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SUMS OF BIQUADRATES AND ELLIPTIC CURVES

Julián Aguirre and Juan Carlos Peral

University of the Basque Country, UPV/EHU, Spain

Abstract. Given the family of elliptic curves y2 = x3 − (1 + u4)x,

u ∈ Q, or equivalently y2 = x3 − (m4 + n4)x for m,n integers, we prove
that its rank over Q(u) is 2. We also show the existence of subfamilies of
rank at least 3 and 4 over Q(u). Also, assuming the Parity Conjecture, we
prove the existence of infinitely many curves having rank at least 5 over Q.

Performing an exhaustive search in the range 1 ≤ n < m ≤ 251000
we have found more than 1500 curves with rank 8, over 150 with rank 9,
nine of rank 10 and one of rank 11. This improves previous results of Izadi,
Khoshnam and Nabardi.

1. Introduction

Curves of the form y2 = x3 − B x have j-invariant equal to 1728 and
complex multiplication. They have been studied by many authors, see for
example [1,8,9,13,14,17,19,21] and the references therein. An example with
rank 14 was found by Watkins within the family constructed in [1].

Several families of integers B’s have been considered. For instance, the
case B = d2 is known as the congruent number problem and it corresponds
to the quadratic twist by d of the elliptic curve y2 = x3 − x. For the current
rank records in every possible torsion group see [7].

In this paper we consider the family of curves

(Em,n) y2 = x3 − (m4 + n4)x, m, n ∈ N.

There is no loss of generality in assuming m4 + n4 to be fourth power free,
so we will assume from now on that gcd(m,n) = 1. The change of variables
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y/m3 → y, x/m2 → x, u = n/m shows that Em,n is isomorphic to the one-
parameter family

(Eu) y2 = x3 − (1 + u4)x, u ∈ Q.

We prove that Eu has rank 2 over Q(u). By imposing the existence of a
third independent point, or equivalently by properly choosing u, we show the
existence of a subfamily with rank at least 3.

Euler and Steggall constructed parametric families of integers expressible
in two different ways as a sum of two biquadrates. Using these parameteri-
zations we prove that there exist two subfamilies with rank at least 4 over
Q(u). Moreover all the curves of the second family have root number −1, and
therefore, assuming the Parity Conjecture, all but a finite number have rank
at least 5 over Q.

We finish by giving the results of a massive search for curves of high rank.
The computations were done using Mathematicar [15] and Cremona’s mwrank
[5].

This is an expanded version of [2] by the same authors.

Remark 1.1. In [9], which appeared simultaneously with [2], (March
2012), the same family of elliptic curves is considered. The authors study
several families of curves, included one studied here. They prove the existence
of subfamilies having rank at least 3 and 4 over Q(u), and they also use the
Euler parameterization in order to prove the existence of rank 4 families. They
do not show the existence of infinitely many curves of rank at least 5 over Q
and they show particular examples of curves having rank 7 and 8. In both
respects our paper represents an improvement of their results.

1.1. The root number of Em,n. Sincem and n are relatively prime, if p 6= 2
is a prime divisor of m4 + n4, then −1 is a quadratic residue modulo p and
p ≡ 1 (mod 4).

If B 6≡ 0 (mod 4), then the root number of the curve y2 = x3 − B x is
(see [18])

ω(B) = sign(−B) ǫ(B)
∏

p2‖B,p≥3

(−1

p

)

,

where

ǫ(B) =

{

−1 if B ≡ 1, 3, 11, 13 (mod 16),

1 if B ≡ 2, 5, 6, 7, 9, 10, 14, 15 (mod 16).

As observed before, all odd prime divisors of m4+n4 are ≡ 1 (mod 4), so that
the product of the Legendre symbols in the above formula is equal to 1. On
the other hand, fourth powers are 1 or 0 modulo 16 and sign (m4 + n4) = 1,
so that the root number of Em,n is

ω(Em,n) =

{

1 if m4 + n4 odd,

−1 if m4 + n4 even.
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1.2. The torsion group of Em,n. The torsion group of the elliptic curve
y2 = x3 − B x is Z/4Z if B = −4, Z/2Z × Z/2Z if B is a perfect square,
and Z/2Z in the rest of the cases (see [22, Proposition 6.1]). Since m4 + n4

is never a perfect square (see [11, Theorem 266]), the torsion group of Em,n is
Z/2Z.

