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A model of electrode reaction preceded by a first-order chemical reaction under chronoampero-
metric conditions on spherical electrodes has been developed. A general solution applying to
all values of equilibrium constants, including very small ones, was obtained by numerical inte-
gration. Well-known analytical solutions for steady-state and near-steady-state conditions and
for pure kinetic currents were shown to be special cases of the general solution. The conditions
for their application are given.
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INTRODUCTION

Kinetics of some homogeneous chemical reactions can
be measured by electrochemical methods because the
chemical disbalance can be maintained at the electrode
surface by the electro-consumption of one of the compo-
nents of the system1. This is called a CE mechanism.2

Some examples of the preceding reactions are the disso-
ciation of metal complexes,3,4 the dehydration of carbonyl
compounds,5–7 or the deprotonation of acids.8 The the-
ory of CE mechanism was developed for various elec-
trochemical methods, such as chronoamperometry,3,8–11

polarography,5,12–14 pulse polarography,15 cyclic voltam-
metry,1,16 rotating disk2 and square-wave voltammetry,17,18

using a stationary planar,9,18 a stationary spherical,3,8,10,11,17

expanding plane,12,13 expanding sphere14,15 and cylindri-
cal16 diffusion models under the steady-state,3,8–12,14 or
transient conditions.13,15–18 The steady-state models are
based on the assumption that the difference between the
equilibrium concentrations and the actual concentrations
of electroinactive and electroactive forms of the reactant

is independent of time. This condition is satisfied if the
ratio of concentrations of electroinactive and electroactive
forms is very high in the equilibrium. In that case, the
current depends entirely on the rate of the preceding re-
action. If this rate tends to zero, the current vanishes.
However, if the equilibrium ratio of concentrations of
two forms of the reactant is rather small, the diffusion of
electroactive form from the bulk of the solution towards
the electrode surface contributes significantly to the cur-
rent. Thus, the current does not vanish even if the rate of
the preceding reaction is reduced to zero. This observa-
tion can be explained only by general models, in which
no steady-state approximations are applied.6

In this communication, a general solution for chrono-
amperometry of CE mechanism on spherical electrodes
is developed in order to estimate the conditions under
which the steady-state assumption3,8,10,11 is justified. The
model applies to static mercury drop electrodes (r0 = 0.3
mm)19 and hemispherical semimicro- (r0 = 60 �m)20 and
microelectrodes (r0 = 5 �m)21.
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THE MODEL

An electrode reaction under a high overvoltage, preceded
by a first-order chemical reaction, is considered:

Z �
kK

k

Ox � �
� ���ne product (1)

where k is the chemical reaction rate constant, K = c Z
* /

c Ox
* is the equilibrium constant and c Z

* and c Ox
* are bulk

concentrations of the species Z and Ox, respectively. A
big difference between the electrode potential and the
standard potential of the redox reaction is assumed, so
that the influence of electrode kinetics can be neglected.
At spherical electrodes, reaction (1) can be described by
the system of differential equations:
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with the initial and boundary conditions:

t = 0, r � r0 : c cOx Ox
 * , c cZ Z
 * (4)

t > 0, r � � : c cOx Ox� * , c cZ Z� * (5)

r = r0 : c r=rOx, 0
= 0 (6)

(� �c rZ / )r=r0
= 0 (7)

(� �c rOx / )r=r0
= I / nFSD (8)

Here, D is the common diffusion coefficient, r0 is the
electrode radius, S is the electrode surface area and I is
the current. Eqs. (2) and (3) were derived using the rela-
tionship:
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Eqs. (2) and (3) are solved using the well known
substitutions:12

� = cOx + cZ (10)

� = cZ – K cOx (11)

Thus, the new system of equations is obtained:
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t = 0, r � r0 : � = c cOx Z
* *� , � = 0 (14)

t > 0, r � � : � � c cOx Z
* *� , � � 0 (15)

r = r0 : � �r r r r
 


0 0

(16)

( / )� �� r r r
 0
= I / nFSD (17)

( / )� �� r r r
 0
= –KI / nFSD (18)

As shown in Appendix I, its solution is an integral
equation:22
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where � = k(1+K) and a = D / r0.

