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ON ZEROS OF SOME ANALYTIC FUNCTIONS RELATED
TO THE RIEMANN ZETA-FUNCTION

ANTANAS LAURINCIKAS
Vilnius University, Lithuania

ABSTRACT. For some classes of functions F, we obtain that the
function F'(¢(s)), where ((s) denotes the Riemann zeta-function, has in-
finitely many zeros in the strip % < Res < 1. For example, this is true for
the functions sin {(s) and cos ((s).

1. INTRODUCTION

The zero-distribution of the Riemann zeta-function ((s) , s = o +it, is of
particular interest in analytic number theory. It is well known that s = —2m,
m € N, are so called trivial zeros of {(s). Moreover, ((s) # 0 for ¢ > 1, and
for 0 <0, t # 0, however, ((s) has infinitely many complex (non-trivial) zeros
in the critical strip {s € C: 0 < o < 1}. The famous Riemann hypothesis
(RH) says that all non-trivial zeros of {(s) lie on the critical line o = 3, and
this is equivalent to the assertion that ((s) # 0 for o > % At the moment,
it is known ([1]) that at least 41 percent of all non-trivial zeros of {(s) in the
sense of density lie on the critical line. By numerical calculations [2], the 10*2
first non-trivial zeros are located on the line o = % This supports RH.

The best known result on zero-free regions for ((s) is of the form: there
exists an absolute constant ¢ > 0 such that {(s) # 0 in the region

c

(log([¢] +2))* (loglog([¢] +2))3
For the number N (T') of all zeros f+iy of ((s) with0 < S <land0 <y <T,
the von Mangoldt formula

c>1-—

T T
N(T) = — log — + O(log T
(T) 5085+ (logT)
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is true. These and other classical results on zero-distribution of {(s) can be
found in the monograph [4].

On the other hand, there exists zeta-functions similar to {(s) for which
the Riemann hypothesis is not true. The simplest example of such functions
is the Hurwitz zeta-function ((s, o) with parameter o, 0 < av < 1, defined, for
o >1, by

- 1
C(S,Oé) = mZ:O (m I OL)S,

and by analytic continuation elsewhere. However, the functions ((s) and
¢(s,@) are similar only by their definition by Dirichlet series, and in fact
differ one from another very much. The function (s, a), except for the values
a=1(((s,1) =((s)) and o = 3 ({(s,3) = (2° — 1)((s)), does not have Euler
product over primes, and this has a large influence for its properties. The
main difference in the zero-distribution problem is that the function ((s, «),
a#£1, %, differently from ((s), has zeros in the half-plane {s € C: ¢ > 1},
and if « is transcendental or rational o # 1, %, then ((s, ) has infinitely many
zeros lying in the strip {s € C: 3 < ¢ < 1}. More precisely, Theorem 8.4.7
of [6] and [9, Theorem 8, p. 96|, says that, for every o1, o9, % <op<og<l1,
there exists a constant ¢ = c¢(a, 01, 02) > 0 such that, for sufficiently large T,
the function ((s, ) has more than ¢T zeros in the rectangle {s € C: o1 <
o<o9, 0<t<T}

The aim of this note is to present some examples of functions F({(s)) for
which RH is not true. This is motivated by a better understanding of the RH
problem.

For a region G on the complex plane C, denote by H(G) the space of
analytic functions on G endowed with the topology of uniform convergence
on compacta. Let D = {s € C : % < o < 1}. Define several classes of
functions F'.

1° We say that the function F' : H(D) — H(D) belongs to the class
Lip(B), B > 0, if the following hypotheses are satisfied:

a) For every polynomial p = p(s) and every compact subset K C D with
connected complement, there exists an element g € F~'{p} C H(D) such
that g(s) # 0 on K;

b) For every compact subset K C D with connected complement, there
exist a constant ¢ > 0 and a compact subset Ky C D with connected
complement such that

sup [F(g1(s)) — Flg2(5))] < ¢ sup |g1(s) — g2(s)|°
seK s€K,
for all 91,92 € H(D).

Clearly, the set {Lip(8) : 8 > 0} is non-empty. For example, the function
F: H(D)— H(D), F(9) =¢', g € H(D), is an element of the class Lip(1).
This is a simple exercise of using the Cauchy integral formula.
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2° Let S ={g € H(D) : g(s) #0 or g(s) = 0}. Denote by U the
class of continuous functions F : H(D) — H(D) such that, for every open
set G C H(D), the set (F~1G) NS is non-empty.

We note that the hypothesis that the set (F~'G) NS # @ for every
open set G is theoretical and with difficulty checked. It can be replaced by a
stronger but simpler one.

3° Denote by U, the class of continuous functions F : H(D) — H(D)
such that, for each polynomial p = p(s), the set (F~1{p}) NS is non-empty.

