The butterfly theorem for conics

Vladimir Volenec*

Abstract

The butterfly theorem holds for any diameter of any conic.

Key words: Butterfly theorem
AMS subject classifications: 51M04
Received March 13, 2002
Accepted May 3, 2002
In a series of papers (cf. [1]-[11]) the well-known butterfly theorem for circles was proved and generalized. In [12] a generalization for conics was developed. Here we shall show the following theorem.

Theorem 1. Let A, B, C, D be four points on a conic \mathcal{K} and \mathcal{M} any straight line in the same plane. Let \mathcal{N} be the diameter of \mathcal{K} which is conjugate to the line \mathcal{M} and let $M=\mathcal{M} \cap \mathcal{N}$. If M is the midpoint of two points $E=\mathcal{M} \cap A B$ and $F=\mathcal{M} \cap C D$, then M is the midpoint of the points $G=\mathcal{M} \cap A C$ and $H=\mathcal{M} \cap B D$ and the midpoint of the points $K=\mathcal{M} \cap A D$ and $L=\mathcal{M} \cap B C$.

If \mathcal{N} is an axis of \mathcal{K}, then we have the theorem in [12].
Before proving the theorem we recall some facts from the analytic geometry of conics. It is well-known that any conic can be represented by an equation of the form

$$
\begin{equation*}
y^{2}=p x-q x^{2} \tag{1}
\end{equation*}
$$

where $p>0$ and $q>0$ for an ellipse, $q=0$ for a parabola and $q<0$ for a hyperbola. In the cases of an ellipse or a hyperbola we substitute x and y by $\frac{p}{|q|} x$ and $\frac{p}{\sqrt{|q|}} y$ respectively and multiply the obtained equation by $\frac{|q|}{p^{2}}$ and with $\omega=\frac{|q|}{q}$ we get the equation

$$
\begin{equation*}
y^{2}=x-\omega x^{2} \tag{2}
\end{equation*}
$$

where $\omega=1$ for an ellipse and $\omega=-1$ for a hyperbola. In the case of a parabola it suffices in (1) to substitute x by $\frac{x}{p}$ and we obtain equation (2) again, but now with $\omega=0$. Applying an affine transformation we conclude that any conic section has an equation of the form (2), where $\omega \in\{1,0,-1\}$.

If we put $x=0$ in (2), we obtain the equation $y^{2}=0$ with two solutions $y=0$, i.e. our conic has the y-axis \mathcal{Y} for a tangent in the origin. Let us prove that the

[^0]x -axis \mathcal{X} is a diameter of the conic. In the cases of an ellipse or a hyperbola the centre of the conic (2) is the point $S=\left(\frac{\omega}{2}, 0\right)$. Indeed, this point is the midpoint of the points $T=(x, y)$ and $T^{\prime}=(\omega-x,-y)$. If the point T is on the conic (2), then we have (because of $\omega^{2}=1$)
$$
(\omega-x)-\omega(\omega-x)^{2}=x-\omega x^{2}=y^{2}=(-y)^{2}
$$
and the point T^{\prime} is on this conic too. Any straight line through the origin has an equation of the form $y=t x$ and intersects the conic (2) at two points, whose abscissas are the solutions of the equation $t^{2} x^{2}=x-\omega x^{2}$. The first solution $x=0$ gives the origin and the second one is
\[

$$
\begin{equation*}
x=\frac{1}{t^{2}+\omega} . \tag{3}
\end{equation*}
$$

\]

For the intersection with the abscissa (3) the ordinate is

$$
\begin{equation*}
y=\frac{t}{t^{2}+\omega} \tag{4}
\end{equation*}
$$

In the case of a parabola we cannot have the value $t=0$. But, then we put $y=0$ directly in (2) and obtain the unique solution $x=0$, i.e. the axis \mathcal{X} does not have a second intersection with the parabola. Therefore, \mathcal{X} is a diameter of this parabola. Our conic (2) has \mathcal{X} as a diameter and the conjugate diameter (in the case of an ellipse or a hyperbola) is parallel with the axis \mathcal{Y} and has the equation $x=\frac{\omega}{2}$. If we put $x=\frac{\omega}{2}$ in (2), we obtain the equation $y^{2}=\frac{\omega}{4}$ with a real solution only for an ellipse, i.e. in the case of a hyperbola this diameter does not have the intersections with the hyperbola. By the way, we have the parametric representation (3) and (4) of the conic under consideration. The point $T=(x, y)$ given by (3) and (4), where $t \in \mathbb{R}$, will be denoted by $T=(t)$.