For the purpose of numerical integration, Eq. (19) is
transformed into the system of recursive formulae:
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where:

� = I t nFSc K D� / ( )Ox
* 1�

� = kt K K( ) /1�

� = Dt r/ 0

P1 = erf (K� / 10)
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Pi = erf (K� i / 10) – erf (K� i �1 10/ )

Q1 = 1 – exp(�2/100) 
 erfc(�/10)

Qi = exp � ��2 1 100( ) /i � 
 erfc(� i �1 10/ ) –

exp � ��2 100i / 
 erfc(� i / 10)

R1 = 1 – exp �(�2 – K2�2) / 100� 
 erfc(� / 10)

Ri = exp �(�2 – K2�2) (i – 1) / 100� 
 erfc(� i �1 10/ ) –

exp �(�2 – K2�2) i / 100� 
 erfc(� i / 10)

and 100 � m � 1. Eq. (20) applies to D / r 0
2  k (1+K).

A Special Solution for �� / �t = 0

��� / �t = 0 = f �� � + f 
F(z)� (21)

where:

f =
K

K
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F(z) = z � 
 exp (z2) 
 erfc(z)

z = � + � (1+K) / K

Eq. (21) is identical with Eq. (24) in the paper of
Budevskii and Desimirov.11

A Special Solution for �� / �t = 0
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Eq. (22) is identical with Oldham’s equation (25).10

Note that from � �� / t 
 0 it follows that � �c tZ / =
K c t
 � �Ox / , but � �� / t  0. However, if � �� / t 
 0,
then � �c tOx / = 0 and � �c tZ / = 0, and so � �� / t 
 0.
Equation (21) corresponds to the kinetic steady-state ap-
proximation used in the planar diffusion models, while
equation (22) describes the steady-state diffusion condi-
tions at microelectrodes.

RESULTS AND DISCUSSION

The electrode mechanism (1) is characterized by two
trivial limiting conditions. If K � 0, the bulk concentra-
tion of the species Z also tends to zero and the
dimensionless current � tends to the limiting value:

�lim = 1 + � � (23)

If � � 0, the rate of the preceding chemical reaction
is negligible and the current depends only on the bulk
concentration of the species Ox:

lim
�

�
�
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( ) / ( )1 1� �� � K (24)

If � ��, the preceding reaction is so fast that the
equilibrium between the species Z and Ox is perma-
nently maintained both in the bulk of the solution and in
the diffusion layer. So, the dimensionless current tends
to the limiting value:

lim
�

�
��


 �lim (25)

Mathematically, this condition corresponds to the
special solution � = 0. Function � depends on the chem-
ical disbalance in the solution.

Finally, if K ��, the concentration cOx
* is negligible

and the current depends entirely on the rate of decompo-
sition of the Z species. It is sometimes called a pure ki-
netic current.6 Considering Eqs. (24) and (25), two limit-
ing values of the pure kinetic current can be noticed:

lim (lim )
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 (27)

The dimensionless current � depends on the
dimensionless kinetic parameter � = kt K( )1� / K, the
dimensionless sphericity parameter � = Dt r/ 0 and the
equilibrium constant K. The pure kinetic current (K >>
1) is independent of the equilibrium constant. Variation
of the measurement time changes both parameters, � and
�, but not their ratio. If � � 0, the solutions of the spher-
ical and planar diffusion models are identical. The latter
solution is given in Appendix I.

Figure 1 shows the dependence of the ratio of the ki-
netic and limiting currents I / Ilim = � / �lim, where �lim

is defined by Eq. (23), on the kinetic parameter �, for
various equilibrium constants K and the sphericity pa-
rameters �. The chosen values of the latter parameter (�
= 0.1, 1 and 10) correspond to 10 seconds of electrolysis
at a constant and high overvoltage on spherical or hemi-
spherical electrodes with radii r0 = 1 mm, 100 �m and
10 �m, respectively, all assuming that D = 10–5 cm2 s–1.
If the equilibrium constant is small, the ratio I / Ilim is a
sigmoidal curve increasing with � from (1 + K)–1 to 1. If
K > 102, this relationship is a parabolic curve. On spheri-
cal macro-electrodes (� = 0.1), the dependence of I / Ilim

