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BREGMAN AND BURBEA-RAO DIVERGENCE FOR
MATRICES

M. ADIL KHAN', M. NIEZGODA?, AND J. PECARIC"?

ABSTRACT. In this paper, the Bregman and Burbea-Rao diver-
gences for matrices are investigated. Two mean-value theorems
for the divergences induced by C2-functions are derived. As appli-
cation, certain Cauchy type means of the entries of the matrices
are constructed. By utilizing three classes of parametrized convex
functions, the exponential convexity of the divergences, thought as
a function of the parameter, is proved. The monotonicity of the
corresponding means of Cauchy type is shown. Power means are
also considered.

1. INTRODUCTION AND SUMMARY

For a real convex function ¢ defined on an interval I C R, the
Bregman-divergence 8 and Burbea-Rao divergence J between vectors
x = (x1,...,2y) and y = (y1,...,Yn), where z;,y; € I, (i = 1,2,....,n),

are
n

Bro(x,y) =D [blxi) — ¢(i) — &' (i) (i — )], if ¢ is differentiable,
=1
) )
Bnatxy) =3 G0t + ol - o (5L @

i=1
(cf. [4,9]).
Assume that [ is an interval in R with interior I° and ¢ : [ — R is
a convex function on I. It is well known (see e.g. [5]) that then ¢ is
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continuous on [°, and, in addition, ¢ has finite left and right deriva-
tives at each point of I°. Moreover, if z, y € I° and x < y, then
D= ¢(z) < Dtop(z) < D ¢(y) < DT¢(y). Therefore both D~ ¢ and
D% ¢ are nondecreasing functions on I°. Also, a convex function must
be differentiable except for at most countably many points [7, pp. 271
272].

For a convex function ¢ : I — R, the subdifferential of ¢, denoted by
0¢, is the set of all functions ¢ : I — [—00, 00] such that ¢ (I°) C R and

o(x) > ¢(a) + (x — a)p(a) for any z,a € 1. (3)

The convexity of ¢ on I ensures that D~ ¢, DT ¢ € d¢, which shows that
0¢ is nonempty, and

D™ ¢(x) < o(z) < DT ¢(z) for any x € I° and ¢ € I¢. (4)

In particular, ¢ is nondecreasing function.
If ¢ is differentiable convex on I°, then ¢ = {¢'}.
The following theorem has been proved in [5].

Theorem 1 ([5]). Let ¢ : I C R — R be a convex function on the
interval I, z;,y; € I° and p; >0 (i =1,...,n).
If p € 0¢, then we have the inequality

> pilo(w) — d(yi) — @(ys) (i — yi)] > 0. (5)
=1

If ¢ is strictly conver on I and p; > 0 (i = 1,...,n), then the equality
holds in (5) if and only if x; =y; (i =1,...,n).

In fact, (5) is an extension of the fact that for convex function ¢,
%n,qﬁ(l',y) > 0.

In this paper, we study the Bregman and Burbea-Rao divergences
for matrices. In Section 2 we investigate properties of the Bregman-
divergence. We begin with an extension of Theorem 1 from n-vectors to
n x m matrices (see Theorem 2). This allows to derive two mean-value
theorems for the divergences induced by C2-functions (see Theorems 3
and 4). As application, we construct certain Cauchy type means of
the entries of the matrices (see Corollary 1 and Remark 1). By utilising
three classes of parametrized convex functions, we prove the exponential
convexity of the divergences, thought as a function of the parameter (see
Theorems 5, 7, 9). In particular, we present a Gram type inequality for
the divergences. We also show that the corresponding means of Cauchy
type are monotone in each variable (see Theorems 6, 8, 10).

In Section 3 we present some corresponding results for the Burbea-
Rao divergence.
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Finally, Section 4 is devoted to power means.

2. BREGMAN-DIVERGENCE FOR MATRICES
We will denote by [a;;] n x m matrix with entries a;; € I (i =
1,2,...,n,7=1,2,....m).

Definition 1. Let ¢ : I C R — R be a convex function on the interval
I and ¢ € 0¢. The Bregman divergence of two matrices X = [z;;]
and Y = [y;;] with Weight W = [wj;], where z;5,v;; € I and w;; > 0
(t=1,2,...,n,j=1,2,...,m), is defined by

Bm,go(X,Y; W) Zzww O(wij) — o(vij) — p(iz)(Tij — vij)] -

o (6)

If : I CR — R is a differentiable function (not necessarily a convex
function (see e.g. Theorems 3-4)), then we can rewrite (6) in the form

Bm.s(X,Y; W) Zzww o(zi5) — O(yij) — &' (Wig) (s — vij)] -

i=1 j=1
(7)
In particular, if W = [w;;] = [viu;] and y;; = 3°7% ujzy; for i =
1,2,...,n,7 = 1,2,...,m with Z;n:1 uj = 1, then from (6) we obtain
Burbea-Rao divergence of the matrix X with weight W as follows:

Tnme(X, W) sz Zu]¢ Tij) Zu]xw ) (8)

Moreover, if v; = 1, u; = %, m =2, x;1 = x; and x;0 = y;, then from (8)
we get Burbea-Rao divergence (2).