An application of the Mergelyan theorem on the approximation of analytic
functions by polynomials ([7], see also [10]) shows that U, C U.

4° The main property of the set S is a non-vanishing of functions g €
H(D). The definition of the class U, involves polynomials, however, in the
non-bounded region D, it is not easy to derive an information on the non-
vanishing for the functions g € F~1{p} with a given polynomial p = p(s).
Therefore, for V' > 0, we define a bounded region Dy = {s € C : <o <
1, |t| < V}, and in place of the set S, take Sy = {9 € H(Dy) : ¢g(s) #
0 or g(s)=0}.

Denote by U, v the class of continuous functions F : H(Dy) — H(Dy)
such that, for each polynomial p = p(s), the set (F~1{p}) N Sy is non-empty.

It is easily seen that, for some functions F' and each polynomial p = p(s),
there exists a polynomial p; = pi(s) € F~1{p} and pi(s) # 0 for s € Dy.
For example, this holds for the function F(g) = c1g™ 4 --- + ¢,.¢"), g €
H(DV)a Cl,...,CTE(C\{O}-

5° For ai,...,a, € Cand F : H(D) — H(D), let Hy, 4 .r@©)(D) =
{g€ H(D): (gls) —a,)"' € H(D), j = 1,....r} U{F(0)}.

Denote by Ug, ... 4,;r(0) the class of continuous functions F': H(D) —
H(D) such that F(S) D Hg,, .. a,:F(0)

The function F(g) = ¢ +a, N € N, a € C, clearly, is an element of
the class Ug,q. The functions F(g) = sing and F(g) = sinh g belong to the
class U_1 1,0 while the functions F'(¢g) = cosg and F'(g) = cosh g are elements
of the class U_1,1,1. To see this, it suffices to solve the equation F(g) = f,
feH(D),ingeS.

6° Denote by U the class of continuous functions F : H(D) — H(D)
such that s — a € F(S) for every a € (3,1).

For example, the function F(g) = g¢’, g € H(D), belongs to the class U.
To see this, we have to solve the equation

N [=

g9’ =s—a.
Obviously, the latter equation implies
(92)/ =2s— 20’;

and
¢? =5 —2as+C,
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g==+vVs?—2as+C

with arbitrary constant C. We can choose C' such that s? — 2as + C # 0 for
s € D. Thus, there exists g € H(D) satisfying the equation F(g) = s — a.
Now we state the theorems on zeros of F(((s)).

THEOREM 1.1. Suppose that F belongs to at least one of the classes
Lip(B), U, Up, Upv and U. Then, for every o1,09, % <o < o9 <1,
there exists a constant ¢ = c(o1,02,F) > 0 such that, for sufficiently
large T, the function F({(s)) has more than cT zeros lying in the rectangle
{s€C: 01<0<0, 0<t<T}.

THEOREM 1.2. Suppose that F is an element of the class U, .. a,:F(0)s

where Rea; & (—%,%), j = 1,...,r. Then the same assertion as in
Theorem 1.1 is true.

Proof of Theorems 1.1 and 1.2 is based on the universality of F({(s)).

2. UNIVERSALITY OF F'(((s))

In [8], S. M. Voronin discovered a very interesting approximation property
of the function ((s) which now is called universality. He proved that any
analytic non-vanishing function can be approximated with a given accuracy
uniformly on compact subsets of the strip D by shifts {(s +i7), 7 € R. More
precisely, let K C D be a compact subset with connected complement, and
let f(s) be a continuous non-vanishing function on K which is analytic in the
interior of K. Then, for every ¢ > 0,

lim inf lmeas{r €10,T): sup|¢(s+iT) — f(s)] <e} >0.
T—oo T scK

Here meas{A} denotes the Lebesgue measure of a measurable set A C R.
Since the approximated functions are non-vanishing, the Voronin theorem
does not give any information on the number of zeros of {(s) in the strip
D. In [5], we began to consider universality theorems for F'({(s)) in which
the shifts F({(s + i7)) approximate not necessarily non-vanishing analytic
functions. Thus, theorems of such a kind provide an information on zeros
of F(¢(s)). For the proof of Theorems 1.1 and 1.2, we apply the following
universality properties of F({(s)).

