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ON ZEROS OF SOME ANALYTIC FUNCTIONS RELATED

TO THE RIEMANN ZETA-FUNCTION
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Abstract. For some classes of functions F , we obtain that the
function F (ζ(s)), where ζ(s) denotes the Riemann zeta-function, has in-

finitely many zeros in the strip 1
2
< Re s < 1. For example, this is true for

the functions sin ζ(s) and cos ζ(s).

1. Introduction

The zero-distribution of the Riemann zeta-function ζ(s) , s = σ+ it, is of
particular interest in analytic number theory. It is well known that s = −2m,
m ∈ N, are so called trivial zeros of ζ(s). Moreover, ζ(s) 6= 0 for σ ≥ 1, and
for σ ≤ 0, t 6= 0, however, ζ(s) has infinitely many complex (non-trivial) zeros
in the critical strip {s ∈ C : 0 < σ < 1}. The famous Riemann hypothesis
(RH) says that all non-trivial zeros of ζ(s) lie on the critical line σ = 1

2 , and

this is equivalent to the assertion that ζ(s) 6= 0 for σ > 1
2 . At the moment,

it is known ([1]) that at least 41 percent of all non-trivial zeros of ζ(s) in the
sense of density lie on the critical line. By numerical calculations [2], the 1013

first non-trivial zeros are located on the line σ = 1
2 . This supports RH.

The best known result on zero-free regions for ζ(s) is of the form: there
exists an absolute constant c > 0 such that ζ(s) 6= 0 in the region

σ ≥ 1−
c

(log(|t|+ 2))
2

3 (log log(|t|+ 2))
1

3

.

For the number N(T ) of all zeros β+iγ of ζ(s) with 0 < β < 1 and 0 < γ ≤ T ,
the von Mangoldt formula

N(T ) =
T

2π
log

T

2πe
+ O(logT )
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is true. These and other classical results on zero-distribution of ζ(s) can be
found in the monograph [4].

On the other hand, there exists zeta-functions similar to ζ(s) for which
the Riemann hypothesis is not true. The simplest example of such functions
is the Hurwitz zeta-function ζ(s, α) with parameter α, 0 < α ≤ 1, defined, for
σ > 1, by

ζ(s, α) =
∞
∑

m=0

1

(m+ α)s
,

and by analytic continuation elsewhere. However, the functions ζ(s) and
ζ(s, α) are similar only by their definition by Dirichlet series, and in fact
differ one from another very much. The function ζ(s, α), except for the values
α = 1 (ζ(s, 1) = ζ(s)) and α = 1

2

(

ζ(s, 1
2 ) = (2s − 1)ζ(s)

)

, does not have Euler
product over primes, and this has a large influence for its properties. The
main difference in the zero-distribution problem is that the function ζ(s, α),
α 6= 1, 12 , differently from ζ(s), has zeros in the half-plane {s ∈ C : σ > 1},

and if α is transcendental or rational α 6= 1, 12 , then ζ(s, α) has infinitely many

zeros lying in the strip {s ∈ C : 1
2 < σ < 1}. More precisely, Theorem 8.4.7

of [6] and [9, Theorem 8, p. 96], says that, for every σ1, σ2,
1
2 < σ1 < σ2 < 1,

there exists a constant c = c(α, σ1, σ2) > 0 such that, for sufficiently large T ,
the function ζ(s, α) has more than cT zeros in the rectangle {s ∈ C : σ1 <

σ < σ2, 0 < t < T }.
The aim of this note is to present some examples of functions F (ζ(s)) for

which RH is not true. This is motivated by a better understanding of the RH
problem.

For a region G on the complex plane C, denote by H(G) the space of
analytic functions on G endowed with the topology of uniform convergence
on compacta. Let D = {s ∈ C : 1

2 < σ < 1}. Define several classes of
functions F .