Theorem 2. Let ¢ : I CR — R be a convex function on the interval I,
and p € 0¢.

Then for Bregman—divergence By, m 4.o(X,Y; W) of two matrices X =
[zi;], Y = [yij] with weight W = [w;j], where x;j,y;; € I and w;; > 0
(i=1,2,..n, j=1,2,..,m), the following inequality holds.

Bym,so (X, Y W) > 0. 9)
If ¢ is strictly convex on I and wi; >0 (i =1,...,n, j =1,2,..,m),
then the equality holds in (9) if and only if X =Y.
Proof. If we apply (3) for the choice x = x5, a =y;; (i =1,2,...,n, j =
1,2,...,m), we may write

d(xij) — d(Yij) — p(yij) (@i — yij) >0 (10)
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forany i =1,2,...,nand j=1,2,....m

By multiplying (10) by w;; > 0 and summing over j from 1 to m and
then summing over i from 1 to n, we obtain (9).

The case of equality for strictly convex functions follows by the fact
that we have equality for such a function in (10) ifand only if X =Y. O

Theorem 3. Let ¢ € C(I), where I is a closed interval in R, and let
X, Y and W be matrices as in Theorem 2 with X # Y and w;; > 0
(i=1,2,on, j=1,2,....,m).

Then there exists & € I such that

¢,, nom
Bnmd)(X Y; W Zzww xzy yij)z- (11)
=1 j=1

Proof. Since ¢" is continuous on I, so m < ¢’ (z) < M for x € I, where
m = mirll ¢"(x) and M = max ¢"(x). Consider the functions ¢; and ¢
TE S

defined on I as

2
¢1(x) = Mx —¢(x) and ¢2($):¢($)—% for x € I.

It is easily seen that
Ix)y=M—¢"(x) >0 and ¢h(z)=¢"(x)—m >0 forzel.

So ¢1 and ¢9 are convex.
Now by applying ¢; for ¢ in Theorem 2, we have

n.m M2 M2
ZZ%[ ;” — ¢(wy5) — 2‘% + ¢(yij)

i=1 j=1

— (Myi; — ¢'(yij)) (ij — vij)| > 0.

Hence we get

1 & 2
Bymo(X, Y W) < 2M221wij (ij — vij)” - (12)
i=1 j=

Similarly, by applying ¢o for ¢ in Theorem 2, we get

Brm.o(X,Y; W) mZZwU Tij — Yij)? (13)
=1 j5=1

But Zz 12 Wig(Tij — yij)2 > 0as X # Y and wy; > 0 (i =
1,2,..,n, j=1,2,...,m). So, by combining (12) and (13), we obtain
2By m (X, Y W
< 8( ) <M.
Zz 123 1 Wi (Tij — Yig)
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Now by using the fact that for m < p < M there exists £ € I such that
§"(€) = p, we get (11). O

Theorem 4. Let ¢, € C?*(I), where I is a closed interval in R, and
let X, Y and W be matrices as in Theorem 2 with X #Y and w;; > 0
(i=1,2,..,n, j=1,2,....m).

Then there exists & € I such that

¢"(€) _ Bumo(X,Y; W) 1)

W(f) Bn,mﬂ/} (X7 Y; W)

provided that the denominators are nonzero.
Proof. Let the function k € C?(I) be defined by
k=ci19 — e,

where
c1=Bymy(X,Y; W) and o = By mg(X, Y W). (15)

It is not hard to check that By, ,,, x(X,Y; W) = 0.
In consequence, by using Theorem 3 for the function k&, we find that

o:(61¢;’(£)_02¢” )Zn?wa (v —y)% (16)

=1 j=1

Since Y iy D70 wij(wij — yij)% > 0, equality (16) gives us

$(E) _
&) e’
which together with (15) proves (14). O

Corollary 1. Let X, Y and W be matrices as in Theorem 2 with X #Y
and wi; >0 (i =1,2,...,n, j =1,2,...,m), where I is a positive closed
interval.

