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ON SOME GENERALIZED NORM TRIANGLE
INEQUALITIES

JOSIP PECARIC AND RAJNA RAJIC

ABSTRACT. In this paper we characterize equality attainedness in
some recently obtained generalized norm triangle inequalities.

1. INTRODUCTION

In [3] Dragomir gave the following bounds for the norm of Z?zl a;xj,
where o;j € C and zj, j = 1,...,n, are arbitrary elements of a normed
linear space X :

n n
_max {\Oéi| D |aj—ai!|!$j!!}
i€{l,....,n} — —

7j=1 7j=1
(1) jZj|| < _min {!@z‘ E E |y — Oéz\H%H}
ie{l,...,n} i

In the case a; = where x; are non-zero elements of X, this

1
Bk
result reduces to Theorem 2.1 proved in [13], which in its turn implies
the following generalization of the triangle inequality and its reverse
inequality obtained by Kato et al. in [6]:

(-

n

> | +

Jj=1

min T

n
+ (n — H H> max ||a:]||
j=1 H%H je{l,..,n}

When n = 2 inequalities in (2) yield those established by Maligranda
in [8] (see also [9]) and can be written as the estimates for the angular

2) <Dzl
j=1
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distance HH%H - H—SHH (see [2]) between non-zero elements x and y:

g Lzl ==l = liylll ’_H < Nz =yl +[ll=]l — llylll
min{||z[], [[y[[} lll max{|[z|, ly[l}

(Another proof of the first inequality in (3) was given by Mercer in [11].)
The second inequality in (3) is a refinement of the Massera-Schéffer
inequality [10]

2||z -yl
- = (l‘,yEX\{O}),
’ ] HyHH max{|[z[|, [[y]}
which is sharper than the Dunkl-Williams inequality [5]
Ty Aflz — yl|
- < (z,y € X\ {0}).
‘ lzll i ‘ 2 + [lyll

One more generalization of the second inequality in (3) was recently
obtained in [4], where new bounds for the norm of 37, ajz; are estab-
lished. It was proved there that

n n
e L1570 el = 3 sl - il
ie{l,...,n} = =
n
4 izl < min ;|| -I-Z ilx; —
(@) = min {| el + X lasa; - ai
j=1 7=1
where o; € Cand z;, j = 1,...,n, are elements of a normed linear space

X.

In [3, Theorems 2 and 3] Dragomir also provided the following dual
versions of inequalities from (3), that is, he obtained lower and upper
bounds for HHZ—” — ﬁ“, where x and y are two non-zero elements of a

normed linear space:

lz—yll A=l =yl
~ min{{|z|, lyll}  max{[|z|, |ly|l}
5 - af_@/‘< e~y llz] — lyl
Ayl Ml T max{{lz, |yl min{|z]], [[y[[}
and
lz+yll =l +lyll
min{||z[l, lyll}  max{[|lz([, [ly[/}
o <‘ﬂ?3/‘< o+ ] + [l
Ayl Ml ] T min{{j2l], [y} max{|[z],[ly[l}
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In this paper we give alternative proofs for the inequalities in (5) and
(6). We also consider the case of equality in each of the inequalities in
(1) and (4) for elements of a strictly convex normed linear space.

2. THE RESULTS

As a special case of (1) we have the following dual versions of inequali-
ties from (3).

Theorem 2.1. Let X be a normed linear space and x,y non-zero ele-

ments of X. Then we have

lz =yl [zl =yl
— min|lz(, lyll}  max{{lz[], [yll}

- ’ Ty lz =yl =l = llyll
Ayl [T maxd{flaf], lyl[} - min{{z]], ly]l}
Proof. If n = 2 then by putting 1 := x, ro := —y and a3 = ﬁ,
ag = ﬁ in (1) we get
max{ lz =yl =l - Hy|||7 lz =yl =]l - HyH}
lyll ] ] [yl
] < { el ol el Nl ol
lyll - [l [yl ]l [l [yl
Clearly,
max{ lz =yl [l = Hy\l\’ lz =yl [llzll = HyH}
Iyl ] ] [yl
[z =yl ]l =1yl

— min{|lzf], lyl}  max{[|]], |ylI}
It remains to show that

Imnpm—yH+mﬂ%%wMju—yH+MML4MM}
Iyl [l el ]

SN et ] I 3 et 11
max{ |z, lyl[} ~ min{[lz[, [y[}’
To see this, let us suppose that ||z|| < ||y[|. Since ||z —y||—|||z||—ly||| > 0
it follows that
2 =yl = W=l = llylll o = =yl = [ll=] = [lyll
lyll - [edl

)

SO

xr — |l — Tr — Tl —
e =yl [l =Nyl Nl =l Hlell = liylll

Iyl el = [l Iyl
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Therefore,
min { e =yl [llll = Hylll’ lz =yl [llzll = llyll }
lyll ] ] [yl
_ M=yl el =yl e =yl [zl — llylll
[yl ] max{ ||z, [[yll} ~ min{|lz], [[y[|}
and the result follows. O