1.3. Notation. Given an elliptic curve E over a field K, we define
rank(E(K)) as the rank of E over K; if no field is mentioned, it is understood
that the field is Q. If E is an elliptic curve over Q, Selmer2(E) denotes its
2-Selmer rank.

2. General case: ranks 2 and 3

In this section we prove the main result about the rank of the family Eu.

Theorem 2.1. a) The rank of Eu over Q(u) is 2.
b) There exists a subfamily of Eu whose rank is at least 3 over Q(u).

Proof. a) We find that the following two points are on the curve:

P1(u) = (−u2, u), P2(u) = (−1, u2).

In order to prove that the family Eu has rank at least 2 over Q(u), it
suffices to find a specialization u = u0 such that the points P1(u0) and P2(u0)
are independent points on the specialized curve overQ, since the specialization
is an injective homomorphism for all but finitely many values of the parameter
(see [22, Theorem 11.4, pp. 271].) For u0 = 2 the curve is y2 = x3 − 17 x and
the points are

P1(2) = (−4, 2), P2(2) = (−1, 4).

These two points turn out to be independent, as shown by mwrank, and
therefore the rank of the family Eu is at least 2 over Q(u).

Next we show that the rank of Eu over Q(u) is exactly equal to 2. We
get an upper bound for rank(Eu(C(u))) using Shioda’s formula ([20, Corollary
5.3]):

rank(Eu(C(u))) = rank NS(Eu,C)− 2−
∑

s

(ms − 1).

Here NS(Eu,C) is the Néron-Severi group of Eu over C, and the sum ranges
over all singular fibers of Eu, with ms being the number of irreducible
components of the fiber. Since Eu has short Weierstrass form y2 = x3 +
C(u)x + D with C(u) a polynomial of degree 4 in u and D = 0, Eu is a
rational surface (see [3, 16]), and hence rankNS(Eu,C) = 10. The numbers
ms can be determined from Kodaira fibers (see [16, Section 4]), which are
given by the four roots of the discriminant ∆ = 4 (1 + u4)3, all of them of
type III. Therefore

rank(Eu(C(u))) ≤ 10− 2− 1− 1− 1− 1 = 4.
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Thus we now know that 2 ≤ rank(Eu(Q(u))) ≤ 4. Let us consider now
the curve Eu over K(u), where K = Q(

√
−1). Since Eu is isomorphic to its

(−1)-twist, its rank over K(u) is at least 4 and the preceding inequality is an
equality. It follows that the rank over Q(u) is 2.

b) Now we force the existence of a new point on Eu by choosing a subfamily
of parameters, and we prove the independence of the new point with respect
to P1 and P2. We impose −u2 + 1 as the x-coordinate of a new point on
Eu. This is equivalent to 2(u2 − 1) being a rational square or to choose
u = (w2+2)/(w2−2). Once we clear denominators and rename the parameter
by u we have the new family given by

(2.1) y2 = x3 − 2 (16 + 24 u4 + u8)x.

The three points are

P1(u) = (−(2 + u2)2, (−2 + u2)2(2 + u2)),

P2(u) = (−(−2 + u2)2, (−2 + u2)(2 + u2)2),

P3(u) = (−8 u2, 4 u(−2 + u2)(2 + u2)).

For u = 1 the curve is y2 = x3 − 82 x and the specialized points are

P1(1) = (−9, 3), P2(1) = (−1,−9) and P3(1) = (−8,−12).

A calculation with mwrank shows that three points are independent. As before,
a specialization argument implies that the rank of (2.1) over Q(u) is at least
3.

Remark 2.2. Other families of rank at least 3 can be found by imposing
u2 + 1 or 3 u2 − 4 u+ 3 as the x coordinate of a new point. The first case is
equivalent to choose u = (−2+w2)/(2− 4w+w2), and the second to choose
u = (−6 + w2)/(−2 + 4w + w2).

3. Two representations as sum of biquadrates: ranks 4 and 5

In this section we give results about the rank of curves y2 = x3 − B x
when B is the sum of two biquadrates in two different ways.

The diophantine equation

(3.1) m4

1 + n4

1 = m4

2 + n4

2

has been studied by many authors (see [6, pp.644–648] and [25]). Several
parametric solutions are known. The list of solutions with

max(m1, n1,m2, n2) ≤ 107

can be found on the web page [24].
We will consider two parametric families of solutions of (3.1), the first

one constructed by Euler and the second by J. Steggall.
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3.1. Euler’s parameterization. Euler constructed a two parameter family
of solutions of (3.1) homogeneous of degree 7 which can be written as

m1 = f(u, v), n1 = f(v,−u), m2 = f(u,−v), n2 = f(v, u),

where
f(u, v) = v(u6 + 3 u5v − 2 u4v2 + u2v4 + v6).