on � is essentially similar to the corresponding relation-
ship on planar electrodes, as can be seen by comparing
Figures 1A and 2. On microelectrodes (� = 1 and 10),
the increasing of I / Ilim with � is significantly slower
than on macro-electrodes. If K � 102, this ratio is lower
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than 0.9 if � is smaller than 2.6, 12 and 94, for � = 0.1, 1
and 10, respectively. This means that for the same � and
K values the preceding chemical reaction appears slower
on microelectrodes than on macro-electrodes. Hence,
faster reactions can be measured on microelectrodes.

The influence of the measurement duration on the
ratio I / Ilim is shown in Figure 3. The increasing of time
is expressed as the increasing of the kinetic parameter �,
but the ratio � / � is constant. In Figure 3 this ratio is
very high: � = 10�, which corresponds to the conditions
on microelectrodes. Compared to Figure 1C, the ratio

I / Ilim does not increase to 1, but towards a lower boundary
that depends on the equilibrium constant. These bounda-
ries are: 0.52 (K = 1), 0.30 (K = 3) and 0.091 (K = 104).
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Figure 1. Dependence of the ratio of kinetic (Eq. 20) and limiting
(Eq. 23) currents on parameter �, for � = 0.1 (A), 1 (B) and 10
(C). K = 1 (1), 3 (2), 10 (3) and 104 (4).
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Figure 2. Relationship between I / Ilim and � on the planar elec-
trode (Eq. A9). K = 1 (1), 3 (2), 10 (3) and 104 (4).
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Figure 3. Dependence of I / Ilim on �, for the constant ratio �/� =
10. K = 1 (1), 3 (2) and 104 (3).

TABLE I. Dependence of the ratio I / Ilim on the kinetic parameter �

and the equilibrium constant K. The planar diffusion model (Eq. A9)

�

K:

I / Ilim

1 3 10 >100

0.2 0.512 0.313 0.281 0.287

0.4 0.540 0.447 0.473 0.476

0.6 0.582 0.578 0.603 0.604

0.8 0.633 0.677 0.694 0.694

1.0 0.686 0.748 0.759 0.759

1.2 0.737 0.799 0.807 0.807

1.4 0.783 0.837 0.843 0.843

1.6 0.822 0.866 0.870 0.870

1.8 0.855 0.889 0.891 0.891

2.0 0.880 0.906 0.908 0.908

2.5 0.924 0.937 0.937 0.937

3.0 0.948 0.955 0.956 0.956



If the ratio � / � is 0.1 and 1, the relationships between
I / Ilim and � are qualitatively similar to those shown in
Figures 1A and 1B, respectively, and the maximum values
of the ratio I / Ilim are: 0.92 (K = 1) and 0.91 (K = 104)
if � / � = 0.1, and 0.57 (K = 3), 0.52 (K = 10) and 0.50
(K = 104) if � / � = 1.

Tables I, II and III show the theoretical relationships
between the ratio I / Ilim and the kinetic parameter �, for
various equilibrium constants K and three types of elec-
trodes: a large stationary disk, a small static mercury
drop and two hemispherical microelectrodes. These ta-
bles can be used to estimate the rate constant k from the
experimental data if constant K is known. The main dif-
ference between the planar and spherical electrodes ap-
pears when the measurement time is varied. There is a
family of curves on the spherical electrode, which all
correspond to the same equilibrium constant K, but to
measurements of different duration, because of the
change of the apparent electrode sphericity with the
change of the measurement time. The data in Table II
cover the sphericity parameters from � = 0.236 (t = 5 s)
to � = 1.155 (t = 120 s). Precision of the rate constant
determination depends on the gradient � �( / ) /limI I �. If
K > 100 and the planar electrode is used, good results
can be obtained if I / Ilim < 0.9, or � < 2. If K = 1, this
condition is 0.5 < � < 2.5. On the mercury drop elec-
trode, the condition changes from � < 5, for t = 5 s, to �

< 10 for t = 120 s. On microelectrodes, the ratio I / Ilim
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TABLE II. Dependence of the ratio I / Ilim on the kinetic parameter
�, for various measurement times. The static mercury drop elec-
trode: r0 = 0.3 mm, D = 10–5 cm2 s–1

(A) K = 1

�

t / s:
I / Ilim

5 10 20 30 60 120
0.5 0.524 0.538 0.533 0.530 0.525 0.520
1.0 0.634 0.620 0.605 0.596 0.580 0.565
1.5 0.725 0.703 0.680 0.665 0.640 0.616
2.0 0.790 0.765 0.737 0.720 0.689 0.659
2.5 0.833 0.808 0.778 0.760 0.727 0.694
3.0 0.862 0.837 0.808 0.790 0.757 0.722
3.5 0.882 0.859 0.831 0.813 0.780 0.745
4.0 0.898 0.876 0.849 0.832 0.800 0.765
4.5 0.910 0.889 0.864 0.847 0.816 0.782
5.0 0.919 0.890 0.876 0.860 0.830 0.797
6.0 0.934 0.916 0.894 0.880 0.852 0.821
7.0 0.944 0.928 0.908 0.895 0.869 0.840
8.0 0.951 0.937 0.919 0.907 0.883 0.855
9.0 0.957 0.944 0.928 0.916 0.894 0.868
10.0 0.962 0.950 0.935 0.924 0.903 0.878
11.0 0.966 0.955 0.940 0.931 0.911 0.888
12.0 0.969 0.959 0.945 0.936 0.918 0.895
13.0 0.972 0.962 0.949 0.941 0.923 0.902
14.0 0.974 0.965 0.953 0.945 0.928 0.908
15.0 0.976 0.967 0.956 0.948 0.933 0.914
16.0 0.978 0.969 0.959 0.951 0.937 0.918
18.0 0.981 0.973 0.964 0.957 0.943 0.926
20.0 0.983 0.976 0.967 0.961 0.949 0.933

(B) K = 100

�

t / s:
I / Ilim

5 10 20 30 60 120
0.5 0.419 0.384 0.345 0.320 0.277 0.233
1.0 0.615 0.573 0.525 0.494 0.438 0.379
1.5 0.721 0.681 0.633 0.601 0.543 0.480
2.0 0.785 0.748 0.703 0.673 0.616 0.554
2.5 0.827 0.793 0.751 0.724 0.670 0.609
3.0 0.856 0.825 0.787 0.761 0.711 0.653
3.5 0.877 0.849 0.814 0.790 0.743 0.688
4.0 0.894 0.867 0.835 0.813 0.769 0.717
4.5 0.906 0.882 0.852 0.831 0.790 0.741
5.0 0.916 0.894 0.866 0.846 0.807 0.761
6.0 0.931 0.912 0.887 0.870 0.835 0.793
7.0 0.942 0.925 0.903 0.887 0.856 0.818
8.0 0.950 0.934 0.915 0.901 0.872 0.837
9.0 0.956 0.942 0.924 0.911 0.885 0.853
10.0 0.961 0.948 0.932 0.920 0.896 0.866
11.0 0.965 0.953 0.938 0.927 0.905 0.877
12.0 0.968 0.957 0.943 0.933 0.912 0.886
13.0 0.971 0.961 0.948 0.938 0.919 0.894
14.0 0.974 0.964 0.951 0.943 0.924 0.901
15.0 0.976 0.966 0.955 0.947 0.929 0.907
16.0 0.977 0.969 0.958 0.950 0.934 0.913
18.0 0.980 0.973 0.963 0.956 0.941 0.922
20.0 0.983 0.976 0.967 0.960 0.947 0.929

TABLE III. Dependence of the ratio I / Ilim on the kinetic parameter
�, for two measurement times. Hemispherical microelectrodes: r0

