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Topological isomers, i.e., knots, catenanes, rotaxanes, pseudoknots, hook-and-ladder, and

Möbius molecules have so far been left out from the isomer classification schemes discussed.

To expand the classification schemes to include the topological molecules such as knots and

links, questions about the number of components and the number of crossings are incorporated

into the scheme. In the case of rotaxanes and pseudoknots, which are topologically trivial, a

procedure making them not trivial is described. For the hook-and-ladder as the well as Möbius

type of isomers, a procedure is given that allows their classification. All the new procedures

are included into the new classification scheme in such a way that all questions about topology

precede the ordinary question tree. In that way, a molecule is first classified as a topological

object, and then classical questions about its structure are asked.
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INTRODUCTION

The concept of isomerism was introduced by Berzelius

in 1830 for compounds having an identical chemical

composition and molecular mass, but different proper-

ties. Since then isomerism has been one of the most

fruitful concepts in chemistry.1 A modern definition of

isomerism2 says that isomers are individual chemical

species with an identical molecular formula and display

at least some differing physico-chemical properties,

which are stable for periods of time that are long in com-

parison with those during which measurements of their

properties are made. A number of classification schemes

have been proposed1 but the discovery of novel molecu-

lar structures has made repeated verifications and revi-

sions of the schemes necessary.3,4 The two main classes

of isomers are differentiated with respect to the molecu-

lar connectivity: structural (constitutional) isomers have

different whereas stereoisomers have identical connecti-

vities. Next, either chain, position and functional group

isomerism (tautomerism included) or optical, geometri-

cal and orientational isomerism is defined.

One recent type of stereoisomerism (first discussed,5,6

then discovered in different forms of nucleic acids7–20 and

synthesized: knots, 21–24 hook-an-ladder and Möbius,25,26

catenanes and rotaxanes27–49) is topological isomerism.50,51

Topological isomers can be either constitutional isomers

or stereoisomers; therefore, they can be both optically

active and/or geometrical and/or orientational isomers.

Thus, an unique definition of topological isomerism is de-

sired. Intuitively, there is a difference between the »cy-

cle-knot«, link(i)-link(j), »cylinder-Möbius strip« and »sphe-

re-torus« isomerisms. The aim of the present paper is to

extend the classification scheme3,4 to include knots, links

(catenanes) and some of the less frequently synthesized

or observed topological isomers.



RESULTS AND DISCUSSION

Motivation for Extension of the Classification

Scheme

The classification scheme of isomers3 is presented in Ta-

ble I. This scheme seems to be quite satisfactory as long

as we deal with the molecules that are not topological

isomers. In very detailed classiffication scheme,4 topo-

logical isomers are included, yet only as having the

same connectivity.

Let us consider the molecular cycle (unknot) and the

simplest isomeric molecular trefoil knot (Figure 1).

These two molecules have identical connectivity matrices,

however, to say that they are configurational diastereo-

isomers (Table I) is not adequate. The same holds for

any pair of molecular isomeric knots of different topo-

logical type (cf. Figure 2).

Let us now consider molecular links (catenanes) and

separate two cyclic molecules of the same size, like

those interlocked in the catenane structure (Figure 3).

Again, the catenane molecule and the two separated mo-

lecules have the same connectivities. However, the mass

spectrum of the former should exhibit a molecular peak

corresponding to the sum of catenane components mas-

ses whereas that of the latter should not. Therefore, the

connectivity matrix of the former can be written in the

form of a single, two diagonal block matrix whereas that

of the latter in the form of two matrices.

