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1 INTRODUCTION

Some of the problems regarding efficient process con-

Original scientific paper

There exist many problems regarding process control in the process industry since some of the important
variables cannot be measured online. This problem can be significantly solved by estimating these difficult-to-
measure process variables. In doing so, the estimator is in fact an appropriate mathematical model of the process
which, based on information about easy-to-measure process variables, estimates the current value of the difficult-
to-measure variable. Since processes are usually time-varying, the precision of the estimation based on the process
model which is built on old data is decreasing over time. To avoid estimator accuracy degradation, model parame-
ters should be continuously updated in order to track process behavior. There are a couple of methods available for
updating model parameters depending on the type of process model. In this paper, PLSR process model is chosen
as the basis of the difficult-to-measure process variable estimator while its parameters are updated in several ways —
by the moving window method, recursive NIPALS algorithm, recursive kernel algorithm and Just-in-Time learning
algorithm. Properties of these adaptive methods are explored on a simulated example. Additionally, the methods
are analyzed in terms of computational load and memory requirements.

Key words: Process variable estimation, Adaptive estimator, Moving window, Recursive algorithms, JITL algo-
rithm

Adaptivna estimacija teSko-mjerljivih procesnih veli¢ina. Problemi s upravljanjem mnogih procesa u indus-
triji vezani su s nemoguéno$c¢u on-line mjerenja nekih vaznih procesnih veli¢ina. Ovaj se problem moZe u znacajnoj
mjeri rijesiti estimacijom ovih teSko-mjerljivih procesnih veli¢ina. Estimator je pri tome odgovarajuéi matematicki
model procesa koji na temelju informacije o ostalim (lako-mjerljivim) procesnim veli¢inama procjenjuje trenutni
iznos teSko-mjerljive veli¢ine. Bududi da su procesi po prirodi promjenjivi, to¢nost estimacije zasnovane na modelu
procesa izgradenog na starim podacima u pravilu opada s vremenom. Kako bi se ovo izbjeglo, parametre mod-
ela procesa je potrebno kontinuirano prepodeSavati kako bi model $to bolje opisivao (trenutno) vladanje procesa.
Ovisno o tipu matematickog modela, za prepodeSavanje njegovih parametara na raspolaganju je vise metoda. Kao
osnova estimatora teSko-mjerljive veliine u radu se koristi PLSR model procesa, dok se njegovi parametri pre-
podesavaju na viSe nacina — metodom pomicnog prozora, rekurzivnim NIPALS algoritmom, rekurzivnim kernel
algoritmom te Just-in-Time Learning metodom. Svojstva navedenih metoda adaptacije PLSR modela procesa ispi-
tana su na odabranom primjeru. Nadalje, metode adaptacije su analizirane i s obzirom na racunalnu i memorijsku
zahtjevnost.

Kljucne rijeci: estimacija procesne veli¢ine, adaptivni estimator, pomi¢ni prozor, rekurzivni algoritmi, JITL algo-
ritam

matical model of the process [1-3].

The estimator is in fact an appropriate mathematical
model of the process. In practice, the model is usually

trol come from the fact that some of the important process
variables cannot be measured online (so-called difficult-to-
measure process variables — DTM variables) [1]. If a pro-
cess variable cannot be measured, its estimation is an alter-
native procedure. The estimation is based on other process
variables that are measured by sensors in the plant (so-
called easy-to-measure variables - ETM variables) which
are in correlation with the DTM variable and on a mathe-
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not available. The most economic way to build a process
model is to use measured data which can be taken from the
plant database. Various statistical methods and/or compu-
tational learning methods can be used in model develop-
ing [3-5].

Process model building based on plant data is a chal-
lenging task because plant data are usually of low infor-
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mativity. The measured data contain a great number of
samples which are “information poor” due to the presence
of different errors such as measurement noise, missing val-
ues and outliers [6]. Apart from that, all possible working
conditions of the process are generally not available (e.g.
not recorded in the database). Additionally, the relation-
ship between variables can change over time due to differ-
ent external influences or process changes so the data from
the process database are not relevant anymore (so-called
historical data). Therefore, only the most recent data rep-
resent the true state of the process and should be used for
offline modeling procedure [3].

Since the measured plant data are usually of low qual-
ity, data preprocessing is of a great importance in process
model building [6,7]. The estimation of DTM variable
is usually performed on a great number of ETM variables
which results in high dimensional and highly correlated in-
put space for the modeling procedure. Because of that,
models with two levels of projection are generally used [8].

After the model has been developed, the estimator of
the DTM variable can be implemented in the plant Su-
pervisory Control and Data Acquisition (SCADA) system.
Such a computer program is usually called a soft-sensor
since it substitutes some physical sensor/procedure by a
software routine. In this paper terms soft-sensor and DTM
variable estimator are interchanged, although soft-sensor
can also be a back-up sensor for a hardware sensor. Sam-
ples of the ETM variables are continuously fed into the
estimator during online operation of the estimator. Since
it is possible that samples contain different errors, samples
must be checked online and preprocessed before estima-
tion procedure is performed in order to achieve an accurate
estimation of the DTM variable [9, 10].

As already mentioned, industrial processes exhibit
some kind of time-varying behavior and it is necessary to
ensure that the soft-sensor retains its estimation precision
during online operation. To avoid degradation of estima-
tor precision, adaptive models (adaptive soft sensors) are
used. The process model that is built offline serves only
as an initial process model whose parameters are updated
during process operation (online) in order to track process
time-varying behavior. In that way, the model can describe
current process input-output relationship constantly during
the long time period of soft-sensor exploitation [9]. There-
fore, this paper deals with the properties of different adap-
tive model building approaches which are especially im-
portant for plant soft-sensor implementation.

The paper is organized as follows. Section 2 describes
the basics of process modeling and process model adapta-
tion. Methods for the model adaptation of the PLSR model
are described in Section 3 in more details. These adaptive
methods are applied to a chosen example in Section 4, fol-
lowed by the numerical results and accompanying discus-
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sion. Section 5 provides a summary and conclusion of this
paper.