Then for —oo < v # 0,1 # u < 00, u # v, there exists £ € I such that

v(v—1) 350, D00 wi [ﬂf% — iy 4yl - 1)}
i . oan

w(u —1) 3200 D70 wij |:xz — VT t+ Y (v — 1)}

Proof. By setting ¢(z) = 2" and ¢(z) = 2V, z € I, in Theorem 4, we
get (17). O

Remark 1. Note that we can consider the interval I = [m, M|, where
m = min{min z;;, miny;;} and M = max{max x;;, max y;; }.
Z?] 17] Z7j Z?]
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Since the function £ — £“~¥ with u # v is invertible, then from (17)
it follows that

u—v

v(v—1) 350 D00 wij [wi“j —uaijyl oy (e — 1)]

< M.
w(u —1) 3750, D00 wi [5”% - Uxijyzpjil +yp;(v — 1)]

m <

(18)
Therefore the expression in the middle of (18) is a mean of x;; and y;;.
In fact, similar result can also be given for (14). Namely, suppose

that the function i—l,l, has inverse function. Then from (14) we have

eo (&N (Brmo (XY W) 19)
B W’ Bn,m,l/)(Xa Y; W) ‘
So, the expression on the right-hand side of (19) is also a mean of the
entries of X and Y.

In the sequel, we need the following lemmas.

Lemma 1 ([11]). Let us define the function

I t# 1
() =4 =17 ’ for x>0, (20)
zlogz, t=1

Then n) (z

) = 272 for x,t > 0, that is n; is convex on (0,+00) for
every t € (0,00).
)-

Lemma 2 ([3]). Let us define the function

t

t(tx_l) ) t#0,1;
oi(x) =4 —logz, t=0; for x> 0. (21)
xlogx , t=1

Then ¢} (x) = 212 for x > 0, t € R, that is ¢, is convex on (0,+00)
for every t € R.

Lemma 3 ([3]). Let us define the function

1 tx .
o) = {t?et  E#0; for z e R. (22)

%xz, t=20

Then ¢} (x) = €' for x,t € R, that is ¢ is a convex on R. for every
teR.
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By using (20) in (6) for zi;,yi;,t > 0 (i = 1,2,...,n, j =1,2,...,m),
we get
ﬁ D1 Dty wij [, — mijyffl + -1yl ,
t#1;
Bn,m,t(Xy Y; W) =
> i1 2 wij [wij(log wij — logyi; — 1) + wij]
t=1.
(23)
By applying (21) in (6) for x;5,y;; > 0and t e R (i =1,2,...,n, j =
1,2,...,m), we obtain

B (X y- W) B Bn,m,t(X’Y; W) ’ t 7& 0;
n,m,t s Ly 2?21 ZT:I W [% + 10g Yij — log xij:| , t= 0.
(24)

Analogously, by utilizing (6) and (22) for ;;,y;;,t e R(i =1,2,...,n, j =
1,2,...,m), we have
1 2oie1 2y Wi [€7 — e — e (x5 — )]
Bt (X, VW) tE0;
m,t ) ; =
nm 3 D iml 2o Wi [l‘?j — 3y — 2yij(xij — yij)} :
t=0.
(25)
Lemma 4 ([10, p. 2]). If ¢ is convex on an interval I C R, then
(83 — 82)p(s1) + (51 — 83)P(82) + (52 — 81)P(83) > 0 (26)
holds for every si,s2,s3 € I such that s1 < sa < s3.

In what follows, the notion of exponential convexity plays an impor-
tant role (see [1] and references therein).

Definition 2 ([1]). A function ¢ : I — R is said to be exponentially
convex if it is continuous and

Z akalqb(xk -+ 371) >0

k=1
foralln e N, ap, € Rand x, € I, k=1,2,...,n, such that x; + z; € I,
k,l=1,2,...n.
Proposition 1 ([1]). Let ¢ : I — R. Then the following statements are
equivalent.
(i): ¢ is exponentially conver.
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(ii): ¢ is continuous and

n
TE + X
Zakal¢< 5 )ZO

k=1
forallmeN, ap e R, xp €1, k=1,2,....n

Corollary 2 ([1]). If ¢ is an exponentially convex function, then

o (5] =
k=1

forallneN, xp,el, k=1,2,...n

Corollary 3 ([1]). If ¢ : I — (0,00) is an exponentially convex function,
then ¢ is a log-convex function that is

oAz + (1 — N)y) < M@)o My), for all z,y € I, X € [0,1].

In the remaining part of Section 2, we use in turn the three parametrized
classes of convex functions defined in Lemmas 1-3, respectively, to define
and study related Bregman-divergences and Cauchy type means.

