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We draw attention to graphical matrices as a source of numerous structural invariants that

could be used as predictor variables in QSPR and QSAR studies of molecules. In particular, we

put forward a novel graphical matrix G associated with a molecule whose off-diagonal element

�G�ij is the subgraph of the corresponding molecular graph obtained from it by deleting vertices

i and j. Several molecular descriptors have been extracted from the G matrix and its numerical

realization, the Gw matrix, based on the Wiener index. The usability of the extracted »double«

invariants as predictor variables in QSPR studies of molecules has been tested on the total

steric energies of octane isomers.
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INTRODUCTION

In this contribution we will report on the construction of

several novel molecular descriptors (topological indi-

ces). In view of the fact that there are hundreds of mo-

lecular descriptors available, why should anyone need

additional topological indices? We believe that molecu-

lar descriptors will continue to emerge for the following

reasons: (i) There is no universal molecular descriptor;

(ii) There are still a number of physicochemical proper-

ties of a variety of compounds, alkanes included, for

which there are no good regression models based on a

single or a few molecular descriptors; (iii) It is a chal-

lenge to design relatively simple descriptors to replace

the descriptors that give good regressions but are con-

ceptually (or computationally) too involved; (iv) There

is a need to find a set of structurally related descriptors

that can form a satisfactory basis for the structure-prop-

erty/activity space. A review of the current literature on

structure-property/activity studies shows that many mo-

lecular properties require ad hoc combinations of several

molecular descriptors, often combinations of descriptors

being structurally unrelated. This not only makes com-

parative QSPR (quantitative structure-property relation-

ship) and QSAR (quantitative structure-activity relation-

ship) studies difficult to formulate, but also makes the

interpretation of the corresponding regression models

very complicated. All the above-mentioned facts stimu-
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late interest in the design of novel molecular descriptors

that would improve the graph-theoretical characteriza-

tion of molecular structure and make it possible to de-

velop new and better QSPR and QSAR models. The

search for novel descriptors has been undertaken in sev-

eral directions.1 One direction of investigations is the

creation of novel matrices associated with a molecular

graph and the extraction of their invariants that could be

used as molecular descriptors. Here we take this ap-

proach and put forward a novel graphical matrix and

several novel molecular descriptors based on it.

GRAPHICAL MATRICES

The notion of graphical matrices representing molecular

structures is relatively new. A matrix associated with a

(molecular) graph whose elements are subgraphs of the

graph rather than numbers (as is the case with traditional

graph matrices) is called a graphical matrix. In the first

such matrix R, introduced by Randi}, Razinger and Plav-

{i},2 the element �R�ij was defined as the subgraph made

up of all the shortest paths joining vertices i and j. The

subgraphs that appear as matrix elements may be paths

and cyclic fragments, including the molecule as a whole.

The virtue of a graphical matrix lies in the fact that it al-

lows a multitude of numerical realizations. In order to ar-

rive at a numerical form of a graphical matrix, we need

to select a graph invariant and replace all the graphical

elements by the corresponding numerical values of the

selected invariant. Once we obtain the numerical matrix,

we have a second opportunity to freely select an invariant

of choice, this time an invariant of the numerical matrix.

Clearly, graphical matrices have considerable potential

for generating novel molecular descriptors (»double«

invariants) in view of the fact that they call twice for the

selection of an invariant to be considered in the con-

struction of molecular descriptors.

THE NOVEL GRAPHICAL MATRIX

We introduce now the novel graphical matrix G associ-

ated with a molecular graph M whose off-diagonal ele-

ment �G�ij is defined as the subgraph of M obtained from

M by deleting vertices i and j. By definition, all the diag-

onal elements are an empty subgraph. The vertex set and

the edge set of the empty (sub)graph, Ø, contain no ele-

ments.3 Since it does not matter whether we first erase

vertex i or vertex j, it has to be �G�ij = �G�ji. The con-

struction of elements of G is illustrated with the graph

representing 3-methylheptane in Figure 1. As one can

see, the matrix entries may be disconnected fragments,

including isolated vertices. It is important to note that, in

contrast to the R matrix,2 here all the subgraphs appear-

ing as matrix off-diagonal elements have the same num-

ber of vertices. We may mention that subgraphs appear-

ing in the matrix as off-diagonal entries can be used to

verify the legitimacy of the set of Ulam subgraphs.

Ulam subgraphs that appear in the famous problem of

Ulam’s reconstruction of graphs4 are obtained from a

given graph when one vertex is deleted at a time.

