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The Wiener index is a topological index defined as the sum of distances between all pairs of
vertices in a tree. It was introduced as a structural descriptor for molecular graphs of alkanes,
which are trees with vertex degrees of four at the most (chemical trees). The line graph L(G) of
a graph G has the vertex set V(L(G)) = E(G) and two distinct vertices of L(G) are adjacent if
the corresponding edges of G have a common endvertex. It is known that the Wiener indices of
a tree and of its line graph are always distinct. An infinite two-parameter family of growing
chemical trees T with the property W(T) = W(L(L(T))) has been constructed.
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INTRODUCTION

The Wiener index is a well-known topological index in-
troduced as a structural descriptor for acyclic organic
molecules.1 It is defined as the sum of distances between
all unordered pairs of vertices of a graph G:
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where d(u,v) is the number of edges in the shortest path
connecting vertices u and v. This topological index is
successfully used in QSAR and QSPR studies, including
pharmacological and biological activity.2–8 Mathemati-
cal properties of the Wiener index for some classes of
chemical graphs can be found in recent reviews.9,10

The line graph, L(G), of a graph G has the vertex set
V(L(G)) = E(G) and two distinct vertices of the graph
L(G) are adjacent if the corresponding edges of G have a
common endvertex. The iterated line graph, Ln(G), is de-
fined as Ln(G) = L(L(Gn–1)), where L0(G) = G. A graph
L2(G) is called the quadratic line graph of G. The con-
cept of line graph has found various applications in
chemical research.11,12 Invariants of iterated line graphs

have been used for evaluating the branching and struc-
tural complexity of molecular graphs; for ordering iso-
meric structures and for designing novel topological
indices.13 An example of line graphs of a tree of order 9
is shown in Figure 1. For these graphs, W(T) = 108,
W(L(T)) = 72 and W(L2(T)) = 94.

Buckley has demonstrated that the Wiener index of
a tree and its line graph are always distinct.14 Namely, if

a tree T has n vertices, then W(L(T)) = W(T) –
n
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Figure 1. Tree T and its iterated line graphs.



this paper, we are interested in finding trees satisfying
the following equality:

W(T) = W(L2(T)) (1)

All trees of the order n � 26 with property (1) have
been found by computing.9,15,16 Several infinite families
of such trees have been constructed as well.16 We pres-
ent a more general family of growing trees, which in-
cludes some of the previously known families.

Main Result

Consider a tree Tk,s (k, s � 0), shown in Figure 2. This
tree is almost asymmetric (it has the unique two-element
orbit of the automorphism group). Assume that its long
left and right terminal paths have the length:

xk,s = k(k – 1)/2 + 6s2 + 8s + 4 and

yk,s = k(k + 3)/2 + 6s2 + 12s + 7.

Therefore, trees Tk,s have n = k2 + k + 12s2 + 28s + 19
vertices and their diameter is equal to diam(Tk,s) = k2 +
k + 12s2 + 28s + 15. Every tree Tk,s is a so-called cater-
pillar in which the removal of all its endvertices results
in a path. These trees are also chemical ones, i.e., their
vertex degrees are four at the most. It should be noted
that all trees of the order n � 18 and n = 20 with property
(1) are chemical trees.16 The above described trees form
an infinite family 
:


 = �s 
s = �s �k Tk,s.

Element 
s of 
 is also an infinite set of trees.

Theorem. – For every integer s � 0, the family 
s gener-
ates an infinite set of trees Tk,s such that Tk,s satisfies
equality (1) for every integer k � 0.

Two infinite families of trees constructed in Ref. 16
are members of 
 for s = 0, 1.

Formulas for the Wiener Index

The distance of a vertex v in a graph G, dG(v), is the sum
of distances between v and all other vertices of G, i.e.,
dG(v) = �u�V(G) dG(v,u). The Wiener index of the n-ver-
tex path Pn is equal to W(Pn) = n(n2 – 1)/6 and the dis-
tance of its endvertex v is equal to d(v) = n(n – 1)/2. We
use two well-known formulas to calculate the Wiener in-
dex for trees and their line graphs.