Let us now consider two catenane molecules of

identical molecular formulas and topological type but
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Figure 1. Cyclic (A) and trefoil knot 31 (B) carbyne C30 molecules
have identical connectivity matrices.58–60

Figure 2. Connectivity is the same for any pair of isomeric knot
molecules; e.g., the figure-eight 41 knot (A) and the 62 (B) car-
byne C60 knot molecules.60

Figure 3. The molecular 52
1 link (catenane) (A) and two separate

cyclic carbyne molecules (B) and the have identical connectivities;
however, the former is one molecule and the latter are two mole-
cules.61

(A) (B)

Figure 4. Two isomeric catenane molecules are of the same topo-
logical type 22

1 (Hopf links) but they have different connectivities:
rings are of different size – it has been proposed to name them
catenamers.61



differing in the size of the components (Figure 4). These

molecules have different connectivity matrices and, in

that sense, they are constitutional isomers; and yet they

are of the same topological type; therefore, we have na-

med this kind of isomers catenamers.60

Now, let us consider two catenanes with identical

connectivity matrices, i.e., identical in the size of the

components, but differing in topological type (Figure 5).

Once again, in terms of the classification scheme presen-

ted in Table I, these molecules would be classified inad-

equately. They should be named configurational diaste-

reoisomers; however, this would be an oversimplificati-

on: the number of different catenanes is large and all

those with a relatively small number of crossings are to

be classified analogously to the mathematical classifica-

tion of links.52–56

The above examples show why the classification

scheme3,4 (Table I) has to be revised and extended. In

the revised approach, new questions must be asked, con-

cerning:

a) structure connectivity (catenanes, rotaxanes),

b) number of components (catenanes, rotaxanes),

c) possibility of structure decomposition without bond

breaking (rotaxanes), and

d) number of crossings (knots, catenanes, rotaxanes, and

pseudoknots).

The aim of any classification scheme is to sort the

existing molecules, but also to show the possibility of

the existence of new categories of compounds. On the

other hand, extending the classification scheme towards

topological molecules involves the risk of going too far,

i.e., of including the objects that are mathematical fig-

ures rather than potential molecules. Therefore, it is im-

portant to balance the descriptivity and the predictivity

of the classification developed. This is why the modified

CLASSIFICATION OF TOPOLOGICAL ISOMERS 147

Croat. Chem. Acta 76 (2) 145¿152 (2003)

TABLE I. The classification scheme for isomers of organic molecules according to Ref. 3

Two molecules have the same molecular formula

Are they completely superimposable?

YES:

They are

IDENTICAL

STRUCTURES

NO

Any pair of compounds beyond this point are

ISOMERS

PLACE TO DETERMINE THE MOLECULAR TOPOLOGY (this work)

Do they have identical connectivity matrices?

YES:

They are

CONSTITUTIONAL

ISOMERS

NO:

They are

STEREOISOMERS

Are they non-superimposable mirror images?

YES:

They are

ENANTIOMERS

NO:

They are

DIASTEREOISOMERS

Are they identical after rotation around a

single bond?

Are they identical after rotation around

a single bond?

YES:

They are

CONFORMATIONAL

ENANTIOMERS

NO:

They are

CONFIGURA-

TIONAL

ENANTIOMERS

YES:

They are

CONFORMATIO-

NAL

DIASTEREO-

ISOMERS

NO:

They are

CONFIGURA-

TIONAL

DIASTEREO-

ISOMERS

(A) (B)

Figure 5. Two isomeric catenane molecules (A) 22
1 and (B) 42

1

have identical connectivities but different topological types.61



scheme proposed below continues to maintain some

questions, which are easily to generalize, in their simple

forms.

Concept of Simplified Reduced Regular Diagram

Before new elements of the question tree are introduced

and discussed, the regular diagram, an elementary con-

cept of the knot theory,53 must be defined: A regular dia-

gram D��2 of a (molecular) knot, link, or rotaxane

(knotted molecular structure) S��3 (molecular graph in

�3) is such a projection of the molecule S onto the dia-

gram D in which:

(i) The diagram D has at most a finite number of points

of intersections.

(ii) Inverse image of each intersection point has exactly

two points.

(iii) A vertex (atom) can be a point of intersection but it

is never mapped onto a double point.

The situations presented in (Figures 6A-6C) are not

allowed in a regular diagram.

The number of regular diagrams is countless,53 be-

cause they may have the crossing points of the type shown

in Figures 6D-6F, therefore, a reduced regular diagram

(RRD) does not possess any crossing point of this type.