Because of the homogeneity, we may assume without loss of generality that
v = 1. This gives the family of solutions

(3.2)

m1(u) = 1 + u2 − 2 u4 + 3 u5 + u6,

n1(u) = u (1− 3 u− 2 u2 + u4 + u6),

m2(u) = 1 + u2 − 2 u4 − 3 u5 + u6,

n2(u) = u (1 + 3 u− 2 u2 + u4 + u6).

We study the family of curves

(Fu) y2 = x3 − F (u)x, F (u) = (mi(u))
4 + (ni(u))

4, i = 1, 2

where mi(u), ni(u), i = 1, 2, are given by (3.2). Section 2 and the fact that
F (u) can be expressed in two different ways as sum of two biquadrates suggest
that the subfamily Fu has rank greater than the rank of the general family
Eu, and that this generic rank is at least 4. Moreover, the root number is 1
for all members of the family, so that if the Parity Conjecture is true, then
the rank is even for al curves in the family.

In [12] the authors prove that if F (u) is square free, then the rank of
Fu over Q(u) is at least 3. They also prove, assuming the Parity Conjecture
and some other conditions, that the rank is at least 4. We improve their
result by proving in the next theorem that the rank is at least 4 over Q(u)
unconditionally.

Theorem 3.1. The rank of Fu over Q(u) is at least 4.

Proof. The four points

(−(mi(u))
2,mi(u) (ni(u))

2), (−(ni(u))
2, ni(u) (mi(u))

2), i = 1, 2,

are on the curve Fu. Choose u = 2. Then Fu becomes y2 = x3 −
635318657 x, whose rank is 4, and the four points are (−17689, 2388148),
(−17956, 2370326), (−3481,−1472876), and (−24964, 549998). A calculation
with mwrank shows that they are independent. The same specialization
argument as in Theorem 2.1 implies that the rank of Fu over Q(u) is at
least 4.

Remark 3.2. In [9, Section 3.3], the authors consider the same family
and the same four points. They prove in Theorem 3.7 that the family has
rank at least 4 over Q(u) by showing directly the independence of the four
points.
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3.2. Steggall’s parameterization. The following parameterization of (3.1)
can be found in [23]:

(3.3)

m1(u) = − 1 + u+ u2 + 5 u3 + 6 u4 − 12 u5 − 4 u6 + 7 u7 − 3 u8

− 3 u9 + 4 u10 + 2 u11 − u12 + u13,

n1(u) = 1 + u+ 2 u2 − 4 u3 − 3 u4 + 3 u5 + 7 u6 + 4 u7 − 12 u8

− 6 u9 + 5 u10 − u11 + u12 + u13,

m2(u) = − 1 + u− 2 u2 − 4 u3 + 3 u4 + 3 u5 − 7 u6 + 4 u7 + 12 u8

− 6 u9 − 5 u10 − u11 − u12 + u13,

n2(u) = 1 + u− u2 + 5 u3 − 6 u4 − 12 u5 + 4 u6 + 7 u7 + 3 u8

− 3 u9 − 4 u10 + 2 u11 + u12 + u13.

As before, we consider the family

(Su) y2 = x3 − S(u)x, S(u) = mi(u)
4 + ni(u)

4, i = 1, 2,

where mi(u) and ni(u), i = 1, 2, are given by (3.3). The explicit formula of S
is

S(u) = (2 + 4 u2 − 10 u4 − 24 u6 + 57 u8 − 24 u10 − 10 u12 + 4 u14 + 2 u16)

× (1 + 2 u2 − 5 u4 − 12 u6 + 69 u8 − 12 u10 − 5 u12 + 2 u14 + u16)

× (1 + 4 u2 − u4 − 24 u6 + 41 u8 − 24 u10 − u12 + 4 u14 + u16)

× (1 + u4).

Theorem 3.3. Assuming the Parity Conjecture all but a finite number

of the curves of the family Su have rank at least 5 over Q.

Proof. The same proof as in the case of Euler’s parameterization gives
that the rank of Su is at least 4 over Q(u) unconditionally. Since S(u) is even
when u is an integer, the root number of Su is −1 (see subsection 1.1 of the
Introduction.) According to the Parity Conjecture all curves have odd rank
and all but a finite number of them have rank ≥ 4, and so should have rank
at least 5.