We are now in a position to establish the exponential and logarith-
mic convexity and related properties of the Bregman-divergence ¢ —
By mt(X,Y; W), ¢t > 0, introduced in (23) and connected with Lemma 1.

Theorem 5. Let X, Y and W be matrices as in Theorem 2 with
zij,¥ij >0 (i=1,2,..,n, j=1,2,...,m). Denote
I't = Bym (X, Y; W), t>0.
Then
(a): foralln e N, pp € RT, k=1,2,...,n, the matriz {erlzl

)

1s positive semi-definite. In particular,

det |:Fpk+pli|k‘ 1 Z 0, (27)
2

)

(b): the function t — I'y is exponentially convez,
(c): if I'y > 0, then the function t — Ty is log-convex, i.e.,

(T < (TW)5T)* ™ for0<r<s<t<oo. (28)
Proof. (a). As in [8], let us consider the function defined by

n
Z agapnp,, (x) for z >0,
k=1

18
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where a;, € R for all k = 1,2,...,n, and py = 25220 > 0, k, 1 = 1,2, ..., n.
By Lemma 1, it is easily seen that

2
n n 9
w'(z) = Z apagzPH—? = (Z akajpg) >0 forxz>0.
k=1

k=1
Therefore p(-) is convex on [0, +00). By using (9) we obtain
B (X, Y W) > 0.

Hence

n
E akalI‘pkl Z 0,
k=1

n
so the matrix [F pk-‘rpl] is positive semi-definite.
2 k=1
(b). Since limy_,; I'y = 'y, so the function ¢ — I'; is continuous for all
t > 0. By using Proposition 1 and the proved positive semi-definity of
n

the matrix [P pk+pl} , we obtain exponential convexity of ¢t — I';.
2

(c). Let T'y > 0. Tilgn, by Corollary 3, we have that I'; is log-convex,
i.e., t = logl'y is convex. By Lemma 4, we get

(t—s)logly+(r—t)logls+(s—7)logl'y >0 for0<r<s<t< oo,
which is equivalent to (28). O

By the inequality (18) we can give the following definition.
Let X, Y and W be matrices as in Theorem 2 with X # Y and
Tij, Yij, Wij > 0 (Z =1,2,...n, j=1,2, ,m) We define
L'y

1
My, = <F> for 0 < u # v < o0. (29)
v

Remind that M, , are means of z;; and y;; (see Remark 1). Moreover,
we can extend these means in other cases. So by limit we find that

Do 2y wig [x?j log zij — i log yij — s (wij — A}

My = exp - —
Do ijl W [m% —uziyt + y%(u — 1)}
2u—1

s 1
u(u — 1)) »uzl,

My 1 = exp STt ey wij [xilog” xij — yijlog” yi; — B] .
1,1 = - .

23 im1 2Gm wij [wij log xij — yijlog yij — C]
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where A = y;j)(ulogy;; +1),B = (245 — yij)(logyi; + 2)logy;; and
C = (w45 — yij)(log yij + 1).

Theorem 6. Let t,s,u,v € R such that t < u,s < v. Then the
following inequality is valid.

My s < My,. (30)
Proof. Since by Theorem 5, I'; is log-convex, we get

logl'y — logI'y - logT', —logT',

s—t - v—u
(see [10, p. 2]). Hence we get (30) for s # t and u # v.
For s =t and/or u = v, we have the limiting case. U

We now study properties of the Bregman-divergence t — Bmm,t(X YW,
t € R, introduced in (24) and related to Lemma 2. We also investigate
the corresponding Cauchy type means M, ,.

Theorem 7. Let X, Y and W be matrices as in Theorem 2 with
Tij, Yij > 0 (Z =1,2,...n, 7=1,2, ,m) Denote

Ty = Bumi(X,Y;W), teR.

Then
~ n
(a): foralln €N, pp € R, k=1,2,...,n, the matriz |:]._‘pk+pli|
2 k=1
s positive semi-definite. In particular,
~ n
det [rpm] >0, (31)
3 k=1
(b): the function t — Iy is exponentially convez,
(c): if 'y > 0, then the function t — T'y is log-convez, i.e.,
(T < (T 75(0)*" for —co <71 <s5<t< oo0. (32)
Proof. The proof is similar to the proof of Theorem 5. O

Let X, Y and W be matrices as in Theorem 2 with X # Y and
wij, Tij, Yi; > 0 (0 =1,2,...,n, j =1,2,...,m). Analogously to (29) we
define

1

~ f\ u—v
My, = (fu) for —oo < u # v < oc0. (33)
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Also, by limit we have