2 ADAPTIVE ESTIMATOR

Initial methods that were used for DTM variable esti-
mator development can be found in the field of multivariate
statistical analysis. Rapid expansion of artificial neural net-
works and other intelligent methods led to the expansion of
different hybrid methods [3—5]. Estimators based on these
(static) models usually have fixed parameters. This prop-
erty causes slow degradation of soft-sensor performance
during a longer period of time. Apart from temporal pro-
cess changes, a reason for estimator imprecision can be low
informativity of the (initial) data set that is used in offline
process model building. The initial data set can contain a
lot of different errors and disturbances or it does not con-
tain all possible working regimes of the process that can
appear later in soft-sensor exploitation.

These issues can be (partially) solved with the use of
the adaptive estimator in which parameters are updated (re-
calculated) during online estimator operation. This was
recognized by different authors [11-16] but there are still
some unaddressed issues in soft-sensor development and
maintenance [3].

2.1 Model Structuring

Data based modeling is in fact a search for the func-
tion f,, () (i.e. process model) that approximates the
unknown natural functional dependence between process
input-output variables. This procedure involves different
steps (see [1,3,4]) and it is often performed in several iter-
ations.

An important step of the modeling procedure is model
structuring. Optimal model structure is usually unknown
due to the lack of process knowledge. Therefore, the gen-
eral model structure is used [8]:

~

Q:fm(X,G):ZUk(X,(‘)), (D

k=1

where x stands for the input variables vector, ® is the vec-
tor of parameters of the k-th basis function v, K is the
number of basis functions and is the model output (esti-
mated value of the DTM process variable). This general
structure can approximate any continuous function with a
superposition of a finite number of basic nonlinear con-
tinuous functions. The optimal dimension of the model
(number of basis function K') and parameters (®) should
be estimated from the available data [17, 18].

In prediction model building, the parameters are usu-
ally determined by regression in which all model param-
eters are estimated based on minimization of the output
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error of approximation. However, this approach generally
fails when plant data are available for modeling due to low
plant data informativity as already stated in Section 1 [4].
Additionally, to ensure necessary robustness of the soft-
sensor, a great number of ETM variables are used in mod-
eling which results in a high dimensional and highly cor-
related input space [17].

To obtain a process model under these undesirable cir-
cumstances, methods based on the input space projection
into a latent subspace should be used [8, 17]. The related
model is a composition of two functions and can be pre-
sented with:

@:f’!n(x7®):uf'r(‘p](x7aj);:3)’ j:172""7J7
@)
where ¢(+) is the input space into latent space projection
function, f,.(-) is the latent space into output space projec-
tion function and J is the dimension of input space projec-
tion (i.e. number of latent variables). The vector of model
parameters © is in this case divided into the input pro-
jection vectors «;; and the vector of regression parameters
B. Apart from the selection of appropriate functions, this
model structure requires the definition of two separate cri-
teria for parameter estimation [17]. There are a number of
different linear or nonlinear methods available for model
building which differ in the selected functions and criteria
that are used in the model (2) [4,17].

As stated before, model adaptation is necessary to en-
sure long-term soft-sensor accuracy. Linear models are
usually used for the purpose of adaptive soft-sensor devel-
opment due to two main reasons:

e online model parameter updating usually provides
satisfactory description of the nonlinear processes
even when linear models are used,

e it is much easier to estimate the parameters of linear
models than nonlinear models in online operation, es-
pecially if recursive techniques are applied.

The linear model, based on the input space projection, is a
special case of (2) and can be presented as:

J J m
I= Bz =Y B> aiymi, 3)
j=1 j=1 =1

or in matrix form:

y =2zB =xAp, “
where m is the number of ETM variables, x =
[T1,..., 2] is asample of ETM variables, z'*/ is the vec-

tor of latent variables, A™*”/ is the projection matrix that
contains the column vectors cv; and 37! is the vector of
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regression coefficients. Since both parts of the model (2)
are linear in nature, this two-level model can be presented
as a one-level model in a way such that the parameters
« and 3 are combined into a single vector of parameters
bmxl:

9 = xb. (5)

This model form is more suitable for online implementa-
tion.

Linear methods for process modeling with input space
projection are based on methods developed in the field of
multivariate statistical analysis, such as Principal Com-
ponent Analysis (PCA), Partial Least Squares (PLS) and
Continuum Regression (CR) [17]. The prediction capabil-
ities of the built model are very important in soft-sensor
development. Generally speaking, models based on the
PCA method have lower prediction capabilities than PLS
and CR based models [8]. Although CR models usually
outperform PLS based models, PLS based models are pre-
dominant in practical applications due to difficult parame-
ter estimation of the CR method. Apart from that, the re-
cursive CR method has not yet been developed. Thus, PLS
based models can be regarded as the referent models for
adaptive estimator development. Details about parameter
estimation of PLS based models are presented in Section 3.

2.2 Model Adaptation

Adaptive models are models which posses the ability
to automatically change its properties during online opera-
tion [9]. To perform model adaptation, the model has to be
extended with a mechanism that performs model changing
according to the selected criteria and current state of the
process. Samples of input and output variables that are ac-
quired during online operation give information about the
current state of the process. Generally, model adaptation
is performed through model parameters update or through
model structure and parameters change. In practice, only
model parameters are usually updated starting from param-
eters estimated on the initial data set (i.e. in offline phase
of model building). However, when only model parame-
ters are updated it is assumed that the model structure is
correctly selected, i.e. it is capable enough to describe the
process in all possible working conditions. Thus, model
structuring should be carefully performed during (offline)
initial model building.

For online model parameter updating, different criteria
and techniques are used. In general, an adaptive procedure
can be presented as a function g(-) which adapts the model
S (+) during online operation [9]:

fm,k:((-)k) = g(.fnL,k—l(@k?—l)7 Dk)a (6)

where k refers to the current step of model adaptation.
Adaptation is based on the model that was derived in the

AUTOMATIKA 54(2013) 2, 166-177



Adaptive Estimation of Difficult-to-Measure Process Variables

D. Sliskovié, R. Grbié, 7. Hocenski

last adapting procedure f,, ,_(-) and the available data
Dy.