A vertex v is called the branching vertex of a tree if
deg(v) � 3. Denote by B(T) the set of all branching verti-
ces of an n-vertex tree T. Let T1, T2,…,Tm be vertex dis-
joint subtrees of orders p1, p2,…,pm attached to a branch-
ing vertex v (not all subtrees contain v). Then, the Wiener

index of T can be calculated by the Doyle-Graver for-
mula:17,18

W(T) = W(Pn) –
v B i j k m

i j kp p p
� � � � �
� �
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. (2)

The Wiener index of a graph can be expressed through
the Wiener index of its subgraphs under some graph op-
erations.9,19,20 Let a graph G be obtained from arbitrary
graphs G1 and G2 of orders n1 and n2 by identifying ver-
tices v1�V(G1) and v2�V(G2). Then

W(G) = W(G1) + W(G2) +
(n1 – 1)dG2(v2) + (n2 – 1)dG1(v1). (3)

Formulas (2) and (3) will be used for trees and their
line graphs, respectively.

Wiener Index for Trees of 
s

Let s be fixed. For every k � 0, the family 
s generates
an infinite number of pairs of trees Tk,s. Both trees of a
pair have the same order, n. Consider the first tree (see
Figure 2). Using the Doyle-Graver formula (2), we can
write:

W(Tk,s) = W(Pn) – �xk,s(yk,s + 8s + 6) +
(xk,s + 8s + 5) + yk,s + 2(xk,s + 8s + 5)yk,s�

= �2k6 + 6k5 + (72s2 + 168s + 111)k4 +
(144s2 + 336s + 212)k3 +
(864s4 + 4032s3 + 7296s2 + 6048s + 1999)k2 +
(864s4 + 4032s3 + 7224s2 + 5928s + 1918)k +
3456s6 + 24192s5 + 71568s4 + 114464s3 +
105144s2 + 52768s + 11352�/12.

The quadratic line graph of Tk,s is depicted in Fig-
ure 2. It can be constructed from graph G0 by consecu-

478 A. A. DOBRYNIN AND L. S. MEL'NIKOV

Croat. Chem. Acta 77 (3) 477¿480 (2004)

xk,s edges 8 4 edgess+ yk,s edges

yk,s–2 edges8 2 edgess+xk,s–2 edges

L
2(T )k,s

Tk,s

Figure 2. Tree Tk,s and its quadratic line graph.
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Figure 3. Graphs for constructing L2(Tk,s).



tively joining paths P1 of length xk,s – 2 and P2 of length
yk,s – 2, as illustrated in Figure 3. Applying formula (3),
we obtain W(G0) = (256s3 + 1344s2 + 1844s + 792)/3. It
is easy to see that dG0

(vy) = 32s2 + 68s + 40. Let graph
G1 be obtained by identifying vertices vy of G0 and uy of
P2. Then,

W(G1) = W(G0) + W(P2) + (nP2 – 1)dG0
(vy) +

(nG0
– 1)d(uy)

= (256s3 + 1344s2 + 1844s + 792)/3 +
yk,s(y2

k,s – 1)/6 + (yk,s – 2)(32s2 + 68s + 40) +
(8s + 13)(yk,s – 1)(yk,s – 2)/2

= �k6 + 9k5 + (36s2 + 120s + 141)k4 +
(216s2 + 720s + 711)k3 +
(432s4 + 2880s3 + 7860s2 + 9240s + 4130)k2 +
(1296s4 + 8640s3 + 22608s2 + 24480s + 9312)k +
1728s6 + 17280s5 + 74016s4 + 161920s3 +
196608s2 + 126080s + 33312�/48.

To construct the quadratic line graph L2(Tk,s), one
can identify vertices vx of G1 and ux of P1. By direct cal-
culation, we obtain dG1

(vx) = �k4 + 6k3 + (24s2 + 80s +
55)k2 + (72s2 + 240s + 138)k + 144s4 + 960s3 + 2152s2 +
2160s + 776�/8. By (3), we have

W(L2(Tk,s)) = W(G1) + W(P1) + (nP1
– 1)dG1

(vx) +
(nG1

– 1)d(ux)

= W(G1) + xk,s(x2
k,s – 1)/6 + (xk,s – 2)dG1

(vx) +
(8s + yk,s + 10)(xk,s – 1)(xk,s – 2)/2

= �2k6 + 6k5 + (72s2 + 168s + 111)k4 +
(144s2 + 336s + 212)k3 + (864s4 + 4032s3 +
7296s2 + 6048s + 1999)k2 + (864s4 +
4032s3 + 7224s2 + 5928s + 1918)k +
3456s6 + 24192s5 + 71568s4 + 114464s3 +
105144s2 + 52768s + 11352�/12.

