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A NEW CLASS OF GENERAL REFINED HARDY-TYPE
INEQUALITIES WITH KERNELS

ALEKSANDRA CIZMESIJA, KRISTINA KRULIC, AND JOSIP PECARIC

ABSTRACT. Let p1 and pe be positive o-finite measures on 21 and Q9
respectively, k : Q1 x Q2 — R be a non-negative function, and

K(x) = /sz k(z,y) duz(y), = € Q1.

We state and prove a new class of refined general Hardy-type inequalities
related to the weighted Lebesgue spaces L” and L9, where 0 < p < ¢ <
o0 or —oo < ¢ < p < 0, convex functions and the integral operators Ay
of the form

Af(x) = ﬁ /Q Kz, 9)F () dua(y).

We also provide a class of new sufficient conditions for a weighted mod-
ular inequality involving operator Aj to hold. As special cases of our
results, we obtain refinements of the classical one-dimensional Hardy’s,
Pélya—Knopp’s and Hardy—-Hilbert’s inequality and of related dual in-
equalities, as well as a generalization and refinement of the classical
Godunova’s inequality. Finally, we show that our results may be seen
as generalizations of some recent results related to Riemann-Liouville’s
and Weyl’s operator.

1. INTRODUCTION

To start with, we recall some well-known integral inequalities. The first
of them is the classical Hardy’s inequality,

(1.1) /Ooo (; /Oxf(t) dt)pd:r < (ﬂ)p/ooo () da,

where 1 < p < 0o, Ry = (0,00), and f € LP(Ry) is a non-negative function.
1

By rewriting (1.1) with the function f replaced with f» and then by letting
p — 00, we obtain the limiting case of Hardy’s inequality,

(1.2) /Oooexp <i/0xlnf(t)dt) dx<e/ooof(x)dx,
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which holds for all positive functions f € L'(R, ). That inequality is referred
to as Pdélya—Knopp’s inequality. Another two important classical inequali-
ties, closely related to (1.1), are Hardy—Hilbert’s inequality,

(1.3) Aw<0w£$lm>awg<ﬁg>plmp@mL

jus
p

and Hardy-Littlewood—Pdlya’s inequality

(1.4) Am<0me)yky§Qszff%wd%

max{z, y}

which hold for 1 < p < co and non-negative functions f € LP(Ry). Notice

P P
that the constants <%) ,e, (ﬁ) and (pp)?, respectively appearing on

the right-hand sides of (1.1) — (1.4), are the best possible, that is, neither of
them can be replaced with any smaller constant.

Since Hardy, Hilbert, and Pdlya established inequalities (1.1), (1.2), and
(1.3), they have been investigated and generalized in several directions. Fur-
ther information and remarks concerning the rich history of the integral in-
equalities mentioned above can be found e.g. in the monographs [13,21,25,26]
and expository papers [2,3,6-9,15,16,20,28] and the references given therein.
Here we mention only results that to some extent have guided us in our re-
search.

In particular, S. Kaijser et al. [17] (see also [16,24]) pointed out that
(1.1), (1.2) and (1.3) are special cases of a more general inequality of Hardy—
Knopp’s type with a kernel,

(1.5 [ u@etauson L < [ e L,

xT

where 0 < b < o0, k:(0,b) x (0,b) - R and w: (0,b) — R are non-negative
functions, such that

(1.6) K(z) = /Om k(x,y)dy >0, = € (0,b),

and

b X €T
v =y [ ) G < o0 e o)

® is a convex function on an interval I C R, f : (0,b) — R is a function
with values in I, and

(L7) Apf(a) = K@) /0 k(o) [ () dy, @ € (0,0).
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Notice that (1.5) follows directly by only a standard application of Jensen’s
inequality and Fubini’s theorem.