. D i1 iy Wi [x?j log x5 — yj; log yi; — D)]

My = exp - —
Doim1 21 Wij |:m;:b] — gyt + oy (u - 1)}
2u—1
- TN | 07 17
u(u — 1)) uz
~ S g [log? 2 — log? vy — E
Mo = exp Doim1 Qi1 Wij [log® g Yij ] 1],

2370 D0 wij [log zi; — logyij — yiglxij + 1}

- Y X wij [wilog” @iy — yijlog”yiy — F]
1,1 = - 3
2300 Do wij [wij log @iy — yij log yij — G

where D = yg‘j_l(xij —yij)(ulogy;; +1,E = Qyigl log yij(zij — vij), F' =
(zi5 — vij)(logyij + 2) log yij, G = (x5 — yij)(log yij + 1).
Theorem 8. Lett, s, u,v € R such thatt < u,s <wv. Then the following
equality is valid.

Mg < My,. (34)

Proof. The proof is similar to the proof of Theorem 6. U

Finally, we deal with the Bregman-divergence ¢t — By, +(X,Y; W),
t € R, defined in (25) (see also Lemma 3). We also consider the related

Cauchy type means M, ,.
Theorem 9. Let X, Y and W be matrices as in Theorem 2. Denote
Ft = E71,771,75()(7 Y; W)? teR.

Then
— n
(a): foralln €N, pp € R, k=1,2,...,n, the matriz |:Fpk+pl:|
2 k=1
s positive semi-definite. In particular,
— n
det [rpm} >0, (35)
2 =1
(b): the function t — T is exponentially conver,
(c): if 'y > 0, then the function t — T'y is log convez, i.e.,
T <(T)3T) " for —oo<r < s<t<oo. (36)
Proof. The proof is similar to the proof of Theorem 5. U
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Let X, Y and W be matrices as in Theorem 2 with X # Y and
wi; >0 (i =1,2,...,n, j =1,2,...,m). We define Cauchy type mean
MW, of z;; and y;; as follows:

- T,\#*
My, = <F> for —oo < u # v < o0, (37)

T e Dlic1 Dy wijlwie" ™ — yije" — H] 2\ w0
v O T T gl — e — ue ™ (xyy — y)] u ) ’

Zz 1 Z] 1 w’LJ[ yzg - 3y7,j (xZ] yl])]

3 Ez 1 Z] 1 wl][ ¥ yw lej (xlj - yl])] ’

where H = " (uy;; + 1) (x5 — yij)-

MO,O = exp (

Theorem 10. Lett,s,u,v € R such thatt < u,s < wv, then the following
mequality is valid.
Mg < Myy. (38)

Proof. The proof is similar to the proof of Theorem 6. O

3. BURBEA-RAO DIVERGENCE FOR MATRICES

Remind that the Burbea-Rao divergence Jj, (X, W) is a special
case of the Bregman-divergence By, 1, ¢.,(X,Y; W) with the setting W =
[wij] = [viu;] and y;; = 3710 wjzi; for i = 1,2,...,n,j = 1,2,...,m and
2y =1 (see (8)).

By making use of the results in the previous section, one can easily
derive the forthcoming theorems. Their detailed proofs are omitted.

Theorem 11. Let ¢ : I CR — R be a convex function on the interval
I, and let X = [z45], W = [u;v;] be matrices such that x;; € I, ujv; >0
(i=1,2,.,n, j=1,2,..,m) and 377" uj = 1.
Then
anmyd)(X’ W) Z 0' (39)
Moreover, if ¢ is strictly conver on I and uv; > 0 for i = 1,...,n,
j=1,2,...,m, then we have strict inequality in (39).

Proof. The proof follows from Theorem 2. 0

Theorem 12. Let ¢ € C?(I), where I is closed interval in R, and
let X = [z45], W = [uv;] be matrices such that x;; € I, wjv; > 0
(i=1,2,...,n, 7=1,2,....,m) and Z;n:1 uj = 1.
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Then there exists & € I such that
2

// n m
Jn m’¢<X W) (;5 Z Zuj z] - Zu]‘.%'ij . (40)
J=1

=1

Proof. Apply Theorem 3. (]

Theorem 13. Let ¢,¢ € C?(I), where I is closed interval in R, and let
X, W be matrices as in Theorem 12.
Then there exists & € I such that

¢H(§) _ Jn,m,tb(Xa W)
V(&) Tnmy(X, W)

provided that the denominators are nonzero.