= 60 �m and 25 �m; K = 100 and D = 10–5 cm2 s–1

� I / Ilim � I / Ilim
r0 = 60 �m r0 = 25 �m

t = 10 s t = 60 s t = 10 s t = 60 s
1 0.317 0.183 2 0.310 0.168
2 0.482 0.306 4 0.471 0.284
3 0.584 0.397 6 0.572 0.371
4 0.653 0.467 8 0.640 0.439
5 0.702 0.522 10 0.690 0.494
6 0.739 0.567 12 0.728 0.539
7 0.768 0.605 14 0.757 0.577
8 0.792 0.636 16 0.781 0.609
9 0.811 0.663 18 0.800 0.636
10 0.826 0.686 20 0.817 0.660
12 0.851 0.724 24 0.842 0.700
14 0.870 0.754 30 0.870 0.744
16 0.885 0.778 34 0.884 0.767
18 0.896 0.797 40 0.899 0.795
20 0.906 0.814 44 0.908 0.810
25 0.924 0.845 50 0.918 0.829
30 0.936 0.868 60 0.931 0.853
35 0.945 0.885 70 0.940 0.872
40 0.951 0.898 80 0.947 0.886
45 0.957 0.908 90 0.953 0.897
50 0.961 0.916 100 0.957 0.907



may appear almost independent of the measurement
time. This can be seen in Table III. If for r0 = 25 �m and
t = 10 s (� = 4.0), � = 10 and I / Ilim = 0.690, then for t =
60 s (� = 9.8) � = 24.5 but I / Ilim = 0.704. Also, if for t =
10 s, � = 30 and I / Ilim = 0.870, then for t = 60 s, � =
73.5 but I / Ilim = 0.875.

The described results can be partly explained by
analyzing the approximative equation (21), which is
calculated assuming that � �� / t 
 0. It is demonstrated
in Appendix II that the result obtained in this way satis-
fies the initial assumption, within an error of 1 %, if
� + �(1+K) / K > 4. Equation (21) is characterized by the

following limiting values: lim ( )/
�

�� �
�
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0� �t F (see Eq.

A10 in Appendix I), lim /
�

��
��


� �t 0 = lim /
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0� �t = 1 +

� � = �lim (see Eqs. 23 and 25), lim /
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� �� � 0 = � �� � +

� F(� + �) / (� + �)� / (� + �) and lim( lim )
� �
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�
� ��0
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and lim ( lim )/
� �
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� �t 0 = �lim , which is in agreement

with Eqs. (26) and (27). However, the limiting value

lim /
�

��
�



0

0� �t = �� � + F(�(1+K) / K) / (1+K)� / (1+K) is

in disagreement with Eq. (24), except for K ��. Thus,
the approximative equation (21) should differ from the
general solution if both � and K are small. This can be
seen from Figure 4. Curves 1–3 and 4–6 are calculated
using Eqs. (20) and (21), respectively. Figure 4A (� = 0.1)
can be compared with Figure 2. The curve calculated using
Eq. (A10) is identical with curve 4 in Figure 2. If K = 1,
the result of Eq. (A10) is accurate if � > 3.5 and if K = 3
the limit of accuracy is � > 1.5, but if K > 102 the result
is accurate in the whole range of � values. The same
conditions apply to spherical macro-electrodes, as can
be seen by comparing curves 1 and 4, as well as curves 2
and 5 in Figure 4A. Equation (21) describes the pure ki-
netic current accurately (see curves 3 and 6). On micro-
electrodes, the accuracy of Eq. (21) increases proportio-
nally to the value of parameter � (see Figures 4B and 4C).
In the first approximation, the gradient � �( / ) /limI I � of

the pure kinetic current ( lim /
�

��
��


� �t 0) is close to the ra-

tio � / (� + �) and decreases as � is increasing.

If the ratio � / � is constant � = w �, as in the case of
the measurement time variation, equation (21) can be
transformed as follows:

� ��� �/ lim/t
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The ratio I / Ilim estimated using Eq. (28) exhibits two limit-

ing values: lim / )/ lim
�

�� �
�



0

0� � �t = 0 and lim //
�

��
��


� � �t 0

�lim ) = f1. The limit for � �� is smaller than 1 for any

w > 0. This is shown in Figure 5, for � / � = 10. Curves
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Figure 4. Comparison of the ratio I / Ilim calculated by Eq. (20)
(curves 1–3) and Eq. (21) (curves 4–6), for � = 0.1 (A), 1 (B) and
10 (C). K = 1 (1 and 4), 3 (2 and 5) and 104 (3 and 6).