In principle, batch techniques (that are used in offline
model building) can be used for model adaptation such that
the model is recalculated from scratch after each new sam-
ple is acquired. In that case, the adaptation function has
only the input Dj. Because the data set used for model
parameter estimation Dy, is continuously increasing, this
approach is impractical for online use. In addition, the in-
fluence of the online acquired samples is continuously de-
creasing so the model is not adapting to the current state of
the process.

In order to avoid the aforementioned drawbacks, and to
still implement batch techniques in adaptive model build-
ing, the moving window method emerged [9]. Model pa-
rameter estimation is performed only on a limited number
of samples defined by the window size W:

s yk} }7 @)

Dy = {[Xpr1-w, - Xi)s [Yht1-w, - - -

where x;, and yj, are the last acquired sample of ETM and
DTM variables (see Fig. 1). As the new samples are ac-
quired and added to the window, the oldest are removed
from the window. The size of the window W determines
the number of the most recent complete input-output sam-
ples that are used in adaptation, i.e. the speed of adapta-
tion. The moving window method applied to PLSR model
is discussed in Section 3.2 in more details.

moving window containing W complete samples

—
new ETM
Xierw | Kiws2 X1 X 1 sample
DTM
Yie1-w Yiwe2 Yk Yo oo e nesvavmple
fm‘k(gk)

Fig. 1. Moving window method

Recursive techniques use the model calculated in the
previous step of adaptation f,, , () and the new data
available from that point in time Dj (only one com-
plete sample {xj,yx} in the case of sample-wise adap-
tation) [9]. A forgetting factor is usually used to down-
weight the previous model. It defines distribution between
learning of new information and forgetting the old infor-
mation, similarly to the window size in moving window
method.

The window size in a moving window approach and the
forgetting factor in recursive techniques are usually deter-
mined in the offline phase of model building. Although the
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size of the window and the forgetting factor value can be
changed during online operation to obtain a more accurate
soft-sensor [9, 13], this is rarely found in practice.

2.3 Additional Tasks in Estimator Implementation

After the estimator has been developed its performance
should be monitored. When the need for adaptation is de-
tected, an adaptation procedure should be triggered. This
can be accomplished by comparing the estimator output
with the results of laboratory analysis, or in the case when
soft-sensor works as a back-up sensor, with the values ob-
tained by a hardware sensor. Therefore, laboratory analysis
cannot be completely dismissed but its frequency could be
reduced drastically and consequently reducing the cost of
the laboratory analysis.

Practically, model adaptation is usually performed at
regular intervals, so there is no need for some special mon-
itoring procedure. However, adaptation must be performed
on reliable samples, i.e. erroneous samples must be de-
tected and discarded to prevent the estimator from adapt-
ing to disturbances. Therefore, quality preprocessing of
the incoming data is very important in the adaptation pro-
cedure [10]. Due to the long duration of laboratory analy-
sis, ETM variables can be additionally preprocessed when
used for model adaptation, in comparison to the situation
when they are used for DTM variable estimation (see Fig.
2).

c
<
v

_1_> Process
Ye .
Lab. analysis
Internal
variables Complete 1/0 || (%:¥2) Model
sample  —p> adaptation
preprocessing
5.2 I Yo
882 P A,
85 rocess | Y
Xl g8
S model
E s

u — input process variables, x — easy-to-measure variables, y — actual
(unmeasurable) value of difficult-to-measure variable, y, — value of difficult-
to-measure variable obtained by laboratory analysis, y — estimated value of
difficult-to-measure variable, (x,, y,) — preprocessed input-output sample, = —
duration of laboratory analysis, ® — model parameters.

Fig. 2. Principal schema of adaptive estimator with data
preprocessing

Apart from model adaptation, parameters of prepro-
cessing methods as well as scaling parameters should be
updated during online operation of the estimator. More
about practical development and maintenance of soft-
sensors can be found in [19-21].
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3 METHODS FOR MODEL ADAPTATION

In the last few years an increased use of different in-
telligent methods can be noticed, such as Neuro-Fuzzy
methods and other hybrid methods in soft sensor develop-
ment [3,4]. Nevertheless, PLS based soft sensors are still
very common in practical use [22-25], due to its simplic-
ity and clear mathematical background. In this paper, PLS
method is the basis for adaptive model building.

3.1 PLSR Model

As already mentioned in Section 2.1, models with two
levels of projection can give desired estimator accuracy
even if plant data are used for process modeling and when
the DTM variable is estimated from a great number of
ETM variables. In a single output PLSR model, linear
regression is performed on the latent variables obtained
by linear input space projection in the directions obtained
by PLS method. More precisely, the directions of pro-
jection ac are obtained by maximizing the following cri-
terion [8,26]:

max[corr? (y, Xa;)var(Xa; )], (8)
Q;j
where X" and y™*! are available data containing n
complete input-output samples for modeling. The param-
eters 3 of the regression part of the model are obtained by
minimizing criterion:

max(ly —3I%). )

Solutions of the optimization problem (8) are in fact eigen-
vectors of the matrix (XTy)T(XTy), so the directions of
projection can be found by solving the eigenvalue problem.
The most popular algorithms for calculating directions of
projection are the Nonlinear Iterative Partial Least Squares
(NIPALS) algorithm [27] and kernel algorithm [28].

The general PLS algorithm is based on the decomposi-
tion of the predictor matrix X"*"* (ETM variables) and the
response matrix Y™ (DTM variables) into sums of rank
one component matrices [26,27]:

J
X => tip; +E=TP" +E, (10)
i=1
J
Y =) wqf +F=UQ" +F, (11)
i=1
where t™*! and u™! are latent score vectors, p™*! and

qP*! are corresponding loading vectors, E"™*™ and F"*P
are the input and output residual matrices and .J is number
of latent variables. This decomposition can be obtained by
the following steps [13]:
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1. scale matrices X and Y such that columns have zero
mean and unit variance, set j = 1,

2. compute the following quantities: w;, t;, q; and p;
using either NIPALS or kernel algorithm,

3. deflate X and Y by subtracting the computed latent
vectors from them:

X1 =X, —t;p;, (12)

Y1 =Y, —t;q, (13)

4. increase j by 1 and go to step 2 to compute the next
latent vector.