Remark 3.4. The constructions given above suggest that if we had
families of integers with many different representations as sum of two fourth
powers, then it would be possible to construct families of elliptic curves,
and examples of elliptic curves, having large ranks. Unfortunately, not
even a single example with three different representations is known, see [10].
Moreover, a simple heuristic density argument tell us that the possibility of
finding multiple representations of that form it is very unlikely.
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4. Search for curves of high rank and results

We have searched for curves of high rank (high meaning greater or equal to
8) in the family Em,n. It is tempting to carry out the search in the families Fu

and Su, but the coefficients F (u) and S(u) are very large even for small values
of the parameter u, and the computations soon become unfeasible. However,
we have used mwrank on the 11089 curves coming from the solutions of (3.1)
in [24]. We found 9 curves of rank 8, one of rank 9 and another one of rank 10.

We have also searched among the curves Em,n with

1 ≤ m < n ≤ 251000, gcd(m,n) = 1.

To narrow the search, we have used two criteria to select values of m and n
which are good candidates to produce curves Em,n of high rank: one is the 2-
Selmer rank and the other is based on Jacobi sums. Let p∗k be the k-th prime
number congruent to one modulo four (p∗1 = 5, p∗2 = 13, . . . ) and define for
B ∈ Z

σ(N,B) =

N
∑

k=1

p∗

k
−1

∑

x=1

(x3 −B x

p∗k

)

.

These sums are related to the Mestre-Nagao sums. Large values of σ(N,B)
for several values of N is an heuristic indication that the curve y2 = x3 −B x
has high rank (see [4].) The reason to consider only primes congruent to one
modulo four is that when B is the sum of two biquadrates, the inner sum for
primes congruent to three modulo four is equal to zero because the polynomial
x3 −B x is odd.

For 2 ≤ n ≤ 50000 we selected m’s and n’s such that

Selmer2(Em,n) ≥ 8, σ(40,m4 + n4) ≥ 190 and σ(60,m4 + n4) ≥ 235.

The numerical values were chosen so that all the examples known before
the search met the criteria. The search produced 1381 curves of rank 8,
77 of rank 9 and one of rank 10. For 50000 < n ≤ 251000 we focused on
curves of rank at least 10. To this end, we used the more restrictive criteria:
Selmer2(Em,n) ≥ 10 and

σ(50,m4+n4) ≥ 500, σ(75,m4+n4) ≥ 800 and σ(100,m4+n4) ≥ 1200.

The numerical values 500, 800 and 1200 were chosen a little below of the
median of σ(50,m4+n4), σ(75,m4+n4) and σ(100,m4+n4) for all the pairs
(m,n) found in the previous search with rank(Em,n) ≥ 8 respectively.

All searches combined found

• 1618 curves of rank 8,
• 169 curves of rank 9,
• 9 curves of rank 10,
• 1 curve of rank 11.
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Table 1. Smallest m4 + n4 providing a curve of the specified rank

Rank m4 + n4 m n

2 17 • 1 2
3 82 • 1 3
4 6497 • 7 8
5 520946 19 25
6 6096577 • 24 49
7 3534242722 83 243
8 25792915457 • 326 347
9 228746044559762 2387 3743

10 6101085725427704897 24523 48946
11 3036966236612302373186 223985 151009

Table 2. Curves Em,n of rank 9, 1 ≤ m < n < 12000

m4 + n4 m n

228746044559762 2387 3743
1575192445914242 973 6299
3302246465649442 3837 7453
7138308052996402 7267 8121
9526110394254562 5511 9631

10923258252017362 3047 10203
12715483600163122 1757 10617
13309386362157266 1745 10739
13914233779769842 8817 9419
14179340856132482 6593 10529
15597163165713362 3961 11131

Table 1 gives the smallest value of m4 + n4 found for which rank(Em,n) = r,
2 ≤ r ≤ 11; a bullet means that it is in fact the smallest possible value.
Table 2 contains the values of m4 + n4 such that 1 ≤ m < n < 12000 and
rank(Em,n) = 9. Finally, the values of m4 +n4 such that rank(Em,n) = 10 are
given in Table 3; the third number in it is the sum of two fourth powers in
two different forms, and was first given in [12].

The search for candidates of high rank was done with Mathematicar, and
the computations of the rank with mwrank.
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