Proof. See Theorem 4. O

(41)

Corollary 4. Let X, W be matrices as in Theorem 12, where I is a
positive closed interval. Then for —oco < u # 0,1 # v < 00, u # v, there
exists & € I such that

o 0 VEL [ ey - (S]]

wlu—1)30" v [ZT L Ui TG — (27;1 ujxij)v]

Proof. 1t is sufficient to set ¢(z) = 2% and ¢(z) = 2V, = € I, and to use
Theorem 13. g

Remark 2. Since the function £ — £“~Y with u # v is invertible, then
(42) implies
1

v - iy [ZTl UjTi; — (ZJ 1%1’”)11 o
o DS (S, () |

<b

— )

a <

(43)
where a = min{z;;} and max{z;;} = b. Thus the expression in the
0] 0]

middle of (43) is a mean of z;;.
More generally, if the function i—l/; in (41) has inverse function, then

we deduce that
_ (¢ im0 (X, W)) "
5‘(¢") () )

In consequence, the expression on the right hand side of (44) is also a
mean of x;;.
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Combining (20) with (8) for z;;,t >0 (i =1,2,...,n, j =1,2,...,m)
gives

iy S [l = (D) | 41,

Inmi (X, W) =
Z?:l (% [27;1 UjTij log L5 — Z;nzl UjTij log(Z}n:l ujxij)} s
t=1.
(45
Employing (21) in (8) for ;5 > O and t € R (¢ = 1,2,...,n, j =
1,2,...,m) yields

~—

Inmt(X, W), t #0,
Yo v [log(Z] L WiTig) — >4 ujlog mij} , t=0.

(46)
Likewise, using (22) in (8) for z;;,t e R (1 =1,2,...,n, j =1,2,...,m),
leads to

jn,m,t(X) W) = {

t% S {Z;nzl ujetti — ¢t >y ujwij:| . t#0,
Tnmt(X, W) = ,
227, 1Y [Z 1 YT 23 - (Z] 1“]33”) } ; t=0.
(47)
Analogously as in Section 2, we now present properties of the Burbea-
Rao divergences (45)-(47) and of corresponding Cauchy type means.
Theorem 14. Let X, W be matrices as in Theorem 12 with x;; > 0
(i=1,2,...,n, j=1,2,....m). Denote
A= Ty (X, W), t>0.
Then
(a): foralln € N, pp € RT, k=1,2,....n, the matriz [Akam}

n

k=1
18 positive semi-definite. In particular,

n
det |:Apk+pli| 2 0, (48)
o k=1
(b): the function t — Ay is exponentially conver,
(c): the function t — Ay is log-conver, i.e.,

(A" < (A)T5(A)S™ for0<r<s<t<oo. (49)

Proof. The proof is similar to the proof of Theorem 5, but using (39)
instead of (9). O
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Let X, W be matrices as in Theorem 12 with z;; > 0 (i =1,2,...,n, j =
1,2,...,m). We define Cauchy type mean L, , of x;; as:

Luv:

)

1
Au u—v
<> for 0 < u # v < o0, (50)

and by limit we have

u
2 i1 Vi [Z}”:l uj;log xij — <Z}n:1 ijij) log <Z§”:1 usz‘j)}

Ly = exp - o - U
2 i1 Vi [ijl Uiy — (Ej:l uj”«"z’j) }
2u —1
(i 1
u(u — 1)) ulL,

D i Vi [Z?ll iy log? wi; — (Z}”:l uj”?z‘j) log? (Z}n:l Ujfvz‘j)}
235 v [Z}Zl ujri;log zij — (Z?L Ujf%) log (Z’f:l Ujfﬁz‘jﬂ

Theorem 15. Let t,s,u,v € R" such that t < u,s < v, then the
following inequality is valid.

-1

Ly =exp

Lis < Lyy. (51)

Proof. Use Theorem 6. O

Theorem 16. Let X, W be matrices as in Theorem 12 with x;; > 0 (i =
1,2,...,n, j=1,2,...,m). Denote

At = Jn,m,t(X¢ W)> teR.
Then
(a): foralln e N, p, € R, k=1,2,...,n, the matriz |:A/~ka+pl:|n
2 =1

)

s positive semi-definite. In particular,

det [A%}: >0, (52)

(b): the function t — Ay is exponentially conver,
(c): the function t — Ay is log convez, i.e.,

([Xs)t_r < ([\T)t_s(]&t)s_r for —co <r < s<t<oo. (53)

Proof. The proof is similar to the proof of Theorem 5, but using (39)
instead of (9). O
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Let X, W be matrices as in Theorem 12 with z;; > 0 (1 =1,2,...,n, j =
1,2,...,m). We define Cauchy type mean L, , of z;; as:

1

Ly = <~> for —oo < u # v < o0, (54)

and, by limit,

~ o v [Z;ﬂ | uislog i — Al]

Lu,u = exp " m m u
D im1 Vi |:Zj:1 ujr; — (ijl “ﬂ"ij) ]
2u—1
- 0,1
u(u _ 1)> ) U # ) )
- D it Vi [Z;n:1 Uj log® Tij — log® (Z] 1 uﬂ”)}
Lo = exp - -~ +1],
230 v {ijl ujlog z;; — log (Z “ﬂ?w)}
_ 2 i1 Vi [Z;’szl ujzi;log® wij — Bl}
Ly =exp -1],

250 v [Z;’il w;xijlog xi; — BQ]
where A = (Z?’:l ujxij) log (Z u]x”> <Z;n:1 ujxij) log? (Z] 1 uszj)
By = (Z}n:l ujf'fij) log <Z uﬂ«“m)
Theorem 17. Let t,s,u,v € R such that t < u,s < v. Then the
following inequality is valid.

Lis < Luy. (55)

Proof. The proof is similar to the proof of Theorem 6. O

Theorem 18. Let X, W be matrices as in Theorem 12. Denote
A= Tpmi(X, W), teR.
Then
(a): for alln e N, p, € R, k =1,2,...,n, the matrix [K%Tmrl )

)

18 positive semi-definite. In particular,
— n
det [APM} >0, (56)
2 J=1
(b): the function t —>§t is exponentially conver,
(c): the function t — Ay is log-convez, i.e.,

(M) < (M)A for —co<r <s<t<oc. (57)
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Proof. The proof is similar to the proof of Theorem 5, but using (39)
instead of (9). O

Let X and W be matrices as in Theorem 12. We define Cauchy type
mean L, , of x;; as:

_ A\ 7
Ly,= (A) for —oo < u # v < o0, (58)

m ..
_ 2 im1 Vi [Z}”:l ujzige ™ — 335 Wz‘jeuz-’:lw”} 2\ o
u,u T eXp n ‘ m Cumg; Zmzl ujwi; U 9 u 9
D ie1 Vi Zj:luje booe
3
7 <Z?1Ui[zj VRS 3 - (Z] 1“]9513) } )
0,0 = €Xp 7 |-
331 Ui[Z}n:l“ng%j - (Z] 1“sz]> ]

Theorem 19. Lett, s, u,v € R such thatt < u,s < wv, then the following
iequality is valid.

Zt,s < zu,v- (59)
Proof. The proof is similar to the proof of Theorem 6. O
We conclude Section 3 with the notion of Rg divergence.

Definition 3. Let ¢ : I C R — R be a convex function on interval I and
h be any increasing convex function on R, and X = [z;;] and W = [v;u;]
be two matrices with z;; € I, vj,u; >0 (i = 1,2,...,n, j = 1,2,...,m)
and >0, u; = 1.

Then the Rg divergence of X with weight W is defined by

Rh X; W Zu] (Zv@(xw)) —h szqﬁ(Zu]:cZ]) . (60)
i=1 i=1 j=1

Theorem 20. Let ¢, h, X and W be as stated in Definition 3. Then
for Rg divergence of the matriz X with weight W, defined as in (60),
the following inequality holds.

R} (X;W) > 0. (61)
Proof. Since h is convex, so we can write
h ZU] ZU1¢($1J) < Zujh (Z U1¢(CCU)>
J=1 =1 j=1 i=1
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Hence, by (60), we find that

RZ(X,W) > h Zu]‘ Zvlqﬁ(m”) —h szqﬁ(Zu]x”) . (62)
=1 j=1

j=1 =1

On the other hand, the convexity of ¢ gives

gf)(iu]xz]) < iu]gi)(xw) for all i = 1,2, s, n.
=1 j=1

Consequently,
Z viqb( Z uj%'j) < Z Uy Z u;p(wi;).
i=1 j=1 i=1  j=1
As h is increasing, we obtain
j=1 =1 i=1 j=1
Now by using (63) in (62), we get RZ(X; W) > 0, as required. O

4. POWER MEAN AND BURBEA-RAO DIVERGENCE

The power mean of order p (p € R) of the positive m-tuple z; =
(@it ooy Tim) € R, for all 4 = 1,2, ...,n, with weights u = (u1, ..., up),
where u; > 0 for j = 1,2,...,m, is defined by

m »\ /P
(Zj:l ujmij) ; pF0;
Mp(x;) =
|JEECHE p=0.

