog za{to pripravljeni kvazikristali ne posjeduju sedmerostruku simetriju.
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