Vectors w; are loading weights which provide orthogonal
t; scores [26]. Model prediction for the new sample x'*™
is given by:

Y = XBPLS = XW(PTW)ilBQT7 (14)

where Bpy g is the regression matrix relating input and out-
put, W, P and Q are the matrices containing vectors w,
p and q, and B is the matrix of regression coefficients re-
garding T and U:

U =TB. (15)

The single output PLSR model is usually used in soft-
sensor development. In terms of model with the two levels
of projection (2), the PLSR model is used in the following
form when estimation of DTM variable based on sample
of ETM variable x = [z, . .., Z,,] is needed:

Y =28 = xApLsf3 = xbprs, (16)

where AT is the projection matrix and bES are the

overall model parameters in terms of the PLS criterion.
Similarly to (14), the projection matrix Apyg is obtained
as W(PTW)~L. Projection to the latent subspace is ob-
tained as:

Z = XAprs, A7)

while the coefficients of the regression part of the
model (16) are obtained from the latent variable matrix Z
according to the following equation:

B=(Z"2)'7"y. (18)

It is especially important that the ETM variables as well
as the number of latent variables .J are correctly selected
during offline modeling procedure to ensure that the model
can describe process input-output relationship satisfacto-
rily. The model structure is usually not changed during
online operation, i.e. only model parameters are updated.

An important issue in model building is data standard-
ization which has to be performed before model parame-
ter estimation/updating. It corresponds to data centering
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and scaling to the unit variance [13—15]. The data matrix
X§*™, which is used for initial model building, is stan-
dardized according to the following equation:

X = (Xy—-1,x0)n 7, (19)

where X is standardized matrix, 1,, = [1,1,...,1]T isa
vector of length n, X = [Ty, ...,T,,|T is a vector of mean
values for each column in X and 3 = diag{o1,...,0pn}
is a diagonal matrix with the standard deviations of each
column in Xy. The vector yy can be standardized in a
similar way.

3.2 Moving Window Method

One of the simplest approaches for model adaptation
is moving window method which is often called quasi-
recursive technique. As the new samples are acquired, the
window slides along the data so that newest samples are
included and the oldest are excluded from the model (see
for example [24]). Model parameters can be recalculated
with every new sample that is acquired (sample wise) or af-
ter a certain number of data is acquired (block wise). This
adaptive mechanism can be easily and directly applied to
the PLSR model type.

Since process variables can change significantly over a
long time period, it is necessary to recursively update mean
values and standard deviations of variables used in model-
ing and prediction as the new samples are acquired [9, 15]:

N -1 1
X = N Xp—1+ Xk (20)
N -2
U?,k =N 101‘2,1@714'
B 1 (21
+(Tip — Ti,kfl)Q + N_1 (i — fi,k)g,

where k is step of updating, 0; 1, and T; j, are the standard
deviation and mean value of i-th variable in the k-th step
and N = W is the number of samples in the window. An-
other approach is to calculate the mean values and standard
deviations with every model update from the data inside
window.

The advantage of the moving window method lies in
the fact that methods for offline model building can be
used, so it can easily be implemented. A drawback of
the method is the appropriate selection of the window size.
Window size defines speed of adaptation. The longer the
window the old process data dominate while with a shorter
window information about near past is dominant. There-
fore, the current state of the process can be described if the
model is estimated on a narrow window. However, data in
a narrow window can sometimes insufficiently represent
the state of the process (there are not enough samples or
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there are a lot of disturbances superimposed on the sam-
ples in a window). This can result in poor parameter es-
timation or model adaptation to some disturbing operating
conditions. On the other hand, if the window is too long,
the model will adapt slowly and will have a lower accu-
racy. Appropriate window selection, i.e. trade-off between
forgetting of old information and learning of new informa-
tion, is therefore very important in adaptive model building
based on data. Another possible drawback of the moving
window method is relatively high memory requirement if
a long window is used.

3.3 Recursive NIPALS Algorithm

The first recursive partial least square (RPLS) algo-
rithm was proposed in [11]. Improvements of this algo-
rithm with some other extensions were reported in [14].
Recursive PLS algorithm consists of these steps:

1. Scale initial data matrices Xy and Y to zero mean
and unit variance according to equation (19), set k =
0,

2. Derive PLS model by NIPALS algorithm:
{Xk,Yk} — {Tk,Wk,Pk,Bk,Qk} and in-
crease k by one,

3. When a new pair of data {x,y} is available, scale it
and formulate:

T T
S

4. return to step 2.

The forgetting factor A defines the strength of adaptation.
A smaller A\ means faster adaptation to the new data. For
A = 1, new sample and old samples (old model) have the
same influence on the resulting model. It also has to be
pointed out that the number of latent variables that are used
in the updating procedure must be equal or greater than
the rank of matrix X;. However, only the most important
latent variables are used for prediction. Block-wise RPLS,
derived in [14], builds a PLS model on the new block of
data and then combines it with old PLS model. It is equal
to the presented algorithm, only equation (22) is changed

to:
APT AB;,_1QT ]
Xy = | Y = k-1, 23
g { Py }7 g { B.Q; =

Equations (20) and (21) can be used for recursive on-
line data scaling (in this case NN is the total number of
data points). However, the influence of the new data points
diminishes with increasing IV, so exponentially weighted
scaling can be used to track mean values and standard de-
viations of the data [15]:

X = AXj—1 + (1 — )\)Xk, 24)
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07 = Moty + (Tik — Tip—1)")+ 25)
(1= N (@i — Ti)*

3.4 Recursive Kernel PLS Algorithm

Recursive exponentially weighted kernel PLS algo-
rithm was proposed in [13]. Since the basis of this re-
cursive algorithm is the kernel algorithm [28], covariance
data matrices XTX and XTY play a central role in the
algorithm.