Corollary 5. Let X, W be matrices as in Theorem 12 with u; > 0
(j = 1,2,...,m) and with a positive closed interval I. Then forr,s,l € R
such that r # s # 1 # r, s,r,l # 0 and z;; € Vs = {eVs . ¢ e I}
(i=1,2,..,n, j=1,2,....m) there exists n € IY$ satisfying

Z?: Vi [M,:(ZEZ) - Mg(:m)] - r(r _ 8) .
Z:L:i vi [M} (i) — Mli(z:)] 11— s) U (64)

provided that the denominator on the left-hand side of (64) is non-zero.

Proof. By setting ¢(z) = z= and ¢(x) = xé, xz € 1I,1in (41) (see Theo-
rem 13), and then replacing a::]/ *and £1/5 by x;j and 7, respectively, we
get (64). O
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From (64), we can get the following

1
[

mpetfs < (M=) Sy oMy (i) = My \ 7 _
it (r(r —8) >0 v [M](2i) — ML(x;)] ) = 561})5 , (65)

where r,l,s € R, r £ 1 # s, s,r,l #0.
So from (65) we can define a new mean Y7, as follows:

1

s ( 10=s) S0 vl MI () =M (z:)] \ T '
Y= <’“(T—S> Z?_lvi[Mﬂm)Mg(asi)]) ’ L#r#slLr#0;

and in the limiting cases we get the following forms

1
s s 5 2 i Vi [MY (24) =M (w4)] B )
TT70 - TO,T - (r(rfs) Z?zllvi[log Ms(xi)flogMo(xi)]> ) r 7& 5, 1,8 7’£ 0;

1
. (U(—s) 2oieg vl uw; log @iy — M (w) log Mis(x4) \ 51 .
=0 = (15 ST M)~ M ) )7 i# sl #0;
S v DT uiad log @y —ME () log M (x4)] % .
Too="Tos= ( : Zilt’iﬁongs(m;*bgMo(zi)] ) ’ s#0;
1
o _ (¥ ? v [M7 (i) — Mg ()] | 71 .
T = <7"2 ; v [M] () — M?)(a;i)]> ’ Lr#0;
1
0 0 _ 2% i vi[My (i) — M (24)] "
00 =18, = (st on s iaeozl) r#0.
T vy xl log x;;— M (x;) log Ms(x;)] 2% .
T§, = exp ( 1 = : ljvl[JM (xz; . — t(t_;’)) t # s;
0 A UZ[Z] lu]xt log z;; —M{ () log Mo () B 2) )
Ttt = exp ( Z 1U1[M (zi)— 0(12)] t ] t 7& 07
0o _ a 11)1 1 U log? Tij)— log® Moy (z;)
TOO exp( vz[Z] 1 g log® zij—log? MO(%))
pI 1”1[2; 15T log® @) — M (z;) log? Ms(x;) 1 0:
ST o, wyel, ogey M@ oe L@y ~s) 70
Sor o[ wy log? iy —log? M(xi)] |
TS,O = exp (22?1”:1 vi[i;nlzljuj logxz-j—log M (z;)] + §>7 § ?é 0.

Theorem 21. Let t,r,u,v € R such thatt < v,r < u. Then we have

Y, <Y5, forseR. (66)
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Proof. For s > 0, by making use of (46) with p/s and x;; instead of ¢

and x;j/s, we get
Sy iy vil M () — ME ()], p#0,s,
Apjs =\ 31y villog Mu(as) —log Mo(a)], p=0,
§ > im Vild ol ujrs;log wiy — M (wi) log Ms(z:)], p=s.
Since t/s <w/s, r/s <u/s, t # r,v # u, by virtue of Theorem 17(6\7:6)1
can write

(l}t/s)tlr - (J}U/s)vlu. (68)
A'r/s Au/s
By combining (67), (68) and the definition of the mean Y7, we get (66).

For s < 0, the proof of (66) is similar as above.

For s = 0, we can derive our result by taking limit as s — 0 in (66).
Also in this case, we can consider A; defined as in Theorem 18. By taking
xi; in place of logx;; in (47), and by using Theorem 19, we conclude
that

Tir < o

This completes the proof. O

Remark 3. Let us note that the above results are equivalent to related
results for vectors. Namely, observe that for given two matrices X = [z;;]
and Y = [y; ] for i = 1,2,...,n,j = 1,2,...,m, as in Definition 1, if we
construct the vectors

Ve = (9611,9612, ooy Llmy X215 225 vy L2myy -+ Tnls Tn2, 7xnm)

Vy = (Y115 Y125 -0y Yl Y215 Y225 s Y2ms -+ Ynds Yn2s -+ Ynm )
we can deduce the above results by using results for vectors.
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