The transformation of G matrix into a numerical

matrix is carried out by means of a graph invariant. By

definition, all the elements in the resulting numerical

matrix that correspond to the entries in G being the

empty subgraph are equal to zero. The G matrix numeri-

cally transformed by means of the Wiener index, W,5,6 is

designated Gw. The Gw matrix associated with the mo-

lecular graph of 3-methylheptane (Figure 1) is shown in
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Figure 1. Construction of the G matrix for graph H representing the carbon skeleton of 3-methylheptane. The off-diagonal entry �G�ij is
the subgraph of H obtained from H by deleting vertices i and j. As the G matrix is symmetrical, only its upper triangle is shown.



Table I. One should notice that we calculate W of a dis-

connected (sub)graph S with components Si (i = 1,..., n),

that is:

S S�
�

i

i

n

1

� (1)

by means of the expression:

W W W i

i

n

� �
�

�( ) ( )S S
1

(2)

where W(Si) denotes the Wiener number of component

Si and the summation goes over all components of S. As

one can see from Table I, the values of W for various en-

tries of the G matrix may considerably vary in spite of

the fact that all of them have six vertices. The entries

corresponding to the terminal vertices have large values

while the entries corresponding to the inner vertices

have smaller numerical values. This situation may be

contrasted with the one in the corresponding Wiener ma-

trix, W,7, 8 where the opposite is the case. The off-diago-

nal entry �W�ij of the Wiener matrix of an acyclic molec-

ular graph is defined as the product of the number of

vertices on each side of the path connecting vertices i

and j, and the entries on the main diagonal are by defini-

tion zero.

NOVEL DISTANCE-BASED MOLECULAR
DESCRIPTORS

We will now extract some novel structural invariants

from the G matrix and its numerical form based on the

Wiener index. An invariant of Gw matrix suggesting it-

self as a molecular descriptor is the sum of all the entries

of the upper triangle of Gw. This invariant is analogous

to the Wiener number, which, as Hosoya has shown,9

can be obtained by adding up all the entries above the

main diagonal of the distance matrix.10 Hence, the novel

»double« invariant will shortly be referred to as the

Wiener-Wiener number and designated W(W). In Table

II we list the values of the W(W) number for all the 18

octane isomers.

The W(W) number is a global molecular descriptor

that has no apparent edge contributions. In order to gain

a deeper insight into the relationship between W(W) and

molecular structure, one needs to decompose W(W) into

edge contributions. Randi} and Zupan11 have recently

shown that the partition of a molecular descriptor, de-

fined as the sum of all the matrix elements of the upper

triangle of a graph matrix in the case of connected acy-

clic graphs, can be accomplished by considering contri-

butions from paths of different length. We will apply this

approach to decompose the W(W) number into edge con-

tributions. The procedure is illustrated with the molecu-

lar graph of 3-methylheptane in Figure 2. The numbers

assigned to each edge in the diagrams in the left column

of Figure 2 represent the contributions arising formally

from paths of different length and whose weights are

given by the corresponding entries in the Gw matrix (Ta-

ble I). For example, consider the diagram in the second

row that shows the contributions of paths of length two.

The edge 1–2 is involved only in a single path of length

two: 1–2–3 and has been assigned a weight of 10, being

the value of the matrix element �Gw�13. The edge 2–3 is

involved in three paths of length two: 1–2–3, 2–3–4, and

2–3–8, which have weights 10, 5, and 20, respectively,

corresponding to matrix elements �Gw�13, �Gw�24 and �Gw�28,

respectively, totalling 35. Other contributions shown on

the left side of Figure 2 are similarly derived. In order to

obtain the partitioning of W(W), we have to divide the
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TABLE I. The upper triangle of the Gw matrix associated with the
molecular graph of 3-methylheptane (Figure 1)

1 2 3 4 5 6 7 8

1 0 35 10 8 10 18 32 35

2 0 10 5 5 10 20 20

3 0 5 2 2 5 11

4 0 11 10 11 8

5 0 18 18 11

6 0 31 20

7 0 35

8 0

TABLE II. Values of the W(W) number, leading eigenvalues �(Gw)
of the Gw matrices, leading eigenvalues �(W) of the W matrices,
and the hyper-Wiener number WW for all the 18 octane isomers