1◦ We say that the function F : H(D) → H(D) belongs to the class
Lip(β), β > 0, if the following hypotheses are satisfied:

a) For every polynomial p = p(s) and every compact subset K ⊂ D with
connected complement, there exists an element g ∈ F−1{p} ⊂ H(D) such
that g(s) 6= 0 on K;

b) For every compact subset K ⊂ D with connected complement, there
exist a constant c > 0 and a compact subset K1 ⊂ D with connected
complement such that

sup
s∈K

|F (g1(s))− F (g2(s))| ≤ c sup
s∈K1

|g1(s)− g2(s)|
β

for all g1, g2 ∈ H(D).
Clearly, the set {Lip(β) : β > 0} is non-empty. For example, the function

F : H(D) → H(D), F (g) = g′, g ∈ H(D), is an element of the class Lip(1).
This is a simple exercise of using the Cauchy integral formula.
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2◦ Let S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}. Denote by U the
class of continuous functions F : H(D) → H(D) such that, for every open
set G ⊂ H(D), the set (F−1G) ∩ S is non-empty.

We note that the hypothesis that the set (F−1G) ∩ S 6= ∅ for every
open set G is theoretical and with difficulty checked. It can be replaced by a
stronger but simpler one.

3◦ Denote by Up the class of continuous functions F : H(D) → H(D)
such that, for each polynomial p = p(s), the set (F−1{p}) ∩ S is non-empty.

An application of the Mergelyan theorem on the approximation of analytic
functions by polynomials ([7], see also [10]) shows that Up ⊂ U .

4◦ The main property of the set S is a non-vanishing of functions g ∈
H(D). The definition of the class Up involves polynomials, however, in the
non-bounded region D, it is not easy to derive an information on the non-
vanishing for the functions g ∈ F−1{p} with a given polynomial p = p(s).
Therefore, for V > 0, we define a bounded region DV = {s ∈ C : 1

2 < σ <

1, |t| < V }, and in place of the set S, take SV = {g ∈ H(DV ) : g(s) 6=
0 or g(s) ≡ 0}.

Denote by Up,V the class of continuous functions F : H(DV ) → H(DV )
such that, for each polynomial p = p(s), the set (F−1{p})∩SV is non-empty.

It is easily seen that, for some functions F and each polynomial p = p(s),
there exists a polynomial p1 = p1(s) ∈ F−1{p} and p1(s) 6= 0 for s ∈ DV .
For example, this holds for the function F (g) = c1g

(1) + · · · + crg
(r), g ∈

H(DV ), c1, . . . , cr ∈ C \ {0}.
5◦ For a1, . . . , ar ∈ C and F : H(D) → H(D), let Ha1,...,ar;F (0)(D) =

{g ∈ H(D) : (g(s)− aj)
−1 ∈ H(D), j = 1, . . . , r} ∪ {F (0)}.

Denote by Ua1,...,ar;F (0) the class of continuous functions F : H(D) →
H(D) such that F (S) ⊃ Ha1,...,ar ;F (0).

The function F (g) = gN + a, N ∈ N, a ∈ C, clearly, is an element of
the class Ua;a. The functions F (g) = sin g and F (g) = sinh g belong to the
class U−1,1;0 while the functions F (g) = cos g and F (g) = cosh g are elements
of the class U−1,1;1. To see this, it suffices to solve the equation F (g) = f ,
f ∈ H(D), in g ∈ S.

6◦ Denote by Û the class of continuous functions F : H(D) → H(D)
such that s− a ∈ F (S) for every a ∈ (12 , 1).

For example, the function F (g) = gg′, g ∈ H(D), belongs to the class Û .
To see this, we have to solve the equation

gg′ = s− a.

Obviously, the latter equation implies

(g2)′ = 2s− 2a,

and

g2 = s2 − 2as+ C,
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g = ±
√

s2 − 2as+ C

with arbitrary constant C. We can choose C such that s2 − 2as+ C 6= 0 for
s ∈ D. Thus, there exists g ∈ H(D) satisfying the equation F (g) = s − a.
Now we state the theorems on zeros of F (ζ(s)).