Proof of theorem. 1° If the diameter \mathcal{N} intersects the conic \mathcal{K} let \mathcal{N} be the axis \mathcal{X} of an affine coordinate system, where the conic \mathcal{K} has the equation (2), i.e. the parametric representation (3) and (4). The straight line \mathcal{M} has the equation $x=m$, where $M=(m, 0)$. Let $A=(a), B=(b), C=(c), D=(d)$ and let the points E, F, G, H, K, L have the ordinates e, f, g, h, k, l, respectively. The condition for the collinearity of the points $A=(a), B=(b)$ and $E=(m, e)$ has (after the multiplication of two rows by $a^{2}+\omega$ and $b^{2}+\omega$, respectively) the form

$$
\left|\begin{array}{ccc}
1 & m & e \\
a^{2}+\omega & 1 & a \\
b^{2}+\omega & 1 & b
\end{array}\right|=0
$$

i.e.

$$
e\left(a^{2}-b^{2}\right)-m\left[a^{2} b-a b^{2}-\omega(a-b)\right]-(a-b)=0
$$

or

$$
\begin{equation*}
(a+b) e=(a b-\omega) m+1 \tag{5}
\end{equation*}
$$

The analogous condition for the points B, C and F is

$$
\begin{equation*}
(c+d) f=(c d-\omega) m+1 \tag{6}
\end{equation*}
$$

The point M is the midpoint of two points E and F iff $e+f=0$. Because of (5) and (6) this equality is equivalent to the equality

$$
[(a b-\omega) m+1](c+d)+[(c d-\omega) m+1](a+b)=0
$$

i.e.

$$
(a b c+a b d+a c d+b c d) m+(1-m \omega)(a+b+c+d)=0 .
$$

This equality is symmetrical with respect to the parameters a, b, c, d. Therefore, we obtain the same condition for $g+h=0$ and for $k+l=0$.
2° If the diameter \mathcal{N} does not intersect the conic \mathcal{K}, then \mathcal{K} is a hyperbola and let the conjugate diameter of \mathcal{N} be the axis \mathcal{X}, let \mathcal{K} have the equations (3) and (4) again and now $\omega=-1$. The diameter \mathcal{N} has the equation $x=-\frac{1}{2}$ and if $M=\left(-\frac{1}{2}, m\right)$ then the straight line \mathcal{M} has the equation $y=m$. Let $A=$ $(a), B=(b), C=(c), D=(d)$ and let the points E, F, G, H, K, L have the abscissas e, f, g, h, k, l, respectively. The collinearity conditions for the points A, B, E and C, D, F can be obtained from (5) and (6) by the substitutions $m \leftrightarrow e$ resp. $m \leftrightarrow f$ and because of $\omega=-1$ have the forms

$$
\begin{align*}
& (a b+1) e=(a+b) m-1 \\
& (c d+1) f=(c+d) m-1 \tag{7}
\end{align*}
$$

The point $M=\left(-\frac{1}{2}, m\right)$ is the midpoint of two points E and F iff $e+f=-1$. Because of (7) this condition is equivalent to the equality

$$
-(a b+1)(c d+1)=[(a+b)(c d+1)+(c+d)(a b+1)] m-(c d+1+a b+1)
$$

i.e.

$$
(a b c+a b d+a c d+b c d+a+b+c+d) m+a b c d-1=0 .
$$

Again, we have the symmetry of this equality with respect to a, b, c, d.

References

[1] H. Eves, A Survey of Geometry, Allyn and Bacon, Boston, 1963.
[2] H. S. M. Coxeter, Projective Geometry, Blaisdell, New York, 1964.
[3] M. S. Klamkin, An extension of the butterfly theorem, Math. Mag. 38(1965), 206-208.
[4] J. Sledge, A generalization of the butterfly theorem, J. of Undergraduate Math. 5(1973), 3-4.
[5] L. Bankoff, The methamorphosis of the butterfly theorem, Math. Mag. 60(1987), 195-210.
[6] G. Pickert, Zum projektiven Beweis des Schmetterlingssatz, Praxis Math. 30(1988), 174-175.
[7] H. SchaAl, Bemerkungen zum Schmetterlingssatz, Praxis Math. 30(1988), 297-303.
[8] E.Siemon, Noch eine Bemerkung zum Schmetterlingssatz, Praxis Math. 31(1989), 42-43.
[9] G. Geise, Eine weitere Bemerkung zum Schmetterlingssatz, Praxis Math. 31(1989), 367-368.
[10] L. Hoehn, A new proof of the double butterfly theorem, Math. Mag. 63(1990), 256-257.
[11] V. Volenec, A generalization of the butterfly theorem, Math. Communications 5(2000), 157-160.
[12] Z. Čerin, A generalization of the butterfly theorem from circles to conics, Math. Communications 6(2001), 161-164.

[^0]: *Department of Mathematics, University of Zagreb, Bijenička c. 30, HR-10 000 Zagreb, Croatia, e-mail: volenec@math.hr