Isomer(a) W(W) �(Gw) �(W) WW

n-octane 378 104.4359 57.1698 210

2-M-heptane 398 112.6326 52.6122 184

3-M-heptane 416 117.9955 48.4059 170

4-M-heptane 423 119.5012 46.6606 165

3-E-hexane 441 124.8102 42.2041 150

2,2-MM-hexane 438 126.8001 44.4713 149

2,3-MM-hexane 449 128.6530 42.0589 143

2,4-MM-hexane 443 127.9006 43.4185 147

2,5-MM-hexane 423 122.6675 47.7238 161

3,3-MM-hexane 464 132.7865 38.5332 131

3,4-MM-hexane 462 132.0751 39.2901 134

3,2-EM-pentane 469 133.6979 37.4277 129

3,3-EM-pentane 483 137.2475 34.1415 118

2,2,3-MMM-pentane 485 139.8462 34.9935 115

2,2,4-MMM-pentane 467 136.7979 39.1411 127

2,3,3-MMM-pentane 491 140.8804 33.4679 111

2,3,4-MMM-pentane 477 137.8224 37.0246 122

2,2,3,3-MMMM-butane 507 146.4616 30.3305 97

(a) Abbreviations M and E denote methyl and ethyl, respectively.



contributions arising from paths of length two by two,

because each path of length two in a structure has been

encountered twice. Similarly, contributions from paths of

length three have to be divided by three, and so on, in

order for all the contributions to add to W(W). The edge

contributions normalized in this manner are shown at the

edges of the diagrams on the right hand side of Figure 2.

By adding up all the contributions for a particular edge

(e.g., by adding 35 + 5 + 14.33 + 2.5 + 3.6 + 5.33, one

gets 65.77 for edge 1–2), one obtains the contribution of

the edge to W(W), shown at the bottom of Figure 2. On

the other hand, if one sums up all the edge contributions

corresponding to paths of the same length, one obtains

the partitioning of W(W) according to paths of different

length. In the case of paths of length two, we have: 5 +

17.5 + 7.5 + 6 + 14 + 9 + 14 = 73, the value shown on

the right hand side of Figure 2. In Table III we show the

partitioning of W(W) into path contributions for all the

18 octane isomers, while Figure 3 shows the contribu-

tions of symmetry non-equivalent edges to W(W) for all

the 18 octane isomers. As can be seen from Figure 3, the

edge partitioning of W(W) shows variation in the relative

contributions of the peripheral and inner edges. In less

branched isomers, the terminal edges have a greater

weight, but the opposite is the case in more branched

isomers. In this respect, W(W) behaves differently from

several other topological indices, which either assign peri-

pheral edges greater weight (e.g., the connectivity index12

and the Hosoya Z index9) or lesser weight (e.g., the Wie-

ner index5 and Balaban’s J index13).

The row sums of Gw matrix can be viewed as local

vertex (atomic) descriptors. As one can see from Table I,

the row sums associated with carbon atoms of 3-methyl-

heptane show considerable variations. However, there

are a number of cases of degeneracy of row sums within

the set of 18 octane isomers, that is, the symmetry non-

equivalent vertices in a molecular graph may have the

same row sums. This is particularly apparent in the case

of terminal non-equivalent vertices. The smallest row

sum belongs to the most branched inner vertices. Local

structural invariants such as the vertex, edge, and path

contributions to W(W) may be of interest in QSAR stud-

ies and, at the same time, they may help in the interpre-

tation of W(W) by pointing out the relative importance

of individual vertices (atoms), edges (bonds), or sub-

graphs (molecular fragments).

The Wiener-Wiener number is but one of the struc-

tural invariants that can be extracted from the graphical

matrix G and its numerical form Gw. Therefore, we will

continue to explore the construction of additional inva-
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Figure 2. Partitioning of the W(W) number into edge and path

contributions illustrated with graph H of Figure 1.

TABLE III. The partitioning of W(W) into path contributions, Pi, for
all the 18 octane isomers

Isomer(a)
Path contribution

P
1

P
2

P
3

P
4

P
5

P
6

P
7

n-octane 140 70 35 26 32 40 35

2-M-heptane 118 93 33 34 50 70

3-M-heptane 121 73 72 45 73 32

4-M-heptane 122 73 60 101 36 31

3-E-hexane 134 52 85 108 62

2,2-MM-hexane 88 155 41 58 96

2,3-MM-hexane 104 86 119 78 62

2,4-MM-hexane 102 94 64 119 64

2,5-MM-hexane 98 112 33 40 140

3,3-MM-hexane 94 125 121 96 28

3,4-MM-hexane 106 70 157 100 29

3,2-EM-pentane 116 64 136 153

3,3-EM-pentane 102 96 201 84

2,2,3-MMM-pentane 78 138 182 87

2,2,4-MMM-pentane 72 168 35 192

2,3,3-MMM-pentane 80 128 227 56

2,3,4-MMM-pentane 88 97 168 124

2,2,3,3-MMMM-butane 54 192 261

(a) Abbreviations M and E denote methyl and ethyl, respectively.