On the other hand, Godunova [11] (see also [26, Chapter VIII, p. 233])
proved that the inequality

1 n d
/ (D / l(yl,m’yw(y)dy _dx
R Ty Tn Jrr \71 Tn, Xy Ty

(1.8) < /R wdx

x;-.x
7_{_ 1 n

holds for all non-negative functions I : Rz — R, such that [z, I(x)dx =1,
+

convex functions @ : [0,00) — [0,00), and non-negative functions f on R},
2(f(x))

T

Recently, Kruli¢ et al. [19] unified all the above results by studying the
measure spaces (€21, %1, p1), (22,32, u2), and the general integral operator
Ay, defined by

(1.9) Apf(x) = Ktx)/ﬂ E(z,y) f(y) duz(y), = € Q,

such that the function x — is integrable on R’}

where f : Q5 — R is a measurable function, k : 1 xQs — R is a measurable
and non-negative function, and

(1.10) K(z) = /Q k(x,y)dus(y) >0, = € Q.

They proved, again by using Jensen’s inequality and Fubini’s theorem, that
the weighted inequality

(1.11) | w0 @) am@ < [ o) i)
1 2
holds for all non-negative measurable functions w : 2y — R, such that
k(x,
(1.12) v = [ v s ) <, y e

convex functions ® on an interval I C R, and functions f : 2 — R with
values in I. In the same paper they also proved a generalization of inequality
(1.11). Namely, if 0 < p < ¢ < 00, v is now defined with

(L13) oy = ( | uto) (kg’(g)) du1(9«")>§ < ooy ey,

and ® is a non-negative convex function on an interval I C R, then the
inequality

(| u(a:)@z?(Akf(x))dm@)); <(/ 2v(y)‘1>(f(y))du2(y)> ’

Q4
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holds for all functions f : Q9 — R, such that f(3) C I.

In addition to proving direct inequalities of the form (1.11), there are
many classical and recent results concerning the mapping properties of in-
tegral operators such as (1.7) and (1.9), that is, necessary and sufficient
conditions of the Muckenhoupt type on weight functions and a kernel for
boundedness of the operator A between two function spaces. Some im-
portant and useful modular inequalities related to (1.11) can be found e.g.
in [14,18,23]. Without stating them, here we emphasize just a class of suf-
ficient conditions on u, v, and k, related to the operator (1.7), obtained
in [17].

Motivated by all the results mentioned, in this paper we provide a new
two-parametric class of sufficient conditions for a weighted modular inequal-
ity involving operator (1.9) to hold. Further, we state and prove a new
refined general weighted Hardy—type inequality with a non-negative kernel,
related to an arbitrary convex (or concave) function, and point out that
our result refines relation (1.14). Applying the obtained general relation to
some important particular kernels and concrete measure spaces, we derive
new refinements of the classical one-dimensional Hardy’s, Pdélya—Knopp’s
and Hardy-Hilbert’s inequality and related dual inequalities, as well as a
generalization and a refinement of the classical Godunova’s inequality. Fi-
nally, we show that our results may be seen as generalizations of some recent
results related to Riemann-Liouville’s and Weyl’s operator.

The paper is organized in the following way. In Section 2 we establish and
discuss a new class of sufficient conditions for a weighted modular inequality
involving operator Ay defined by (1.9) to hold, while in Section 3 we state,
prove and discuss a general refined weighted Hardy—-type inequality with a
non-negative kernel and an arbitrary convex function. In the same section,
we discuss some particular cases of the obtained general inequality, related
to power and exponential functions, and to the simplest possible kernel —
the one with separate variables. In the following two sections, our general
results are applied to various one-dimensional settings and the Lebesgue
measure. Namely, in Section 4 we obtain a new refinement of the classical
one-dimensional Hardy’s, Pélya—Knopp’s, and related dual inequalities and
point out that our results generalize some recent results related to Riemann-
Liouville’s and Weyl’s operator. In Section 5, we obtain new generalized
Hardy—Hilbert’s and Hardy—Littlewood—Pdlya’s inequality. The paper con-
cludes with Section 6, where a new refinement of the classical Godunova’s
inequality is given.