The presence or absence of side chains or substitu-

ents does not affect the topological type of molecular

structure. Moreover, all the side chain and substituent

subtleties are included into the molecular connectivity

and are classified by reference to Table I. In particular,

the (phenyl, naphthyl, etc.) rings in the main chain can

be replaced by one segment. Therefore, for the analysis

of the topological type of a molecular structure, the re-

duced regular diagram can be further simplified by cut-

ting off the side chains and substituents and replacing

small untied chains by segments. In that way, we obtain

a simplified reduced regular diagram (SRRD), which

can be further examined as a sheer topological object.

Concept of �-link

The idea of a (simplified) reduced regular diagram is

very useful if we deal with non-trivial topological struc-

tures. However, a very important class of topological

compounds, rotaxanes, treated in terms of RRD, reveal

their trivial topological structures: reduction of a regular

diagram of a rotaxane molecule leads to several untied

components in a rotaxane diagram. (In general, some ro-

taxane components may still be tied because they may

be topologically knotted or linked).

To avoid the problem of rotaxane classification, as a

topologically trivial molecule, Dodziuk and Nowinbski

attached two (infinite) planes to two ends of the inter-

laced component of a rotaxane molecule.50 Here, let us

imagine that we close the rotaxane molecule in a 3-di-

mensional sphere (a figure homeomorphic with the

sphere) that has only two common points with the rota-

xane structure, which are the ends of the interlaced com-

ponent. If there is more than one interlaced component,

the sphere has mutual points with all the ends. On the

sphere, we choose an arc or arcs (figures homeomorphic

with arcs) that join all the pairs of ends of the interlaced

component(s) and are mutually disjoint. As a result, we

obtain here a link that can be classified in full analogy to

the catenane structure (Figure 7A). The above concept is

similar to the concept of an (n, n)-tangle;53 in a tangle,

however, all the ends of an internal segment placed at

the sphere are joined by a single circle. Let us name the

object that results from closing the rotaxane molecule

within a sphere and joining the 2n ends of interlacing

components the �-link.

Concept of �-knot

In the mid-1990’s Mislow and Liang presented several

examples of pseudoknots.57 The pseudoknots are knot-

ted structures which, however, are not closed and there-

fore are topologically trivial. In this case, the idea of clo-

sing the molecule in a sphere and then joining its ends,

placed on the sphere, by an arc is very useful (Fig 7B).

We shall refer to the knot resulting from a pseudoknot as

the �-knot. In that way, the �-knot can be classified ana-

logously to the ordinary knot.
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Figure 6. The cases not permissible in the regular diagram (A-C)
and types of crossings that have to be reduced to obtain the re-
duced regular diagram (D-F). K stands for knot.



Hook-and-ladder and Möbius Strip Molecules

A connected bi-, tri-, ..., j-cyclic molecule can be topo-

logically not trivial, i.e., it can have k crossings. In gen-

eral, any cycle can have crossings with itself and/or with

another cycle. So far, two types of molecules belonging

to this class have been known in chemistry: the hook-

and-ladder and the Möbius strip25,26 compounds. In the

former type the ending two cycles are linked (Figure

8A) and in the latter the binding cycle is twisted (Figure

8B). Here, we address solely these two types of mole-

cules. Unlike in mathematics, a chemical Möbius strip

(and any other molecule) can always be classified as

one-dimensional figure, because the bonds can be trans-

formed into segments in �3. We propose to classify the

two types of compounds analogously to the classifica-

tion proposed in our recent paper on hook-and-ladder

carbyne structures.64

The following three factors have to be considered to

classify the topological type of hook-and-ladder structu-

res:64

The first is the M-H (Möbius-Hook-and-Ladder)