riants based on the Gw matrix. In particular, we will con-

sider the leading eigenvalue, �(Gw), of Gw matrix, in pa-

rallel with the leading eigenvalue, �(W), of the Wiener

matrix W and the hyper-Wiener index WW8,14–16 for com-

parison. In Table II, we list the values of these molecular

descriptors for all the 18 octane isomers. The simple lin-

ear regression between W(W) and �(Gw) for the 18 oc-

tane isomers has a high correlation coefficient (r = 0.9926),

yet there is sufficient variation between the two descrip-

tors to produce different results in different regressions.

The W(W) number shows degeneracy for 4-methylhep-

tane and 2,5-dimethylhexane, which is not the case with

their corresponding �(Gw) values. Similarly, 3-ethylhex-

ane and 2,4-dimethylhexane have similar values of

W(W) but their corresponding �(Gw) values show greater

discrimination, and the same is again true of 3,2-ethyl-

methylpentane and 2,2,4-trimethylpentane.

MODELING OF TOTAL STERIC ENERGIES
OF OCTANES

We have tested the usability of the novel molecular des-

criptors as predictor variables in QSPR studies on the to-

tal steric energies, �, of octane isomers estimated from

molecular fragments.17 Octane isomers are a suitable set

for testing a molecular descriptor, because they show

sufficient structural variations. All the possible CC bond

types present in alkanes appear in octanes, except for the

isolated CC bond that only occurs in ethane. Moreover,

by restricting attention to isomers, we have practically

eliminated the dominant influence of the molecular size,

which tends to obscure minor variations of properties

caused by variations in the shape of molecules.

It has already been demonstrated that 2-D molecular

descriptors are capable of capturing certain aspects of

3-D molecular structure, although they do not explicitly

encode the spatial geometry of the molecule. For in-

stance, when the connectivity indices 1� and 2� are used

as descriptors of octane isomers, then the resulting mul-

tiple linear regression model of the enthalpies of forma-

tion of octanes in the gas phase18 has the following sta-

tistical parameters: the multiple correlation coefficient R

= 0.9323 and the standard error of estimate s = 1.9929 kJ

mol–1. As the residuals of this regression show poor cor-

relation with the total steric energies of octanes (r =

0.149), one has to deduce that these two 2-D molecular

descriptors account for the majority of this 3-D aspect of

octane structures. Clearly, it is useful to test the novel

molecular descriptors against the total steric energies of

octanes, because this test indicates the ability of a des-

criptor to capture not only molecular connectivity (a 2-D

molecular feature) but also some 3-D molecular charac-

teristics.

The values of the statistical parameters R, s, and the

Fisher ratio F for the quadratic regression models of the

total steric energies of octane isomers based on different

distance-based molecular descriptors are given in Table

IV. In order to facilitate comparison, we show the values

of these molecular descriptors for n-octane in the second

column. The last four rows of the table contain the re-

sults obtained with descriptors that are not based on dis-

tance. As one can see, all the distance-based descriptors

show much stronger correlations with the total steric en-

ergies of octane isomers in comparison with the molecu-

lar descriptors that are not based on distance. The best
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Figure 3. Molecular graphs of 18 octane isomers. Contri-
butions to W(W) arising from all the symmetry non-equiva-
lent edges in a graph are shown.



result is obtained with the W(W) number introduced in

this paper. In Table V we list the values of total steric

energies of octanes based on the work of Scott,17 the cal-

culated values of the total steric energies by means of

the quadratic regression model based on W(W), and the

corresponding residuals. The plot of � versus W(W) and

the least-squares parabola are shown in Figure 4. Al-

though the results appear satisfactory, we may notice

that the computed values for the steric energies of

2,2-dimethylhexane and 3,3-dimethylhexane are much

higher than the empirical values. On the other hand, the

computed steric energies of 2,3-dimethylhexane and

2,3,4-trimethylpentane are somewhat lower than the cor-

responding empirical values. This may suggest that the

relative values of Scott's empirical parameters, which

are based on alkanes of different sizes, may be some-
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TABLE IV. Values of various molecular descriptors for n-octane and
the values of the multiple correlation coefficient (R), the standard
error of estimate (s), and the Fisher ratio (F) for the quadratic re-
gression models of total steric energies of octane isomers based
on these molecular descriptors

Descriptor n-octane R
s

kJ mol–1 F 2,15 Ref.