Conventions. Throughout this paper, all measures are assumed to be
positive, all functions are assumed to be measurable, and expressions of the
form 0 - o, %, 2 (a € R), and 2 are taken to be equal to zero. For a real
parameter 0 # p # 1, by p’ we denote its conjugate exponent p’ = %,
that is, % + 1% = 1. By \Q]u we denote the measure of a measurable set
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Q with respect to the measure p. In particular, we use the symbol | |1
as an abbreviation for || [|z1(q, .,). Also, by a weight function (shortly: a
weight) we mean a non-negative measurable function on the actual set. An
interval in R is any convex subset of R, while by Int I we denote its interior.
B(-; -, -) denotes the incomplete Beta function, defined by

xX
B(z;a,b) = / t 1 — ) Ldt, z €[0,1], a,b> 0.
0

As usual, B(a,b) = B(1;a,b) stands for the standard Beta function. Finally,
inequalities like (1.11) are interpreted to mean if the right-hand side is finite,
so is the left-hand side and the inequality holds.

2. A NEW CLASS OF GENERAL HARDY-TYPE INEQUALITIES WITH
KERNELS

To begin with, in this section we provide a new class of sufficient con-
ditions on weight functions v and w, and on a kernel k, for a modular
inequality involving the Hardy—type operator Ay, defined by (1.9), to hold.
The first result in that direction is given in the following theorem.

Theorem 2.1. Let 0 < p < q < oo. Let (Q1,%1, 1) and (Q2, Yo, u2) be
measure spaces with positive o-finite measures, u be a weight function on

Q1, w be a puo—a.e. positive function on s, k be a non-negative measurable
function on Q1 xQg, and K be defined on Qq by (1.10). Suppose that K (z) >

q
0 for all x € Q1 and that the function x — u(x) (’“}&3) " is integrable on

Q1 for each fixed y € Qo. Let ® be a non-negative convex function on an
interval I CR. If

R ( | wo ("’}(ﬁx y)))‘q’ du1($)>é <o,

then there exists a positive real constant C, such that the inequality

e | u)# (At @) ) ) < ([ 2 w(y)@(f(y))duxy));

holds for all measurable functions f : Qo — R with values in I and Ay f
defined on Q1 by (1.9). Moreover, if C is the smallest constant for (2.2) to
hold, then C < A.

Proof. By using Jensen’s inequality, monotonicity of the power functions
a — o for a positive exponent ¢, and then Minkowski’s inequality, we find
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that

(f u(a)0F (44 (2) dmx))é

|
el 2 k(w,y)<1>(f(y))duz(y)r du1($)>;

IN
~/
S~
=
=

K(x)
</ <w‘5<y> [ o) (Y dul<x>> ()RS () da(y)
(2.3)
<a( [ wwee)anm)
Hence, (2.2) holds with C' = A, so the proof is complete. |

Following the same lines as in the proof of Theorem 2.1, we get the next
corollary.

Corollary 2.1. Let —oo < ¢ < p < 0 and let the assumptions of Theorem
2.1 be satisfied with a positive convex function ®. If

1
P k(z,9) ) ? ‘
B = ylenézw p(y) (/Ql U(l') ( K(x) ) dﬂl(@) < 00,
then there exists a positive real constant C, such that the inequality
1 1
q q r
20 ([ wweta)dn@)" = ([ were) )
1 2

holds for all measurable functions f : Qs — R with values in Qy. Moreover,
if C is the largest constant for (2.4) to hold, then C > B.

In order to apply Theorem 2.1 to n-dimensional cells in R”', we need

to introduce some further notation. For u,v € R, u = (uy,ug,...,uy,),
v = (v1,Vp,...,U,), we denote

u Uy u2 Unp

—=(—,—,...,— | and u¥ =utuy?---u".

v vl U9 Un,

Especially, u! = [\, u; and u! = ([]L, ui)fl, where 1 = (1,1,...,1).
We write u < v if componentwise u; < v;, ¢ = 1,...,n. Relations <, >, and
> are defined analogously. Finally,

(0,b)={xeR":0<x<b}, and (b,c0) ={xecR":b<x < o0}
In this setting, Theorem 2.1 reads as follows.
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Corollary 2.2. Let 0 < p < ¢ < o0 and 0 < b < oco. Let u be a non-
negative and v be a positive function on (0,b) and let ® be a non-negative
convez function on an interval I C R. If

: :
A= sup < Y >p / u(x) x» ldx | < 00,
ye(0,b) \0(¥) (v,b)

then there exists a positive real constant C, such that the inequality

1 1

q dx \ ¢ dy \*
(25) (/(O,b)““‘)@ (Hf(X))Xl> SC(/(Oyb)v(y)fb(f(y))yl)

holds for all measurable functions f : (0,b) — R with values in I and

Hf(x)=x"" o )f(Y)d% x € (0,b).