isomerism at the (j)-cycles, the idea first formulated as

cis-trans isomerism at the cyclobutadiene ring for hook-

and ladder structures.64 Let us replace the (j-2)-cycles by

a rectangle with the longer pair of bonds representing all

the (j-2) binding cycles. In that way, we obtain a simpli-

fied tricyclic structure. We shall refer to such a simplifi-

cation as the 3-cyclic reduction. Now, assuming that the

segment ends at two neighbouring vertices of the rectan-

gle, the structure is named the H-structure (Hook-

and-Ladder) (Figures 8C and 8D), and if otherwise,

i.e., with the ends attached to the diagonal vertices, the

structure is called the M-structure (Möbius) (Figures 8E

and 8F). Notice, that the H-structures of type as in Fig-

ure 8D may be named also Belt structures.66

The second is the path over the structure: if we agree

that the molecular path goes through the shorter bonds of

the rectangle (represented in Figure 9 by broader lines),

two situations are possible: (i) the path runs over the

whole structure, (ii) the path runs over two separated cir-

cles. The two situations exist only for the H-structures.

For the M (Möbius) isomers, the path is always over

the whole structure. However, in their case, there is also

a topological invariant, which is the path orientation,

i.e., the order of the labels of the four vertices of the rec-
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Figure 7. Illustration for �-link (A) and �-knot construction (B).

( –2)–cyclesj

12

3 4

12

3 4

( –2)j
cycles

(C) (D)

(E) (F)

(A) (B)

( –2)cyclesj

( –2)–cyclesj

( –2)–cyclesj ( –2)–cyclesj

Figure 8. Scheme of hook-and-ladder (A) and Möbius (B) structu-
res, and two possible hook-and-ladder (C, D) and Möbius (E, F)
isomers.

( –2)–cyclesj

(A) (B) (C)

(E) (F)

( –2)–cyclesj

( –2)–cyclesj

( –2)–cyclesj ( –2)–cyclesj

Figure 9. Scheme of different new types of topological compounds.



tangle determined by the path. Assume that the vertices

are labeled counterclockwise and the path runs from the

first vertex through the long segment to the diagonal

third. Then, the path goes either to the second or to the

fourth vertex. Abstraction classes of the sequences either

(1243) � (1342) or (1423) � (1324) determine the type of

the M isomers.

If the H-M isomerism occurs at the (j-2)-cycles, two

kinds of H and two kinds of M isomers appear (Figures

8C–8F). Thus, let us introduce the following notation of

the isomers:

� kn(J)

where k – number of crossings,

n – serial number,

J – path over the structure running either over the

whole structure (J = I) or over two independent cycles (J

= II) for the H isomers, or orientation equivalent to the

rectangle vertices numbering (1243) � (1342) then (J = I)

or (1423) � (1324), then (J = II) for the M isomers

� – H or M arrangement around the rectangle

(resulting from 3-cyclic reduction) separating the two

linked (H) or knotted (M) segments.

In a search for topological classification, there is no

need to address the number of cycles ( j-2): we assumed

that these cycles are neither linked nor knotted and the

number of cycles will be found by connectivity exami-

nation based on Table I.

Classification of Topological Molecules

The concepts of (simplified) reduced regular diagram,

�-link, �-knot, and (H-M)-isomerism allow us to classify

the known knot, link, rotaxane, pseudoknot, hook-and-

ladder, and Möbius molecular structures. Assume that

for the molecule to be classified, the molecular graph,

the simplified reduced regular diagram, the �-link and

the �-knot diagram are well known.

Than we can find the following numbers:

1. Number of connected components m of the mo-

lecular graph.

2. Number of cycles c in the simplified reduced reg-

ular diagram.

2.1. If m – c = 0, then we deal with

2.1.1. knot (m = 1, c = 1), or

2.1.2. link (m>1).

2.2. If m – c > 0, then we deal with a

rotaxane molecule, and

2.2.1. �-link must be formed.

2.2.2. Number of connected �-link compo-

nents � must be checked.

2.3. If c = 0, then we deal with a pseudoknot

or a not knotted molecule, and

2.3.1. �-knot must be formed.

2.4. If m – c < 0, then we deal with a hook-

and-ladder or Möbius strip molecule (m = 1, c>1), and

2.4.1. A 3-cyclic reduction of j-cycles of

the molecular graph must be applied.