W(W) 378 0.9865 1.2971 272 (a)

WW 210 0.9839 1.4184 227 7

�(Gw) 104.4359 0.9832 1.4467 217 (a)

1/J 0.1967 0.9813 1.5230 195 19

W 84 0.9806 1.5523 188 5

J 2.53 0.9766 1.7029 155 13

�(W) 57.1698 0.9753 1.7531 146 8

H 13.743 0.9639 2.1087 98 20,21

1/JJ 0.3353 0.9497 2.4811 69 19

RRW2 3.6667 0.9008 3.4434 32 22

ID 14.831 0.8998 3.4602 32 23

p2/w2 0.4583 0.8953 3.5313 30 24

� 3.9142 0.7824 4.9371 12 12

Z 34 0.7036 5.6317 7 9

(a) This work.

TABLE V. Values of the total steric energies of octanes, �, based on
the work of Scott17, the values of the total steric energies, �calc,
calculated by means of the quadratic regression model based on
W(W), and the corresponding residuals

Isomer(a) �

kJ mol–1
�calc

kJ mol–1 Residuals

n-octane 0 0.4683 –0.4683

2-M-heptane 2.5439 1.8924 0.6515

3-M-heptane 5.0877 4.0255 1.0622

4-M-heptane 5.0877 5.0729 0.0148

3-E-hexane 7.6316 8.3263 –0.6947

2,2-MM-hexane 5.8450 7.7280 –1.8830

2,3-MM-hexane 11.7905 10.0311 1.7594

2,4-MM-hexane 7.6316 8.7375 –1.1059

2,5-MM-hexane 5.0877 5.0729 0.0148

3,3-MM-hexane 11.6901 13.6571 –1.9670

3,4-MM-hexane 14.6984 13.1412 1.5572

3,2-EM-pentane 14.6984 14.9902 –0.2918

3,3-EM-pentane 17.5351 19.0540 –1.5189

2,2,3-MMM-pentane 18.7987 19.6744 –0.8757

2,2,4-MMM-pentane 15.6607 14.4495 1.2112

2,3,3-MMM-pentane 22.0999 21.5953 0.5046

2,3,4-MMM-pentane 19.2380 17.2526 1.9854

2,2,3,3-MMMM-butane 27.2002 27.1558 0.0444

(a) Abbreviations M and E denote methyl and ethyl, respectively.
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Figure 4. The plot of the values of the total steric energy
based on the work of Scott17 against W(W) for all the 18
octane isomers. The regression equation and the statisti-
cal parameters are � = 0.0012 (� 0.0002) �W(W)�2 –
0.8947 (� 0.0002)W(W) + 160.8084 (� 47.4667);
R2 = 0.9732; s = 1.2971; F 2,15 = 272.58.



what influenced by the size of the molecules. These

somewhat larger residuals may indicate the inherent lim-

itations of molecular descriptors to mimic experimental

data beyond some critical precision value. On the other

hand, they may also call for some revision of the empiri-

cal parameters. Comparison of regression models may

facilitate interpretation of more involved molecular

descriptors. For example, Table IV shows that the value

of R for the model based on ID approaches those of dis-

tance-based descriptors and hence we may conclude that

ID must contain a substantial input from distance-related

structural factors. This is indeed the case because ID

contains contributions of all paths, including longer

paths, which indirectly encode some information on the

distances between atoms. All the findings presented here

support the claim that molecular descriptors, simple and

elegant in their origin, are capable of characterizing im-

portant structural features of molecules.
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SA@ETAK

Nova grafi~ka matrica i molekularni opisiva~i temeljeni na udaljenosti

Milan Randi}, Nabamita Basak i Dejan Plav{i}

Prikazana je va`nost grafi~kih matrica kao izvora numeri~kih strukturnih invarijanata koje mogu biti upo-

rabljene kao prediktorske varijable u QSPR i QSAR istra`ivanjima svojstava molekula. Predlo`ena je nova gra-

fi~ka matrica G, koja se pridru`uje molekuli. Nedijagonalni element �G� ij matrice G podgraf je molekularnoga

grafa razmatrane molekule dobiven iz njega uklanjanjem vrhova i i j. Nekoliko je molekularnih opisiva~a (de-

skriptora) izvedeno iz matrice G i njenoga numeri~koga oblika – matrice Gw, temeljenih na Wienerovome indek-

su. Uporabivost izvedenih »dvostrukih« invarijanata kao prediktorskih varijabli u QSPR istra`ivanjima svoj-

stava molekula testirana je na ukupnim steri~kim energijama izomera oktana.
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