Theorem 1.1. Suppose that F belongs to at least one of the classes

Lip(β), U , Up, Up,V and Û . Then, for every σ1, σ2,
1
2 < σ1 < σ2 < 1,

there exists a constant c = c(σ1, σ2, F ) > 0 such that, for sufficiently

large T , the function F (ζ(s)) has more than cT zeros lying in the rectangle

{s ∈ C : σ1 < σ < σ2, 0 < t < T }.

Theorem 1.2. Suppose that F is an element of the class Ua1,...,ar;F (0),

where Re aj 6∈ (− 1
2 ,

1
2 ), j = 1, . . . , r. Then the same assertion as in

Theorem 1.1 is true.

Proof of Theorems 1.1 and 1.2 is based on the universality of F (ζ(s)).

2. Universality of F (ζ(s))

In [8], S. M. Voronin discovered a very interesting approximation property
of the function ζ(s) which now is called universality. He proved that any
analytic non-vanishing function can be approximated with a given accuracy
uniformly on compact subsets of the strip D by shifts ζ(s+ iτ), τ ∈ R. More
precisely, let K ⊂ D be a compact subset with connected complement, and
let f(s) be a continuous non-vanishing function on K which is analytic in the
interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K

|ζ(s+ iτ)− f(s)| < ε} > 0.

Here meas{A} denotes the Lebesgue measure of a measurable set A ⊂ R.
Since the approximated functions are non-vanishing, the Voronin theorem
does not give any information on the number of zeros of ζ(s) in the strip
D. In [5], we began to consider universality theorems for F (ζ(s)) in which
the shifts F (ζ(s + iτ)) approximate not necessarily non-vanishing analytic
functions. Thus, theorems of such a kind provide an information on zeros
of F (ζ(s)). For the proof of Theorems 1.1 and 1.2, we apply the following
universality properties of F (ζ(s)).

Lemma 2.1. Suppose that the function F satisfies the hypotheses at least

one of the classes Lip(β), U and Up. Let K ⊂ D be a compact subset with

connected complement, and let f(s) be a continuous function on K which is

analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K

|F (ζ(s + iτ))− f(s)| < ε} > 0.



ON ZEROS OF SOME ANALYTIC FUNCTIONS 63

Proof. The case of U was considered in [5]. Since Up ⊂ U , it remains
to prove the lemma for the class Lip(β). By the Mergelyan theorem, there
exists a polynomial p = p(s) such that

(2.1) sup
s∈K

|f(s)− p(s)| <
ε

2
.

Let g ∈ F−1{p} and g(s) 6= 0 on K. By the Voronin theorem, the set of τ ∈ R

such that

sup
s∈K1

|ζ(s+ iτ)− g(s)| < c−
1

β

(ε

2

)
1

β

has a positive lower density. This and 2◦ of the class Lip(β) show that the
set of τ ∈ R such that

sup
s∈K

|F (ζ(s + it))− p(s)| <
ε

2

also has a positive lower density what together with (2.1) proves the lemma.

Lemma 2.2. Let K and f(s) be the same as in Lemma 2.1. Suppose that

V > 0 is such that K ⊂ DV , and that F ∈ Up,V . Then the same assertion as

in Lemma 2.1 is true.

The lemma in a bit different form is given in [5].

Lemma 2.3. Suppose that the function F ∈ Ua1,...,ar;F (0). If r = 1, let
K ⊂ D be a compact subset with connected complement, and let f(s) be a

continuous and 6= a1 function on K which is analytic in the interior of K. If

r ≥ 2, let K ⊂ D be an arbitrary compact subset and f ∈ Ha1,...,ar;F (0)(D).
Then the same assertion as in Lemma 2.1 is true.