In [29], an improved kernel algorithm is proposed
which consists of the following steps:

1. Calculate covariance matrices XTX and XTY, set
j=1
2. Calculate YTXXTY as:

(YTXX"Y); = (X"Y)T(X"Y);, (26)

3. Calculate vector q; which corresponds to the largest
eigenvalue of YT XX™'Y and after that w; as:

W
=X"Yq; = 27
" R T A

4. If j = 1 setr; = wy, else calculate r; as:

j—1
T =w;— Y piw;ri, (28)
=1

5. Calculate the score vector t; and loadings vectors p;
and q; of the input and output data as follows:

tj = }(I'j7 (29)

T rJT(XTX)

=7 30
T (XTX)ry’ 30)

p

qT - & 31)
7 (XTX)ry’
6. Deflate the covariance matrix XTY:

(XTY);01 = (XTY); —piq; (6] t),  (32)

7. Setj = j+ 1 and go to step 2 while j <= J,
8. Calculate the overall model parameters as:

Bprs = W(PTW)'Q" = RQ™, (33)

where W = [wy,...,w;, P = [py,...
[q1,...,q]and R = [rq,...,1].

7pl]’ Q =
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Generally, the kernel algorithm is many times faster than
the NIPALS algorithm [13]. Since only the matrix XTY
has to be deflated, the improved kernel algorithm is 2-5
times faster than the original kernel algorithm proposed
in [28].

To make this algorithm recursive, the following update
of the covariance matrices is proposed when new sample
{x,y} is available [13]:

(XTX)e = AXTX)p-1 +x7x,

34
XTY), = AXTY )1 +xTy, G

where ) is a forgetting factor just like in the recursive PLS
proposed in [14]. In that way old data are exponentially
discounted. Naturally, for A = 1 there is no discounting of
the past data.

Mean values and standard deviations of variables can
be updated from the covariance matrix (XTX)j, irrespec-
tive of whether a constant or variable forgetting factor is
used [13].

3.5 Just-In-Time Learning

Just-In-Time Learning (JITL, also known as lazy learn-
ing or model on demand) can be used to develop adap-
tive process model [30-32]. In contrast to the "classical"
adaptive modeling where the initial model is built offline
and updated during online operation, in JITL the model is
built from scratch whenever the estimation of DTM vari-
able is needed. Such modeling can cope with nonlinear
and time-varying behaviour successfully although simple
linear models are used for describing process input-output
relationship. JITL for soft-sensing consists of the follow-
ing steps [30]:

1. If complete input-output sample is available, store it
in the process database.

2. When prediction of the DTM variable based on input
sample x;, is needed, process model is dynamically
built from the similar samples {X;, y} stored in the
database (see Fig. 3).

3. The constructed model is discarded after its use for
the DTM variable estimation since it is only valid for
the operating condition characterized by the current

query.

Suppose that the database consists of the samples col-
lected in the matrix X"™*™ and vector y"™*!. When an esti-
mation based on newly collected sample x;, is needed, the
matrix X is searched for the samples x; that are similar to
the sample x;, according to the following measure [30]:

si=yVe % + (1 —~)cosb;, i=1,....n, (35)
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Fig. 3. Just-in-time learning method for adaptive PLSR
model building

where 7 is a weight parameter, d; is Euclidean distance
between x; and x; and cos6; is the cosine of the angle

between Ax, = X5, — Xp—1 and AX; = X; — X;_1:
di = ||xx — Xill5, (36)
AxTAx;
cosf; = R . (37)
A5 - [[Ax]],

If cosf; is a negative number, the sample is discarded.
Only the most relevant samples {x;, y; } that correspond to
the largest values of s; are used for PLSR model building.
The resulting model is called JIT-PLSR model.

JIT-PLSR model can have better prediction capabili-
ties than recursive PLS, especially when there are abrupt
changes in process characteristic. A potential drawback of
this approach is large memory requirement. Besides that,
since the model has to be built upon every query, online
computational load becomes very large [32].

4 NUMERICAL RESULTS

The PLS method for process model building and differ-
ent methods for model adaptation discussed in Section 3
were analyzed on a simulated example of the fluid storage
process (see Fig. 4). This process is nonlinear with a num-
ber of (highly) correlated process variables. Different er-
rors can be simulated which are usually found in real data
sets, like sensors drifts, noise, outliers, missing values and
so on. Apart from that, other different scenarios can be
simulated, like sensors faults, operating point changes or
other time-varying process behaviors [10]. Therefore, it is
appropriate for adaptive estimator efficiency testing. The
level of the fluid in the third tank (hs) is supposed to be
a DTM process variable, i.e. its measurements are avail-
able with much lower frequency than other process vari-
ables. The flow rates ¢ and positions = of the controlled
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Fig. 4. Principal schema of the fluid storage process

valves are supposed to be ETM process variables, so a to-
tal of 13 ETM variables are available. During simulation,
which covered a time period of 25 hours, variables were
sampled every 6 seconds. However, every 50" sample
of DTM variable was used for model building/adaptation
while the rest of DTM samples were used only for model
testing. In order to achieve more realistic situation, noise
and outliers were added to the flow measurements. Gaus-
sian noise with zero mean and appropriate variance was
superimposed to all flow measurements. Values of approx-
imately 8% of randomly chosen samples were changed by
adding/subtracting about 10% of the true value in order
to simulate outlying observations which can appear in real
measurements and can negatively affect modeling proce-
dure. Operating point change was introduced at 5000
sample by adding a slow ramp to the x1; variable in order
to simulate non-stationary process behavior.

The first 4500 samples, which were used for initial pro-
cess model building, were preprocessed offline by wavelet
denoising [6]. Due to the lower sampling frequency of
level hg, only 90 complete input-output samples were
available for offline process model building. The initial
PLSR model was determined by kernel PLS algorithm (see
Subection 3.4). The rest of the data (10500 samples) were
used for non-adaptive and adaptive process models test-
ing. Models that serve as DTM estimators were tested in
online manner, i.e. as the new samples of ETM variables
were acquired, prediction of DTM variable were made and
compared. If a complete input-output sample was avail-
able, adaptation procedure was triggered in the case of
adaptive models. In all experiments the moving average
filter was implemented for online data denoising of ETM
variables [6, 10]. The number of latent variables in PLSR
model was fixed to 6.
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4.1 Moving Window PLSR Model

The estimation result of the non-adaptive PLSR model
is shown in Fig. 5 together with the true values of DTM
variable. The estimation result of the adaptive PLSR model
that was updated by moving window method (window cov-
ers 50 samples) using kernel PLS algorithm is shown in
Fig. 6. It can be noticed that the estimation precision of the
non-adaptive PLSR model is decreased after 5000*" sam-
ple while adaptive PLSR model successfully tracks process
changes. This is clearer in Fig. 7 where absolute error of
the models estimation is shown.