Theorem 2.2. Let X be a normed linear space and x,y non-zero ele-
ments of X. Then we have

lz+yl =l + [yl
min{||z[], [[yl[}  max{[|z[],[[y[[}
[z -] < el ]+l
Ayl Al T min{{laf], [fyll} - max{{]], [ly]}
Proof. If n = 2 then by putting z; := x, z9 := y and oy = ﬁ,
ay i= —p7 in (1) we get
{IIJJH/H =l iyl Nz +yll el + Hyll}
lyll lzll " (=] [yl
[z - ] < { et Bl et el o),
lyll [l [yl =] | [yl
Clearly,

{||$+y|| Mzl lyll lz+yll [l + IIyII}
[yl [ | [yl

eyl el Dyl

min{|[z[l, lyll}  max{||z[[, [ly[l}
Let us show that
- { o+ ol llzl+ Iyl e+l , ol + ||y|r}
ol ] ol
T+ z| +
_ n Izl + llyll

 min{]lzfl, [lyll}  max{[l], [yl}
To see this, suppose that ||z|| < ||ly||. Since ||z|| + ||yl — |z + y| > 0 it
follows that

[l + Myl = llz +yll _ llzll + [yl =l + yl
[yl - ]

)

SO

] Iyl =yl (el
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Therefore,
mm{HHyH O 7 ] R i HyH}
Iyl [l [l [yl
_ Ayl el e+l ]| + [yl
] lyll ming||z(l, [[y[[} ~ max{{lz], [[y[l}
and the theorem is proved. O

The following results describe the case of equality in each of the in-
equalities in (1) for elements of a strictly convex normed linear space.
The proofs can be obtained similarly as the proofs of Theorem 2.6 and
Theorem 2.8 from [13] and hence we omit them.

Theorem 2.3. Let X be a strictly convex normed linear space, x1, ..., Ty
non-zero elements of X and aq,...,a, € C. Then the following two
statements are mutually equivalent.

>

n n
0 | S| = min {hol| S| + 3 1o -l
= ie{l,....,n} i ]
(ii)) oy = -+ =y, or there existi € {1,...,n} and v € X satisfying

X TN forall j € {1,...,n} such that a; # o; and

n

o — ail ||
n

Oéiziﬂj = |y Zm‘j v.
j=1 J=1
Theorem 2.4. Let X be a strictly convex normed linear space, x1, ..., Ty
non-zero elements of X and aq,...,a, € C. Then the following two

statements are mutually equivalent.
n
>

n n
0 | S| = o {es - Yl — el
= ie{l,...,n} i =
(ii) oy = -+ =y, or there existi € {1,...,n} and v € X satisfying

e M =wv forall j € {1,...,n} such that o;j # oy and

| — a [|]]
n n

Z QT = Z Q55

j=1 7j=1

Remark 2.5. Index i from the statement (ii) of Theorem 2.3 (resp. The-
orem 2.4) is precisely the index for which |oy| H Py .CU]H + >0 oy —

.

aglllz;ll, & = 1,...,n, attains its minimum (resp. |ak|HZ?:1 a:]H -

> iz lag = aglllzjll, k= 1,...,n, attains its maximum).
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In what follows we consider the case of equality in each of the inequali-
ties in (4) for elements of a strictly convex normed linear space. To do
this, we need the following result, the proof of which can be found in [6,
Lemma 1].

Lemma 2.6. If x1,...,x, are non-zero elements of a strictly convex
normed linear space X, then the following statements are mutually equi-
2T

valent.
n
= llzll.
=1 j=1

(i)
I In

(if)

n

leall

Theorem 2.7. Let X be a strictly convex normed linear space, x1, ..., T,
non-zero elements of X and aq,...,an € C\ {0}. Then for every i €
{1,...,n} the following two statements are mutually equivalent.

n n
(@) || > lzill + Y |l — .
J=1 j=1

(ii) ®y = -+ = x, or there exists v € X satisfying B A B B
|ajl [l — i
n

v for all j € {1,...,n} such that x; # z; and Zajxi =

n

>

J=1

.’Ej—ZEi

j=1
n
> ajllaillo.
j=1
Proof. If x1 = --- = x,, we are done. So, suppose that this is not the

case.
Let us denote J = {j € {1,...,n} : x; # x;}. Note that (i) is equiva-
lent to

(7)
First, let us suppose that 2?21 a; #0.
By Lemma 2.6, (7) holds if and only if there is v € X satisfying

n
E Q5T

J=1

n

P

J=1

n

> q

Jj=1

lzall + D lalllzj — ).

jeJ

n
Z a;x; + Z aj(zj —x;)
j=1

jeJ

(G k) By
il — i
[l
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In the case when Y77 a; = 0, (7) can be written as

(8) > aj(my— i) =Y logllles; — 2.

jeJ jed

Again, by Lemma 2.6, we deduce that (8) holds precisely when there is
v € X such that

ailz: — 1
e mw) ey
|jlllj — il
This proves the theorem. U

As an immediate consequence of Theorem 2.7 and the second inequali-
ty in (4) we obtain the following result.