Proof. The lemma for r = 1 was proved in [5], therefore, we consider the
case r ≥ 2, only. We use a probabilistic limit theorem for F (ζ(s)). Denote by
B(H(D)) the σ-field of Borel sets of the space H(D). Then is known ([4]) that
T−1meas{τ ∈ [0, T ] : ζ(s + iτ) ∈ A}, A ∈ B(H(D)), converges weakly to
the probability measure Pζ on (H(D),B(H(D))) as T → ∞, and the support
of Pζ is the set S. This and the continuity of F implies that

(2.2)
1

T
meas{τ ∈ [0, T ] : F (ζ(s+ iτ)) ∈ A}, A ∈ B(H(D)),

converges weakly to PζF
−1 as T → ∞.

Let g ∈ Ha1,...,ar;F (0)(D) be arbitrary. Then we can find g1 ∈ S such
that F (g1) = g. This, the continuity of F and the above remarks show that,
for every open neighbourhood G of g, the inequality PζF

−1(G) > 0 holds.
This means that g belongs to the support of the measure PζF

−1. Thus, the
support of PζF

−1 contains the set Ha1,...,ar;F (0)(D), and even its closure.
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Let

Ĝ =

{

g ∈ H(D) : sup
s∈K

|g(s)− f(s)| <
ε

2

}

.

Since f(s) ∈ Ha1,...,ar;F (0)(D) is an element of the support of PζF
−1,

therefore, PζF
−1(Ĝ) > 0. This together with weak convergence of (2.2)

shows that

lim inf
T→∞

1

T
meas{τ ∈ [0, T ] : sup

s∈K

|F (ζ(s + iτ))− f(s)| < ε} ≥ PζF
−1(Ĝ) > 0.

Lemma 2.4. Suppose that F : H(D) → H(D) is a continuous function,

K ⊂ D is a compact subset, and f ∈ F (S). Then the same assertion as in

Lemma 2.1 is true.

Proof is similar to that of the case r ≥ 2 of Lemma 2.3.

3. Proof of Theorems

Proof of Theorem 1.1. We apply Lemmas 2.1, 2.2 and 2.4 with K =
{s ∈ C : |s− σ0| ≤ ρ} and f(s) = s− σ0, where

σ0 =
σ1 + σ2

2
and ρ =

σ2 − σ1

2
.

Then the mentioned lemmas show that, for every ε > 0, the set of τ ∈ R

satisfying the inequality

(3.1) sup
s∈K

|F (ζ(s+ iτ)) − f(s)| < ε

has a positive lower density. Now we take ε such that

0 < ε < inf
|s−σ0|=ρ

|f(s)| = ρ.

Then the functions f(s) and F (ζ(s + iτ)) − f(s) on the disc K satisfy the
hypotheses of the classical Rouché theorem. Since the function f(s) has one
zero s = σ0 on K, by Rouché’s theorem, the sum F (ζ(s+ iτ)) of the functions
F (ζ(s + iτ)) − f(s) and f(s) also has one zero on K. However, the measure
of τ ∈ [0, T ] satisfying inequality (3.1), for sufficiently large T , is greater than
cT , and the theorem is proved.

Remark 3.1. The hypothesis of the class Û can be replaced by a more
general one: there exists a function g ∈ S \{0} such that, for every a ∈

(

1
2 , 1

)

,
there exists b with F (g(b)) = 0 and Reb = a. The proof runs in the above
way with f(s) = F (g(s)) and K = {s ∈ C : |s − σ0 − it0| ≤ ρ}, where t0 is
such that F (g(σ0 + it0)) = 0.



ON ZEROS OF SOME ANALYTIC FUNCTIONS 65

Proof of Theorem 1.2. We preserve the notation used in the proof
of Theorem 1.1. Since Re aj 6∈ (− 1

2 ,
1
2 ), we have that the function f(s) =

s− σ0 6= aj , in the strip D, j = 1, . . . , r. Therefore, the function f(s) on the
disc K satisfies the hypotheses of Lemma 2.3, and the further proof runs in
the same way as that of Theorem 1.1.
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