46 1
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Fig. 5. DTM variable estimation by non-adaptive PLSR
model

4.4t

i o A
42+ ¢ | 4

h, [m]
R

38k ¥ ! f 4
36ef | ‘.‘il’l v ' ]

34 | x  True DTM values| -|
adaptive PLSR

3.2 . . . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
samples

Fig. 6. DTM variable estimation by moving window adap-
tive PLSR model

The influence of the window size in the moving win-
dow adaptation method is shown in Table 1 in terms of the
mean squared error (MSE) calculated over the samples of
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DTM variable that are not used in adaptation procedure.
It can be noticed that adaptation with too wide a window

Table 1. Comparison of moving window PLSR models with
different window size

Model Window size MSE
adaptive PLSR 30 5.3905 - 10~4
adaptive PLSR 50 4.8909 -10~%
adaptive PLSR 80 5.2155 - 104

Non-adaptive PLSR - 43.6791 - 10~*

(80 samples) causes slow model adaption and therefore a
higher estimation error. On the other hand, too narrow a
window (30 samples) causes quick adaptation but due to
the limited number of samples and errors in samples, the
model can have a higher estimation error than the model
with a moderate window size (50 samples). Optimal win-
dow size selection depends on the properties of the mod-
eled process. Hereby, process operator experience about
process time-varying behavior can greatly help in the win-
dow size selection.

4.2 Recursive NIPALS Algorithm

Recursive NIPALS algorithm was implemented ac-
cording to (22). DTM variable estimation and absolute er-
ror of the estimation are not showed since they are very
similar to Fig. 6 and Fig. 7. Table 2 shows the mean
squared error of PLSR models updated by recursive NI-
PALS algorithm with different forgetting factors. As stated
before, the forgetting factor A defines the strength of adap-
tation since it down weights the old model. It can be con-
cluded that choosing the proper forgetting factor is crucial
for the model estimation precision. Apart from that, the
presented results in Table 2 show that recursive update of
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the variables mean values according to (24) should be per-
formed since smaller estimation error is achieved.

Table 2. Comparison of PLSR models updated by recursive
NIPALS algorithm

Forgetting factor A | Means update MSE
0.92 No 6.0150 - 10~*
0.92 Yes 5.9201 - 10~4
0.98 No 4.0759 - 10~ %
0.98 Yes 4.0031-1071
0.99 No 4.1137-1071
0.99 Yes 3.9885-10~1

4.3 Recursive Kernel PLSR Model

Recursive exponentially weighted kernel PLS algo-
rithm was implemented according to (24)-(34). Table 3
shows mean squared error of such adaptive PLSR mod-
els. According to Table 3, similar results to the recursive
NIPALS PLSR models or moving window PLSR models
were obtained. The forgetting factor A\ plays the same
role as in recursive NIPALS algorithm although it weights
data samples directly. Smaller forgetting factor means that
model relies more on the new samples and quickly dis-
counts the old data. On the other hand, a bigger forgetting
factor means that model discounts the old samples more
slowly and for A = 1 there is no discounting of the old
samples. The optimal value of forgetting factor is different
for different time-varying processes. Therefore, its role is
similar to the size of window in moving window adapta-
tion method. Variable means should be recursively updated
since higher estimation precision is obtained.

Table 3. Comparison of recursive kernel PLSR models

Forgetting factor A | Means update MSE
0.92 No 4.9058 - 10~*
0.92 Yes 4.7868 - 10~1
0.98 No 4.5478 - 104
0.98 Yes 4.4339-10~1
0.99 No 5.0668 - 10~4
0.99 Yes 4.9415-10~4

4.4 JIT-PLSR Model

JITL method was implemented according to the algo-
rithm and equations presented in Section 3.5. Results of
the JIT-PLSR model testing are presented in Table 4 for
different number of samples that were used for local model
building. It can be concluded that the number of samples
which are used in local model building should be care-
fully chosen. The presented results are slightly worse than
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results obtained by moving window PLSR, recursive NI-
PALS PLSR or recursive kernel PLSR models (see Ta-
ble 1, 2 and 3). This can be explained by the fact that
some of the old samples can be involved in local modeling
procedure although they do not represent the true state be-
cause the operating point is constantly changing in the test
data. However, this model can be useful if abrupt changes
are present in the data, such as change to some old process
operating point which was already recorded in the process
database.

Table 4. Comparison of JIT-PLSR models

Number of samples MSE
30 7.2063 - 10~*
60 6.0739-104
80 6.1806 - 10~4

4.5 Other Evaluation Aspects of Model Adaptation
Methods

Although all adaptive models have similar prediction
accuracy, they are very different with respect to computa-
tional load and memory requirements. This is very impor-
tant from the practical point of view when the estimator is
actually implemented in plant computer system. Table 5
shows time in seconds that was needed for model testing
on a standard PC'. Model testing includes data preprocess-
ing, model adaptation and model prediction over available
data.