Moreover, if A is the smallest constant for (2.5) to hold, then C < A.

Proof. Let S, = {(x,y) ER" xR": 0 <y <x < b} and Q; = Q = (0,b).
The proof follows directly from Theorem 2.1, applied with du;(x) = dx,
dus(y) = dy, k = xs,, and with %) instead of u(x), x € (0,b). Observe

x1

that w(y) =y tv(y), y € (0,b). [ |

Remark 2.1. The result given in Corollary 2.2 was published in [17, The-
orem 3.1], so we see that Theorem 3.1 from [17] is just a special case of our
Theorem 2.1. |

Our analysis continues by providing a new two-parametric class of suf-
ficient conditions for a weighted modular inequality involving the operator
Aj to hold. The conditions obtained depend on a real parameter s and a
positive function V' on {22. That result is given in the following theorem.

Theorem 2.2. Let 1 < p < g < co. Let (1,1, 1) and (Q2, Yo, u2) be
measure spaces with positive o-finite measures, u be a weight function on
Q1, v be a measurable po—a.e. positive function on Qs, k be a non-negative
measurable function on Q1 x Qa, and K be defined on Qy by (1.10). Let

K(z) > 0 for allx € Q1 and let the function x — u(x) (kj((az’é/)))q be integrable

on Qq for each fizedy € Qo. Suppose that ® : I — [0,00) is a bijective convex
function on an interval I C R. If there exist a real parameter s € (1,p) and
a positive measurable function V : Qo — R such that

A V) = FV0) sup v () | [ Re (’“&j’f)qdumwf <,

yeo

where

3 e

rvo) = ([ VI e ()
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then there is a positive real constant C' such that the inequality

20 (/91 u(x)q)q(Akf@»dm(x)) ‘<o </92 v(y)2"(f(y)) duz(y)>;

holds for all measurable functions f : Qo — R with values in I and Ayf
defined on 1 by (1.9). Moreover, if C is the best possible constant in (2.6),
then

(2.7) C< inf A(s,V).
1<s<p
V>0

Proof. Let f : Q9 — R be an arbitrary measurable function with values in
I. Applying Jensen’s inequality to the left-hand side of (2.6) we get

(f )4 0) (@)’

<[ [ ) (ot [ He @) diaw) dim)
v (& ) ane)

Hence, to prove inequality (2.6) it suffices to prove that there is a real
constant C' > 0, independent on f, such that

q

IRCIC=IA e )80 duals)) )]

1

ey <o/ 2 (7)) dia() )

Taking into account properties of the function @, let g : 25 — R be defined
by ®(g9(y)) = v(y)®P(f(y)). Then ¢g(Q2) C I holds and (2.8) is equivalent
to

1

[ o) (5 [ Hen# a0 i) )]

(29) <cC ( / ) duz(y)>;

-

Therefore, instead of proving (2.8), we prove that (2.9) holds for all mea-
surable functions g : 22 — R with values in I. Applying Hélder’s inequal-
ity, monotonicity of the power functions o ++ o for positive exponents ¢,
Minkowski’s inequality, and the definitions of F/(V,v) and A(s, V'), we get the
following sequence of inequalities involving an arbitrary positive measurable
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function V : Qo — R:

{/91 u(z) [K](Lm) /92 k(x,y) @7 (g(y))v 7 () dm(y)rdm(@}

[ (e @ v )(v'F ) duz(y)]qdul(x)};

1

q

Qo
q

= { a f?é(xx) (/Q K (2, y)®(g(y)V*" (y) dug(y)>p y

2

Qe

9
7

x ( / 2 v et ) du2<y>) ' dmm}

= F(V,v) { o, Igsa) (/92 kP (2, 9)2(g(y)) V" (y) dug(y)> " din (ﬂf)}q

< (V1) { [ ot [ [ o (552 anw) % duz(y)}
(2.10)

<aen ([ () dm(y));

Thus, inequalities (2.9) and (2.8) hold. Relation (2.6) follows by considering
(2.7), so the proof is complete. [ |

3=

By modifying Theorem 2.2 for the setting from relations (1.6) and (1.7),
we obtain the following result.