1–3 are calculated by Eq. (20) and curves 4–6 by Eq.
(28). The approximative and general solutions are equal
if � > 10, for K = 1, and � > 4, for K = 3. There is no re-
striction for pure kinetic current (see curves 3 and 6).
Curves 1–3 are the same as those shown in Figure 3.
Their limiting values for � �� are equal to factor f1.
The same boundary value of equation (21) can be ob-
tained by considering the limiting value of the real cur-
rent when the measurement time is increased to infinity:

I nFSC K D f
D

r

f

t
F zt� ��/

* ( ) ( )
 
 � �
�

�
�

�

�
�0

0

1Ox
�

(29)

lim( / )/ lim
t

tI I
��


� �� 0 =
k K D r

k K D K r

( ) /

( ) ( ) /

1

1 1
0

0

� �

� � �
(30)

where: Ilim = nFSc Ox
* (1 + K)D / r0. Equation (30) is iden-

tical to equation (22) and Oldham’s equation (25),10 as
well as to the limiting value of equation (28) for t ��.
Note that � / � = K D / r0 k K( )1� . The calculations
show that Eq. (28) approaches Eq. (30) if � > 50. This is
in agreement with the condition � > 100/ �. Hence,
Oldham’s equation can be used if this condition is satis-
fied. If the rate constant k is measured using microelec-
trodes with various radii, the minimal measurement times
that satisfy the condition for the steady-state � �� / t 
 0
are: t = 63 s (for r0 = 5 �m), t = 250 s (r0 = 10 �m), t =
1563 s (r0 = 25 �m) and t = 6250 s (r0 = 50 �m). Obvi-
ously, at some microelectrodes, the measurements can
be performed only under near-steady-state conditions.

For the pure kinetic current (K > 100) under the
steady-state conditions (� > 50), Eq. (30) can be simpli-
fied if wK>100 / K << 1, where: wK>100 = DK / r0 k . Un-
der this condition one obtains:

(I It� ��/ lim/
0 )K>100 =
1

1 100� !wK

(31)

and

k
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D

r

I I

I I

t K

t K
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0 1001
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( / )
/ lim

/ lim

� �

� �

�

�

(32)

In conclusion, the rate constant k can be determined
using Eqs. (30), or (32) if � > 50. If � < 50, but K > 100,
Eqs. (21) and (28) can be used. If � < 50 and K < 100,
Eq. (20) must be used. On planar electrodes, Eq. (A10)
can be used if K >100, and Eq. (A9) if K < 100. For some
particular cases, the data in Tables I–III can be used.

Calculations of rate constants of the dehydration of
several carbonyl compounds were reported in our previ-
ous paper.6 Here, the application of the theory is ex-
plained by analyzing an imaginary experiment. The rate
constant of the preceding chemical reaction can be deter-
mined if the equilibrium constant of the electroinactive
and electroactive forms of reactant (K), as well as their
average diffusion coefficient (D), are known. It is assumed
that the two-electron electrode reaction of the species Z
and Ox is measured at constant potential on the static
mercury drop electrode of radius r0 = 0.3 mm (see equa-
tion 1). It is further assumed that K = 100, D = 10–5

cm2 s–1 and c cZOx
* *� = 10–3 mol L–1, as well as that the

currents measured after 5, 10, 20 and 30 seconds are 1.9,
1.6, 1.3 and 1.2 �A, respectively. The limiting currents
at these times are calculated by the following equation:

Ilim = nFS (cOx
* + cZ

* )
D

t

D

r

�

�

�
�
�

�

�
�
�� 0

(33)

So, the limiting currents and the corresponding ratios
of the kinetic and limiting currents are: 2.47, 1.96, 1.60
and 1.44 �A, and 0.77, 0.82, 0.81 and 0.83, for t = 5, 10,
20 and 30 seconds, respectively. Using the first four col-
umns of Table II (for K = 100), it can be seen that the cal-
culated ratios I / Ilim correspond to the following values of
the dimensionless kinetic parameters �: 1.9, 2.9, 3.5 and
4.5. The rate constants are calculated using the equation:

k =
� 2 2

1




 �

K

t K( )
(34)

The results are: 71.5, 83.3, 60.6 and 66.8 s–1. Hence,
the average value of the rate constant of the preceding
chemical reaction is k = 70 " 10 s–1. This procedure
shows that for each CE mechanism, specific relation-
ships between I / Ilim and �, for particular values of K, D,
r0 and t, have to be calculated using Eq. (20).