Table 5. Duration of model testing in seconds

Model Time in seconds
Moving window PLSR model
. . . 16.29
with window size 50
Recursive NIPALS PLSR model 19.05
Recursive kernel PLSR model 16.67
JIT-PLSR model with 3508
number of samples equal to 60 '

Table 6. Memory requirements of different adaptive meth-
ods

Adaptive model type Memory requirements

Moving window PLSR model | moderate (depends on window size)

Rec. NIPALS PLSR model very low

Rec. kernel PLSR model very low

high, constantly increasing as

JIT-PLSR model :
the new samples are acquired

As expected, JIT-PLSR model has very high compu-
tational load since new local PLSR model has to be built

UIntel Celeron M 1.4 GHz, 2 GB of RAM with Matlab 7.1 SP3
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with each acquired sample. Additionally, JIT-PLS model-
ing approach requires storing all acquired samples which
means that the process database is continuously increasing
and local model building is slowing down since a bigger
and bigger process database has to be searched (see Ta-
ble 6). Moving window PLSR model and recursive kernel
PLSR model has similar time execution since the same ker-
nel PLS algorithm is implemented. However, moving win-
dow approach requires last W samples to be stored (where
W is window size) while recursive kernel PLS algorithm
requires only covariance matrix MxM to be stored. These
characteristics of the adaptive methods should be taken
into account when such estimators are implemented in pro-
cess control equipment which can be quite computationally
and memory limited.

5 CONCLUSION

Industrial processes exhibit some kind of time-varying
behavior. Therefore, the estimation precision of estima-
tors based on model with static parameters decreases dur-
ing online operation. In order to avoid estimator precision
degradation, an adaptation mechanism is usually imple-
mented in online applications. This paper presents differ-
ent adaptation methods which can be used for model adap-
tation. Adaptation methods are applied to the PLSR model
and are evaluated on the data obtained by simulation. Re-
sults are compared and discussed in details. Guidelines for
choosing the proper parameters of adaptation methods are
also given. Apart from that, methods are analyzed in terms
of computational load and memory requirements which are
especially important when the estimator is implemented in
the plant control equipment.

For the future work it would be interesting to see how
the moving window and JITL method work with some
other methods from machine learning field, such as Sup-
port Vector Regression. Additionally, the JITL method
should be explored since its computational load can be de-
creased by storing already built local models.

REFERENCES

[1] L. Fortuna, S. Graziani, A. Rizzo, and M. G. Xibilia, Soft
sensors for monitoring and control of industrial processes.
Springer Verlag, 2007.

[2] T. McAvoy, “Intelligent "Control" Applications in the pro-
cess industries,” Annual Reviews in Control, vol. 26, no. 1,
pp- 75-86, 2002.

[3] P.Kadlec, B. Gabrys, and S. Strandt, “Data-driven Soft Sen-
sors in the process industry,” Computers & Chemical Engi-
neering, vol. 33, no. 4, pp. 795-814, 2009.

[4] D. Sliskovi¢, R. Grbié, and 7. Hocenski, “Methods for
Plant Data-Based Process Modeling in Soft-Sensor Devel-
opment,” Automatika, vol. 52, no. 4, pp. 306-318, 2011.

176

[5] G. D. Gonzalez, “Soft sensors for processing plants,” in
Proceedings of the Second International Conference on
Intelligent Processing and Manufacturing of Materials,
IPMM’99., vol. 1, 1999.

[6] D. Sliskovié, R. Grbié, and E. K. Nyarko, “Data preprocess-
ing in data based process modeling,” in Intelligent Control
Systems and Signal Processing, vol. 2, pp. 559-565, 20009.

[7] B.Lin, B. Recke, J. Knudsen, and S. Jorgensen, “A system-
atic approach for soft sensor development,” Computers &
Chemical Engineering, vol. 31, no. 5-6, pp. 419-425, 2007.

[8] D. Sliskovi¢, N. Peri¢, and 1. Petrovi¢, “Continuum Re-
gression in Process Modeling Based on Plant Data,” Au-
tomatika, vol. 46, no. 3—4, pp. 1-14, 2005.

[9] P. Kadlec, R. Grbi¢, and B. Gabrys, “Review of adapta-
tion mechanisms for data-driven soft sensors,” Computers
& Chemical Engineering, vol. 35, no. 1, pp. 1-24, 2011.

[10] D. Sligkovi¢, R. Grbié, and Z. Hocenski, “Online data pre-
processing in the adaptive process model building based on
plant data,” Technical Gazette, vol. 18, no. 1, pp. 41-50,
2011.

[11] K. Helland, H. Berntsen, O. Borgen, and H. Martens,
“Recursive algorithm for partial least squares regression,”
Chemometrics and Intelligent Laboratory Systems, vol. 14,
no. 1-3, pp. 129-137, 1992.

[12] S. Wold, “Exponentially weighted moving principal com-
ponents analysis and projections to latent structures,”
Chemometrics and Intelligent Laboratory Systems, vol. 23,
no. 1, pp. 149-161, 1994.

[13] B. S. Dayal and J. F. MacGregor, “Recursive exponen-
tially weighted PLS and its applications to adaptive control
and prediction,” Journal of Process Control, vol. 7, no. 3,
pp. 169-179, 1997.

[14] S. Joe Qin, “Recursive PLS algorithms for adaptive data
modeling,” Computers & Chemical Engineering, vol. 22,
no. 4-5, pp. 503-514, 1998.

[15] W. Li, H. Yue, S. Valle-Cervantes, and S. Qin, “Recursive
PCA for adaptive process monitoring,” Journal of Process
Control, vol. 10, no. 5, pp. 471-486, 2000.

[16] X. Wang, U. Kruger, and B. Lennox, “Recursive partial
least squares algorithms for monitoring complex industrial
processes,” Control Engineering Practice, vol. 11, no. 6,
pp. 613-632, 2003.

[17] D. Sliskovié, Difficult-to-measure process variables estima-
tion based on plant data. Ph.d. thesis, Faculty of Electrical
Engineering and Computing, Zagreb, 2005.

[18] B. Bakshi, “A common framework for the unification of
neural, chemometric and statistical modeling methods,” An-
alytica Chimica Acta, vol. 384, no. 3, pp. 227-247, 1999.

[19] I. Miletic, S. Quinn, M. Dudzic, V. Vaculik, and M. Cham-
pagne, “An industrial perspective on implementing on-line
applications of multivariate statistics,” Journal of Process
Control, vol. 14, no. 8, pp. 821-836, 2004.