Theorem 2.3. Let 1 <p<qg<oo, 1 <s<p, and 0 <b<oo. Let u be a
weight function on (0,b), w be an a.e. positive measurable function on (0,b),
and k be a non-negative measurable function on (0,b)x (0,b) satisfying (1.6).
Let I be an interval in R and ® : I — [0,00) be a bijective convex function.

If
y / /
(2.11) V(y) = / w' P (2)a? " da < 0o
0

holds almost everywhere in (0,b) and

(2.12) A(s) = sup (/ybu(fv) <kl((a“;’xy)))qvq“f)(:g) ‘l:C);Vspl(y) < o0,

0<y<b Y

then there exists a positive real constant C' such that

e (f " w9 (A f () flf) <c(f " ()@ (1 () dw);

xT
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holds for all measurable functions f : (0,b) — R with values in I and the
Hardy-type operator Ay, defined by (1.7). Moreover, if C is the best possible
constant in (2.13), then

1
o

C < inf (p_l)” A(s).

T l<s<p \p—s
Proof. Denote S1 = {(z,y) € R?:0 <y <2 < b} and set Q; = Qo = (0,b).
In Theorem 2.2, replace duj(x), dua(y), u(x), v(y), and k respectively with
dx, dy, @, #, and kyg,. In this setting, inequality (2.6) reduces to
(2.13). Moreover, following the lines of the proof of Theorem 2.2, the first
inequality in (2.10) becomes

(ol () o] 2]
{3

. 1
T _ /(5*1) / / o’ d a
(2.14) x </ VR (gl P (y)ypldy>” “’"} .
0

P

([ #eneteuvoa)

-

xT

Since definition (2.11) yields

z _ /(s—1) / ’ —1 p=s
/ VI (e () dy = = v (), @ e (0,),
0 p—S

the right-hand side of (2.14) is further equal to

1 . 1
p—1\+ b u(:r) a(p—s) /I . »dr @
V kP P % d — .
(p — s> {/0 Ki(z) & () ; (@, y)2(gW)V*" (v dy | —
As in (2.10), the rest of the proof follows by applying Minkowski’s inequality

and definition (2.12) of A(s). [ |

Remark 2.2. The result of Theorem 2.3 is given in [17, Theorem 4.4].
Hence, Theorem 4.4 in [17] can be seen a special case of Theorem 2.2. W

3. REFINED HARDY-TYPE INEQUALITIES WITH KERNELS

The rest of the paper is dedicated to new refined inequalities related to the
general Hardy-type operator Ay with a non-negative kernel, defined by (1.9).
First, we introduce some necessary notation and recall basic facts regarding
convex and concave functions. Suppose [ is an interval in R and ® : I — R
is a convex function. By 0®(r) we denote the subdifferential of ® at r € I,
that is, the set 0®(r) ={a € R : ®(s) —P(r) —a(s—1r)>0,s € [}. Itis
well-known that 0®(r) # 0 for all » € Int I. More precisely, at each point
r € Int I we have —oo < ®’_(r) < &/, (r) < oo and 9®(r) = [®'_(r), ¥/, (r)],
while the set on which @ is not differentiable is at most countable. Moreover,
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every function ¢ : I — R, for which ¢(r) € 0®(r) whenever r € Int1,
is increasing on Int I. Notice that for any such function ¢ and arbitrary
relntl, s € I we have

D(s) = @(r) —(r)(s —7) 2 0

and further

P(s) = @(r) —(r)(s —) [@(s) = @(r) —(r)(s — )|
(3.1) [[@(s) = @(r)| — lo(r)] - |s =[]
On the other hand, if ® : I — R is a concave function, that is, —® is convex,
then 0®(r) = {a € R : ®(r) — ®(s) —a(r —s) > 0, s € I} denotes the
superdifferential of ® at the point r € I. For all » € Int I, in this setting we
have —oo < @/, (r) < @' (r) < oo and 9®(r) = [® (r), ®’_(r)] # 0. Hence,
the inequality

Y

®(r) — @(s) — (r)(r—s) =0
holds for all » € IntI, s € I, and all real functions ¢ on I, such that
o(t) € 0P(t), t € Int I. Therefrom, we also get

B(r) —@(s) —@(r)(r —s) = [®(r) = @(s) — @(r)(r — s)|
(3.2) > [|®(s) = @(r)] = [ (r)] - s = rl].