APPENDIX I

A General Solution

Using the Laplace transforms, differential equations (12)
and (13) are solved in the Laplace space:
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Figure 5. Comparison of the ratio I / Ilim calculated by Eq. (20)
(curves 1–3) and Eq. (21) (curves 4–6), for the constant ratio �/�
= 10. K = 1 (1 and 4), 3 (2 and 5) and 104 (3 and 6).
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where s is a transformation variable, while a and � are
defined after Eq. (19). Considering equation (16), the in-
verse Laplace transformation of Eqs. (A1) and (A2) re-
sults in equation (19).

For the numerical integration, the following trans-
formations were used:

LJ1 =
1 1

s s a



� ��
(A3)

s + � = s* (A4)

LJ1 =
1

2

2

a

a

s s a�
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�

�( * )( * )
(A5)

They are correct if a2  �.

A Steady-state Approximation: � �# / t 
 0

Under this condition, the solution of equation (13) is:
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r r
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nFS D
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0
(A6)

Because of equation (16), the Laplace transformation
of Eq. (A6) is combined with Eq. (A1):
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(A7)

Equation (21) is obtained by the inverse Laplace trans-
formation of Eq. (A7).

A Steady-state Diffusion Model: � �$ / t 
 0

The solution of equation (12) is:

�r r c c
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0 Ox Z

* * –
1

a

I

nFS D

 (A8)

Equation (22) is obtained by combining Eqs. (16),
(A6) and (A8).

A General Solution for the Planar Diffusion Model

�

�

1
1

1
1

5

,planar 

�

� �

P

�

�
�

m,

j

j

m
m j m jU P

planar

planar




� �
�

�
�
�

�




�
� � � ��1

51

1
1 1

, � � �
�
�

�
1

5� �

P1

�

(A9)

where: U1 = 1, Ui = i i� �1, while �, � and Pi are de-
fined after Eq. (20).

A Special Solution for � �# / t 
 0

�planar,� �� / t 
 0 = F(�) (A10)

where: F(�) = � � 
 exp(�2) 
 erfc(�).

The well known Eq. (A10)2 is characterized by the
following limiting values:

lim ( )
�

�
�



0

0F and lim ( )
�

�
��


F 1.

APPENDIX II

The Condition that Justifies the Assumption that

� �# / t 
 0

If it is assumed that � �� / t 
 0, the solution of Eq. (13)
is equation (A6), and the solution of Eqs. (12) and (13)
is:11
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where:
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Hence, the first derivative on t of Eq. (A6) is:
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The solution of Eq. (A12) is:
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Considering Eq. (A10), the assumption � �� / t 
 0 is
satisfied only if u t ��. However, an approximative
condition, with the error of 1 %, can be postulated:

F(u t u t) .� � 
1 0 01 (A14)

which is satisfied for

u t � 4 (A15)
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SA@ETAK

Model CE mehanizma na sferi~nim elektrodama

Milivoj Lovri} i Yakov I. Tur'yan

Razvijen je matemati~ki model elektrodne reakcije kojoj prethodi kemijska reakcija prvog reda za krono-
amperometriju na sferi~nim elektrodama. Numeri~kom integracijom dobiveno je op}e rje{enje koje vrijedi za
sve vrijednosti konstanti ravnote`e elektroinaktivnoga i elektroaktivnoga oblika reaktanta. Pokazano je da su
poznata analiti~ka rje{enja za ~istu kineti~ku struju i za struju koja ne ovisi o vremenu posebni slu~ajevi op}ega
rje{enja. Odre|eni su uvjeti za njihovu primjenu.
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