2.4.2. Hook-and-Ladder or Möbius-iso-

merism must be distinguished.

3. Number of crossings of the simplified reduced re-

gular diagram k.

4.1. Classified topology of the molecule can be writ-

ten using the Alexander and Briggs notation:65 (kn

m ) in

the case of links (catenanes) and knots (then m = 1 is

omitted in the notation) where subscript n is the prime

knots or links counting index.

4.2. In the case of rotaxanes, we propose to use a si-

milar notation: (�
�

kn

c( , )
), where � stands for the �-link

procedure applied, and the superscript is the number pair

(� , c) where � is the number of �-link components and c

is the number of parent cyclic components.

4.3. In the case of �-knots, we propose to use a no-

tation similar to the knot notation: (�kn), where letter �

stands for the �-knotting procedure applied.

4.4. In the case of Hook-and-Ladder or Möbius iso-

mers, we use the notation (�kn(J)), where � = H or M

(optionally Hook or Moeb), and J stands for the type of

two segments binding to the model rectangle (see previ-

ous section).

4.6. If k = 0, symbols are omitted.
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Scheme 1



The above numbers should be found (Scheme 1),

and the Alexander and Briggs notation should be given

to molecules, just after we state that the two molecules

are isomers (see PLACE TO DETERMINE THE MO-

LECULAR TOPOLOGY, Table I). Once the topological

notation is assigned to the classified molecules, the re-

maining questions in Table I can be asked.

Final Remarks

The present paper focuses on the known types of topo-

logical molecules rather than on a multitude of possible

new compounds. Some new topological chemical struc-

tures may be generated by combining the known types

of structures and some by generalizing their definitions:

(i) knot and chain would give a ro-knot structure (Fig-

ure 9A),

(ii) knot and Möbius strip, or cycle and hook-and- lad-

der may yield a new type of catenanes (Figures 9B

and 9C ),

(iii) if not only two ending rings are linked or knotted in

the hook-and-ladder or Möbius strip structures, then

a new topological type of molecules is formed (Fig-

ure 9E),

(iv) if more than two segments in the hook-and-ladder or

Möbius structure can be linked and/or knotted, this

would lead to another new topological compound

(Figure 9F),

(v) etc. ...

We believe that the fascinating new kinds of topo-

logical compounds will be found in Nature and/or syn-

thesized soon. Thus, the problem of how to extend the

classification will be confronted with future needs.

CONCLUSIONS

The classification scheme for chemical compounds3,4 has

been extended to include topological molecules such as

knots, catenanes, rotaxanes, pseudoknots, hook-and-lad-

der, and Möbius. The extension required a few addi-

tional questions to be included into the classification.

They have been added so that all the questions about to-

pology precede THE ordinary question tree. In that way,

a molecule is first classified as a topological object, and

then classical questions about its structure are asked.
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SA@ETAK

Klasifikacija topolo{kih izomera: Uzlovi, spone, rotaksani i srodne molekule

Jan Cz. Dobrowolski

Dosada{nje sheme za klasifikaciju izomera nisu razmatrale topolo{ke izomere za npr. uzlove, katenane,

rotaksane, pseudouzlove, kuke-i-ljestve i Möbiusove molekule. Stoga su prvo sheme za klasifikaciju uzlova i

spona pro{irene time da uklju~uju pitanja o broju komponenti i broju kri`anja. Za topolo{ki trivijalne rotaksane

i pseudouzlove opisan je postupak koji ih ~ini netrivijalnim. Za izomere kuka-i-ljestva i Möbiusovih molekula

tako|er je dan postupak za njihovu klasifikaciju. Svi ovi navedeni postupci uklju~eni su u novu klasifikacijsku

shemu u kojoj upiti o topologiji prethode uobi~ajenom redoslijedu pitanja, naime, molekule se prvo klasifi-

ciraju kao topolo{ki objekti, a tek se onda postavljaju pitanja o njihovoj strukturi.
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