Observe that, although the symbol 9®(r) has two different notions, it will
be clear from the context whether it applies to a convex or to a concave
function ®. Many further information on convex and concave functions can
be found e.g. in the monographs [25] and [26] and in references cited therein.

Now, we are ready to state and prove the central result of this section,
that is, a new general refined weighted Hardy-type inequality with a non-
negative kernel, related to an arbitrary non-negative convex function. It is
given in the following theorem.

Theorem 3.1. Let t € R, (1,31, 1) and (Qa, 3o, po) be measure spaces
with positive o-finite measures, u be a weight function on 1, k a non-
negative measurable function on Qy x Qa, and K be defined on Qq by (1.10).

t
Suppose that K(z) > 0 for all x € Qy, that the function z — u(z) (@g;ﬁ?)

1s integrable on 1 for each fived y € o, and that v is defined on 2y by

1

(3.3) o(y) = < | wo) (’}(f(j)>) dmm)t.

If @ is a non-negative convex function on an interval I CR and p: I — R
is any function, such that o(x) € 0P(z) for all x € Int I, then the inequality

([ vwetm)an) - [ we ) aue)

Q1 K($)

(3.4) > t

B AS@) [ ko)) dualy) din(z)

Qo
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holds for all t > 1 and all measurable functions f : Qs — R with values in
I, where Ay f is defined on Q1 by (1.9) and the function r: Qp x Q5 — R is
defined by

(3.5) r(x,y) = [|2(f(y) = @(Arf ()| = [p(Axf (2))] - |f(y) = Axf(2)]] -

If t € (0,1] and the function ® : I — R is positive and concave, then the
order of terms on the left-hand side of (3.4) is reversed, that is, the inequality

/91 u(x) @' (Agf(z)) dps () — (/QQv(y)é(f(y))duz(y)>t

@6 = [ FEE A @) [ b diaty)din o)

holds.

Proof. First, fix an arbitrary z € ;. It is not hard to see that Ay f(x) € I.
Moreover, for the function h, : Q2 — R defined by h,(y) = f(y) — Arf(z)
we have

(3.7) /Q k(. 9)ha(y) dpia(y) = 0, @ € Q.

Now, suppose that ® is a convex function. If Af(z) € Int I, then for all
y € Q9 by substituting r = Agf(z), s = f(y) in (3.1) and multiplying the
k(z,y)

inequality obtained by K(z) > 0, we get
38) S (B0~ AL @)~ e @hal)] = D )

Relation (3.8) holds even if Ay f(x) is an endpoint of I. In that case, the
function h, is either non-negative or non-positive on €9, so (3.7) and non-
negativity of the kernel k imply that k(z,y)hs(y) = 0 for us—a.e. y € Qs.
Therefore, the identity h,(y) = 0, that is, f(y) = Axf(x) holds whenever
k(xz,y) > 0 and we conclude that the both-hand sides of inequality (3.8) are
equal to 0 for ps-a.e. y € Qy. Since K(z) > 0, notice that the set of all
y € Qg such that k(z,y) > 0 is of a positive uo measure.

Integrating (3.8) over {2y we obtain

KEJ;) 0, k(z,y)®(f(y)) dua(y) — Kix) o, k(z,y)®(Agf(x)) dua(y)

/Q k(, y) (A f () (y) dpa(y)

1

(39) > K@) /Q k(e y)r(z, y) dpa(y).

