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The butterfly theorem for conics
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Abstract.The butterfly theorem holds for any diameter of any conic.
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In a series of papers (cf. [1]-[11]) the well-known butterfly theorem for circles
was proved and generalized. In [12] a generalization for conics was developed. Here
we shall show the following theorem.

Theorem 1. Let A, B, C, D be four points on a conic K and M any straight
line in the same plane. Let N be the diameter of K which is conjugate to the line
M and let M = M ∩ N . If M is the midpoint of two points E = M ∩ AB and
F = M∩CD, then M is the midpoint of the points G = M∩AC and H = M∩BD
and the midpoint of the points K = M∩AD and L = M∩BC.

If N is an axis of K, then we have the theorem in [12].
Before proving the theorem we recall some facts from the analytic geometry of

conics. It is well-known that any conic can be represented by an equation of the
form

y2 = px− qx2 (1)

where p > 0 and q > 0 for an ellipse, q = 0 for a parabola and q < 0 for a hyperbola.
In the cases of an ellipse or a hyperbola we substitute x and y by p

|q|x and p√
|q|y

respectively and multiply the obtained equation by |q|
p2 and with ω = |q|

q we get the
equation

y2 = x− ωx2, (2)

where ω = 1 for an ellipse and ω = −1 for a hyperbola. In the case of a parabola it
suffices in (1) to substitute x by x

p and we obtain equation (2) again, but now with
ω = 0. Applying an affine transformation we conclude that any conic section has
an equation of the form (2), where ω ∈ {1, 0,−1}.

If we put x = 0 in (2), we obtain the equation y2 = 0 with two solutions y = 0,
i.e. our conic has the y-axis Y for a tangent in the origin. Let us prove that the
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e-mail: volenec@math.hr



36 V.Volenec

x-axis X is a diameter of the conic. In the cases of an ellipse or a hyperbola the
centre of the conic (2) is the point S = (ω

2 , 0). Indeed, this point is the midpoint of
the points T = (x, y) and T ′ = (ω− x,−y). If the point T is on the conic (2), then
we have (because of ω2 = 1)

(ω − x) − ω(ω − x)2 = x− ωx2 = y2 = (−y)2

and the point T ′ is on this conic too. Any straight line through the origin has
an equation of the form y = tx and intersects the conic (2) at two points, whose
abscissas are the solutions of the equation t2x2 = x−ωx2. The first solution x = 0
gives the origin and the second one is

x =
1

t2 + ω
. (3)

For the intersection with the abscissa (3) the ordinate is

y =
t

t2 + ω
. (4)

In the case of a parabola we cannot have the value t = 0. But, then we put y = 0
directly in (2) and obtain the unique solution x = 0, i.e. the axis X does not have a
second intersection with the parabola. Therefore, X is a diameter of this parabola.
Our conic (2) has X as a diameter and the conjugate diameter (in the case of an
ellipse or a hyperbola) is parallel with the axis Y and has the equation x = ω

2 . If
we put x = ω

2 in (2), we obtain the equation y2 = ω
4 with a real solution only for an

ellipse, i.e. in the case of a hyperbola this diameter does not have the intersections
with the hyperbola. By the way, we have the parametric representation (3) and (4)
of the conic under consideration. The point T = (x, y) given by (3) and (4), where
t ∈ R, will be denoted by T = (t).

Proof of theorem. 1◦ If the diameter N intersects the conic K let N be the
axis X of an affine coordinate system, where the conic K has the equation (2), i.e.
the parametric representation (3) and (4). The straight line M has the equation
x = m, where M = (m, 0). Let A = (a), B = (b), C = (c), D = (d) and let the
points E,F,G,H,K,L have the ordinates e, f, g, h, k, l, respectively. The condition
for the collinearity of the points A = (a), B = (b) and E = (m, e) has (after the
multiplication of two rows by a2 + ω and b2 + ω, respectively) the form

∣∣
∣
∣
∣
∣

1 m e
a2 + ω 1 a
b2 + ω 1 b

∣∣
∣
∣
∣
∣
= 0,

i.e.

e(a2 − b2) −m
[
a2b− ab2 − ω(a− b)

] − (a− b) = 0

or

(a+ b)e = (ab− ω)m+ 1. (5)
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The analogous condition for the points B,C and F is

(c+ d)f = (cd− ω)m+ 1. (6)

The point M is the midpoint of two points E and F iff e+ f = 0. Because of (5)
and (6) this equality is equivalent to the equality

[(ab− ω)m+ 1] (c+ d) + [(cd− ω)m+ 1] (a+ b) = 0,

i.e.

(abc+ abd+ acd+ bcd)m+ (1 −mω)(a+ b+ c+ d) = 0.

This equality is symmetrical with respect to the parameters a, b, c, d. Therefore, we
obtain the same condition for g + h = 0 and for k + l = 0.

2◦ If the diameter N does not intersect the conic K, then K is a hyperbola
and let the conjugate diameter of N be the axis X , let K have the equations (3)
and (4) again and now ω = −1. The diameter N has the equation x = − 1

2 and
if M = (− 1

2 ,m) then the straight line M has the equation y = m. Let A =
(a), B = (b), C = (c), D = (d) and let the points E,F,G,H,K,L have the abscissas
e, f, g, h, k, l, respectively. The collinearity conditions for the points A,B,E and
C,D, F can be obtained from (5) and (6) by the substitutions m ↔ e resp. m ↔ f
and because of ω = −1 have the forms

(ab+ 1)e = (a+ b)m− 1,
(cd+ 1)f = (c+ d)m− 1. (7)

The point M = (− 1
2 ,m) is the midpoint of two points E and F iff e + f = −1.

Because of (7) this condition is equivalent to the equality

−(ab+ 1)(cd+ 1) = [(a+ b)(cd+ 1) + (c+ d)(ab+ 1)]m− (cd+ 1 + ab+ 1),

i.e.

(abc+ abd+ acd+ bcd+ a+ b + c+ d)m+ abcd− 1 = 0.

Again, we have the symmetry of this equality with respect to a, b, c, d.
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