Comparing the Wiener indices, one can conclude
that W(Tk,s) = W(L2(Tk,s)).

The second tree T*k,s of this pair has:

x*k,s = yk,s – (4s + 2) and y*k,s = xk,s + (4s + 2),

where xk,s and yk,s are the corresponding quantities of the
first tree Tk,s. By analogy with the previous calculations,
one can obtain the following equalities:

W(T*k,s) = W(L2(T*k,s)) = W(Tk,s) – 2(4ks + 2k + 2s + 1).

Some numerical characteristics of trees T0,s and T*0,s

of the family 
s for the first values of s are presented in
Table 1. Here, n and diam denote the order and the dia-
meter of trees, respectively.

For manipulating cumbersome analytical expressions,
the computer system for mathematics MAPLE� was
used.

CONCLUSION

An infinite two-parameter family of growing chemical
trees has been constructed. A tree of this family and its
quadratic line graph have the same Wiener index. We
believe that the following problem may be of interest for
mathematical chemistry studies: characterizing molecu-
lar graphs by means of a topological index calculated for
their derived structures. Since iterated line graphs reflect
the branching of a tree, they serve as a good example of
derived structures. We mention the simplest graph in-
variant, the number of edges of iterated line graphs,
which has been applied for ordering molecular graphs
and for related problems.13 This is also a possible way of
using a topological index that cannot be directly applied
to initial structures. For example, consider trees and the
Szeged index, Sz.21 It is known that Sz(G) = W(G) if and
only if every block (maximal sub-graph without cut-ver-
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TABLE I. Parameters of the initial pairs of trees T0,s and T*0,s of the family 
s

s n x0,s y0,s diam W s n x0,s y0,s diam W

0 19 4 7 15 946 5 459 194 217 455 15961816

– 19 5 6 15 944 – 459 195 216 455 15961794

1 59 18 25 55 31912 6 619 268 295 615 39245802

– 59 19 24 55 31906 – 619 269 294 615 39245776

2 123 44 55 119 299466 7 803 354 385 799 85818216

– 123 45 54 119 299456 – 803 355 384 799 85818186

3 211 82 97 207 1533464 8 1011 452 487 1007 171466994

– 211 83 96 207 1533450 – 1011 453 486 1007 171466960

4 323 132 151 319 5540018 9 1243 562 601 1239 318931528

– 323 133 150 319 5540000 – 1243 563 600 1239 318931490



tices) of a graph G is a complete graph.22 This implies
that Sz(T) = W(T) and Sz(L(T)) = W(L(T)) for any tree T.
However, these indices may have distinct values for qua-
dratic line graphs of trees. Therefore, we can associate
with a tree T the value of the Szeged index of its qua-
dratic line graph.
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Stabla, kvadrati~ni linijski grafovi i Wienerov indeks

Andrey A. Dobrynin i Leonid S. Mel'nikov

Wienerov indeks W nekoga stabla je topologijski indeks koji predstavlja zbroj udaljenosti izme|u svih
~vorova u stablu. Uveden je kao strukturni indeks molekularnih grafova alkana (kemijskih stabala) u kojima
valencija ~vorova mo`e poprimiti vrijednosti od 1 do najvi{e 4. Linijski graf L(G) nekoga grafa G ima skup
~vorova V�L(G)� jednak broju bridova grafa G, a dva ~vora L(G) su povezana ako odgovaraju}i bridovi u G imaju
zajedni~ki ~vor u kojem se susre}u. Wienerov se indeks stabla i njegova linijskoga grafa razlikuju. Konstruira-
na je beskona~na dvoparametarska obitelj rastu}ih kemijskih stabala T sa svojstvom W(T) = W(L(L(T))).

480 A. A. DOBRYNIN AND L. S. MEL'NIKOV

Croat. Chem. Acta 77 (3) 477¿480 (2004)