AUTOMATIKA 54(2013) 2, 166-177



Adaptive Estimation of Difficult-to-Measure Process Variables

D. Sliskovié, R. Grbié, 7. Hocenski

[20] J. Liu, R. Srinivasan, and P. N. SelvaGuru, “Practical chal-
lenges in developing data-driven soft sensors for quality
prediction,” in I8th European Symposium on Computer
Aided Process Engineering, vol. 25, pp. 961-966, 2008.

[21] L. Fortuna, S. Graziani, and M. Xibilia, “Soft sensors
for product quality monitoring in debutanizer distillation
columns,” Control Engineering Practice, vol. 13, no. 4,
pp- 499-508, 2005.

[22] T. Komulainen, M. Sourander, and S.-L. Jamsi-Jounela,
“An online application of dynamic PLS to a dearomatiza-
tion process,” Computers & Chemical Engineering, vol. 28,
no. 12, pp. 2611-2619, 2004.

[23] R. Sharmin, U. Sundararaj, S. Shah, L. Vande Griend, and
Y.-J. Sun, “Inferential sensors for estimation of polymer
quality parameters: Industrial application of a PLS-based
soft sensor for a LDPE plant,” Chemical Engineering Sci-
ence, vol. 61, no. 19, pp. 6372-6384, 2006.

[24] S. Mu, Y. Zeng, R. Liu, P. Wu, H. Su, and J. Chu, “On-
line dual updating with recursive PLS model and its appli-
cation in predicting crystal size of purified terephthalic acid
(PTA) process,” Journal of Process Control, vol. 16, no. 6,
pp. 557-566, 2006.

[25] D. Wang and R. Srinivasan, “Eliminating the effect of mul-
tivariate outliers in PLS-based models for inferring process
quality,” in 19th European Symposium on Computer Aided
Process Engineering, vol. 26, pp. 755-760, 2009.

[26] H. Martens and T. Naes, Multivariate calibration. John Wi-
ley & Sons Inc, 1992.

[27] P. Geladi and B. R. Kowalski, “Partial least-squares regres-
sion: a tutorial,” Analytica Chimica Acta, vol. 185, no. 1,
pp- 1-17, 1986.

[28] F. Lindgren, P. Geladi, and S. Wold, “The kernel algorithm
for PLS,” Journal of Chemometrics, vol. 7, no. 1, pp. 45-59,
1993.

[29] B. S. Dayal and J. F. MacGregor, “Improved PLS algo-
rithms,” Journal of Chemometrics, vol. 11, no. 1, pp. 73-85,
1997.

[30] C. Cheng and M. S. Chiu, “A new data-based methodol-
ogy for nonlinear process modeling,” Chemical Engineer-
ing Science, vol. 59, no. 13, pp. 2801-2810, 2004.

[31] Z. Ge and Z. Song, “Online monitoring of nonlinear mul-
tiple mode processes based on adaptive local model ap-
proach,” Control Engineering Practice, vol. 16, no. 12,
pp. 1427-1437, 2008.

[32] K. Fujiwara, M. Kano, S. Hasebe, and A. Takinami, “Soft-
sensor development using correlation-based just-in-time
modeling,” AIChE Journal, vol. 55, no. 7, pp. 1754-1765,
2009.

AUTOMATIKA 54(2013) 2, 166-177

Drazen Sliskovi¢ was born in Osijek, Croatia, in
1962. He received his B.Sc., M.Sc. and PhD de-
grees in 1988, 1998 and 2005 from Faculty of
Electrical Engineering and Computing, Univer-
sity of Zagreb. After graduation, he was em-
ployed in Elektroosijek, in the field of measure-
ment, supervision and control. Currently he is
with Faculty of Electrical Engineering, Univer-
sity of Osijek, participating in education in the
field of Automatic Control. His research interests
are process control, process modeling, estimation of difficult-to-measure
process variables, diagnostics and fault detection.

Ratko Grbi¢ was born in 1983 in Virovitica,
Croatia. In 2006 he graduated from the Fac-
ulty of Electrical Engineering, University of Os-
ijek, Croatia. He is currently a Ph.D. student at
the same Faculty, where he works as a assistant
at the Department of Industrial Plants and Au-
tomation. Teaching activities include undergrad-
uate and graduate courses such as process con-
| trol and process identification. His research in-

terests include process modeling and estimation
of difficult-to-measure process variables. He is a member of KOREMA
and IEEE.

Zeljko Hocenski (1952) is working as a scien-
tist and researcher in the area of industrial elec-
tronics, computer engineering, automation and
process control. He received B.Sc. (1976),
M.Sc. (1984) degree in Electrical Engineering
and Ph.D. degree (1996) in Computing from the
Faculty of Electrical Engineering and Comput-
ing (FER Zagreb), University of Zagreb, Croa-
, tia. He was working at the Institute of Electrical

Engineering of holding Koncar in Zagreb (1977-
1984) in the fields industrial electronics and au-
tomation, microprocessor control and industrial communications. From
1984 is at J.J. Strossmayer University of Osijek, Faculty of Electrical
Engineering, position full professor (2006). He was Vice-dean (1997-
2003) and Dean (2003-2005). Now is the head of the Computer Engineer-
ing Department. Teaching activities include undergraduate and graduate
courses. Scientific activities are in design, diagnosis, verification and val-
idation of embedded computer systems as well as fault-tolerant computer
systems for process control and automation. His research results are pub-
lished in more than 80 scientific articles and conference papers, books,
course-books, 20 studies/reports and projects related to production. Prof.
Hocenski has particularly excelled in the leadership of national and inter-
national research projects. Awarded as author of three technical improve-
ments and innovations. He is a member of KOREMA (Managing Board),
IEEE (vice president of the IEEE Computer Society, Croatian section),
ACM and SICE.

AUTHORS’ ADDRESSES

Prof. Drazen Sliskovi¢, Ph.D.

Ratko Grbi¢, B.Sc.

Prof. Zeljko Hocenski, Ph.D.

Faculty of Electrical Engineering,

University of Osijek,

Kneza Trpimira 2b, HR-31000, Osijek, Croatia
email: {drazen.sliskovic, ratko.grbic,
zeljko.hocenski} @etfos.hr

Received: 2011-12-20
Accepted: 2012-12-14

177