Corollary 2.8. Let X be a strictly convex normed linear space, x1, ..., Ty
non-zero elements of X and ay,...,a, € C\ {0}. Then the following
two statements are mutually equivalent.
n
il + 3 leglle il .
j=1

n n
i o;Til| = min o
@) JZ; I 16{1,4..,n}{ Z J —
(ii) 1 = -+ =@y, or there exist i € {1,...,n} and v € X satisfying

j=1
G TITT oy for all j € {1,...,n} such that x; # z; and

|aj [z — il
n

n
doagzi= Y aj|llail.
j=1 J=1
Theorem 2.9. Let X be a strictly convex normed linear space, x1, ..., Ty
non-zero elements of X and aq,...,an € C\ {0}. Then for every i €
{1,...,n} the following two statements are mutually equivalent.
n n n
@) || Doy = | Do ag|llaill = Y lagllla — il
j=1 j=1 j=1
Qi Tp— X
(ii) 2y = --- = @, or there exists v € X satisfying ——— J

s fli — a5l
n

v for all j € {1,...,n} such that x; # z; and Zajmj =

Jj=1
n
E :O‘jxj
J=1

Proof. If x1 = -+ = x,, we are done. So, suppose that this is not the
case.

Let us denote J = {j € {1,...,n} : x; # x;}. Put y := 37 aya;
and 2 := 377, aj(z; — x5).

V.
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(i)=(ii) Passing the proof of the first inequality in (4) (see [4, Theorem
1] ) we deduce that (i) holds if and only if the following two conditions
are satisfied:

9)

n
> aja;
j=1

n
E a4
j=1

n
> aj(i — ;)
i=1

and
(10) S as(ai = )| = S lalles — 1,
Jj€J jeJ
By Lemma 2.6, (10) holds if and only if there is v € X satisfying
(11) G Ty el

s (| — a5l
Now we have

2= e =) = Y layllai - ayllo = 12|

JjeJ jeJ
Since |[z]| = > e lajlllz — x5 # 0, we get
z
— = .
2]

Note that (9) can be written as ||y—z|| = ||ly||—||z]], i-e., [[(y—2)+z|| =
lly — z|| + [|z]|. So, by Lemma 2.6 it follows that

z

y—z= Hy—ZHM = [ly — z]lv.

Thus,

n n
ZO&j.’Ej = ZO&jLB‘j V.
j=1 j=1

(ii) = (i) To prove (i) we must show that (9) and (10) hold. Since
(10) < (11) and (11) holds by the assumption, it remains to prove
(9). As in the first part of the proof, (11) implies HZTH = v. Also, by
the assumption we have y — z = [ly — z[lv. Thus, y = z + |ly — z[jv =
|z]|v + ||y — z||v from which it follows that ||y|| = ||z|| + ||y — ||, which
is the equality (9). This completes the proof. O

As a consequence of Theorem 2.9 and the first inequality in (4) we
have the following result.

Corollary 2.10. Let X be a strictly convex normed linear space, x1,. . .,Ty,
non-zero elements of X and ai,...,a, € C\ {0}. Then the following
two statements are mutually equivalent.
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n n n
() || Y ejzs|| = max { > aglllal =D laylll; —x-H}.
= TN T e on i I — I
(ii) 1 = -+ = my, or there exist i € {1,...,n} and v € X satisfying

e e e B v for all j € {1,...,n} such that x; # xz; and
| [l — 5]

n n
Zaja:j = Zaja;j V.
Jj=1 Jj=1
Concluding remarks
It was shown in [1] that for non-zero elements z1,...,x, of a pre-

Hilbert C*-module X over a C*-algebra A the equality || 3 7 z;| =
> 71 llz;]| holds if and only if there exist i € {1,...,n} and a state ¢
on A such that p((xj, z;)) = |lz;||||x]| for all j € {1,...,n}\ {i}, where
(-,-) stands for an A-valued inner product on X. (For the definition
and basic results on (pre)-Hilbert C*-modules the reader is referred to
[7] or [14].) By using this result, Pecari¢ and Raji¢ [12] described the
case of equality in each of the inequalities in (1), where z; are non-zero
elements of a pre-Hilbert C*-module X, and scalars «; are chosen to be
m. In a similar way, one can obtain the characterizations of the case of

equality in each of the inequalities in (1) and (4) for non-zero elements
x; of a pre-Hilbert C*-module X and non-zero complex numbers «;. For
instance, to describe the equality attainedness in the second inequality
in (4) we consider two different cases: 37, a; # 0 or Y27, a; = 0. In
the first case the equality holds precisely when xy = --- = x,, or there
exist i € {1,...,n} and a state ¢ on A satisfying

ak(Z%)@(@%ﬂfk — ;) = lagl| Y oy lill o — il
j=1 j=1
for all k € {1,...,n} such that xj # ;.
In the second case the equality holds if and only if 1 = --- = x,,,

or there exist i,k € {1,...,n} for which x; # i, and a state ¢ on A
satisfying

Fanp((a; — ai,ap — 22)) = gl [l — @il lax — il

for all j € {1,...,n} \ {k} such that z; # x;.
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