LEMMA 2.1. Suppose that the function F satisfies the hypotheses at least
one of the classes Lip(B), U and U,. Let K C D be a compact subset with
connected complement, and let f(s) be a continuous function on K which is
analytic in the interior of K. Then, for every e > 0,

1
liminf —meas{r € [0,T]: sup |F(¢(s+i7)) — f(s)] <&} > 0.
T—oo T seK
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PROOF. The case of U was considered in [5]. Since U, C U, it remains
to prove the lemma for the class Lip(f8). By the Mergelyan theorem, there
exists a polynomial p = p(s) such that

€
(2.1) sup |f(s) = p(s) < 3-
seK
Let g € F~Y{p} and g(s) # 0 on K. By the Voronin theorem, the set of 7 € R
such that
sup |[C(s+i1) — g(9)| < ¢ F (E>F
seKq 2
has a positive lower density. This and 2° of the class Lip(8) show that the
set of 7 € R such that
. €
sup [F(C(s +1t)) —p(s)| < 5
seK
also has a positive lower density what together with (2.1) proves the lemma.
O

LEMMA 2.2. Let K and f(s) be the same as in Lemma 2.1. Suppose that
V' >0 is such that K C Dy, and that F' € U, v. Then the same assertion as
i Lemma 2.1 is true.

The lemma in a bit different form is given in [5].

LEMMA 2.3. Suppose that the function F' € Uy, a.:r©)- If 7 =1, let
K C D be a compact subset with connected complement, and let f(s) be a
continuous and # ay function on K which is analytic in the interior of K. If
r>2, let K C D bean arbitrary compact subset and f € Hg, q.r0) (D).
Then the same assertion as in Lemma 2.1 is true.

PrOOF. The lemma for r = 1 was proved in [5], therefore, we consider the
case r > 2, only. We use a probabilistic limit theorem for F'(¢(s)). Denote by
B(H (D)) the o-field of Borel sets of the space H(D). Then is known ([4]) that
T~ meas{r € [0,T] : ((s+iT) € A}, A € B(H(D)), converges weakly to
the probability measure P on (H (D), B(H(D))) as T — oo, and the support
of P is the set S. This and the continuity of F' implies that

(2.2) %meas{r €[0,T]: F(¢(s+1ir)) e A}, Ae B(H(D)),

converges weakly to P.F~1 as T — oo.

Let g € Hq, ... a.;r(0)(D) be arbitrary. Then we can find g; € S such
that F'(g1) = g. This, the continuity of F' and the above remarks show that,
for every open neighbourhood G of g, the inequality P.F~1(G) > 0 holds.
This means that g belongs to the support of the measure P F~!. Thus, the
support of P F~! contains the set Hg, . . ar0)(D), and even its closure.
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Let
G- {geHw): sup lg(s) — ()] < f}.

seK 2
Since f(s) € Hgy,.  a.r@©) (D) is an element of the support of P F~!

therefore, P.F~'(G) > 0. This together with weak convergence of (2.2)
shows that

lim inf lmeas{r € [0,T): sup |F(C(s +i7)) — f(s)] < e} > P.F~HG) > 0.
T—o0 T seK

o
LEMMA 2.4. Suppose that F': H(D) — H(D) is a continuous function,

K C D is a compact subset, and f € F(S). Then the same assertion as in
Lemma 2.1 is true.

Proof is similar to that of the case r > 2 of Lemma 2.3.

3. PROOF OF THEOREMS

PrOOF OF THEOREM 1.1. We apply Lemmas 2.1, 2.2 and 2.4 with K =
{s€C: |s—o09| < p}and f(s) =s — og, where

o1+ 09 02 — 01
and p=
2 2

Then the mentioned lemmas show that, for every ¢ > 0, the set of 7 € R
satisfying the inequality

(3.1) sup [F(¢(s+i7)) — fs)| < e

oo =

has a positive lower density. Now we take ¢ such that

0<e< inf |[f(s)|=0p.
[s—oo|=p
Then the functions f(s) and F({(s + i7)) — f(s) on the disc K satisfy the
hypotheses of the classical Rouché theorem. Since the function f(s) has one
zero s = og on K, by Rouché’s theorem, the sum F({(s+i7)) of the functions
F(¢(s+1i1)) — f(s) and f(s) also has one zero on K. However, the measure
of 7 € [0, T] satisfying inequality (3.1), for sufficiently large T, is greater than
cT', and the theorem is proved. O

REMARK 3.1. The hypothesis of the class U can be replaced by a more
general one: there exists a function g € S\ {0} such that, for every a € (%, 1),
there exists b with F'(g(b)) = 0 and Reb = a. The proof runs in the above
way with f(s) = F(g(s)) and K = {s € C: |s —0¢ — itg| < p}, where tj is
such that F(g(og + itg)) = 0.
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PROOF OF THEOREM 1.2. We preserve the notation used in the proof

of Theorem 1.1. Since Rea; € (—3,3), we have that the function f(s) =
s — 09 # aj, in the strip D, j = 1,...,r. Therefore, the function f(s) on the
disc K satisfies the hypotheses of Lemma 2.3, and the further proof runs in

the same way as that of Theorem 1.1. O
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