2

Observe that the second integral on the left-side of (3.9) is equal to

}(Ex) /Q2 k(x,y)P(Arf(z)) dus(y) = ®(Arf(z)),
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while applying (3.7) we get

Hence, (3.9) reduces to

<1><Akf<x>>+K}x) /Q k(ay)r(m,mduz(y)s]{}@ /Q k(. 9)®(f () dpialy).

Let ¢ > 1. Since the functions ®, k, and r are non-negative and the power
functions with positive exponents are strictly increasing on [0, 00), we further
have

(A f(x))
K (96)

S 7 | e y)duz(y)>

O (Apf(x)) + ¢ / Kz, 9)r(a. ) dua(y)
Qo

t
3100 < (0 k(w,y)®(f(y))du2(y)> ,

where the first inequality in (3.10) is a consequence of Bernoulli’s inequality.
Multiplying (3.10) by u(x), integrating the inequalities obtained over €; and
then applying Minkowski’s inequality to the right-hand side of the second
inequality, we get the following sequence of inequalities:

/ (@) (A f () dpn ()

/Ql 28 A @) /Q kla y)r(@,y) dua(y) dyo (x)

)
/Q1 ne: <<I> A f(x)) 195) /92 k(z,y)r(z,y) duz(y))tdm(x)
(

| o) (5 [ He @) dia(s)) dia(o)

{/“u < 1@ /92k(%y)@(f(y))duz(y))tdm(x)}1

IN

t

IN

| o /Q Re (""}f(g))tdm:c)] |

s = ([ (el dua(y)>t,

so (3.4) holds. The proof for a concave function ® and ¢t € (0, 1] is similar.
Namely, by the same arguments as for convex functions, from (3.2) we first
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obtain

S At @) - () + AL Dha )] = )

7'($,y)7 YIS Qlay € QZ?

then

(g @)~ 1 D [ e duaty

t
> (@(Akﬂx)) - Kix) | ber) dug(y)>

> (KEx) /Qz k(ﬂs,y)@(f(y))dug(y))t,

and finally

/Q w(@)® (A f () dpn ()

u(z)
o K (z

31 (A f () / ke, y)r(a. ) dpa(y) dpn (2)

Qo

)
<<1> Apf(x Ktﬂ) /92 k(z,y)r(z,y) dm(y))tdm(w)

t
> </Q (f(y)v(y) duz(y)>
that is, we get (3.6). [ |

Remark 3.1. The discrete version of Theorem 3.1 for sequences of real
numbers is given in [4, Theorem 2.1]. [ |

Remark 3.2. In particular, for ¢ = 1 inequality (3.4) reduces to

/ o) ®(f () dua(y) — / (@) (A f (@) dyur ()
Qo 191

(312) > [ 25 [ ke duoty) dn o)
where in this setting v is defined as in (1.12). Moreover, by analyzing the
proof of Theorem 3.1, we see that (3.12) holds for all convex functions & :
I — R, that is, ® does not need to be non-negative. Similarly, if ® is any
real concave function on I (not necessarily positive), then (3.12) holds with
the reversed order of terms on its left-hand side. This result was already
proved in [5, Theorem 2.1]. [ |

Remark 3.3. Rewriting (3.4) with ¢ = % > 1, that is, with 0 < p < g < ©
or —oo < q < p <0, and with an arbitrary non-negative convex function &,
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we obtain

q

(/92 v(y)2(f(y)) dMQ(y)) P

(313) > [ MU0 gio1, pa)) [ Ko dus(o) duaa) >0,

~pJa, K(z) Qo

_/Q w(@)®r (A f(x)) dp (z)

where v is defined by (1.13). Therefore, we get (1.14) as an immediate
consequence of Theorem 3.1 and our inequality (3.4) is a refinement of (1.14).
Especially, if p > 1 or p < 0 (in that case, ® should be positive), then the
function ®” is convex as well, so by replacing ® with ®” relation (3.13)
becomes

1912011y — 12CARN T (21 10)

> 4 “(x)@q"’(Akf(w))/ k(a,y)rp(e,y) dus(y) dpn (x),
Qo

(3.14) » o, K(@)

where for x € Q1, y € s we set

rp(,y) = [197(f(y)) — O (Arf(2))|
—[p| @ (Axf (@) [o(Arf ()] - |f(y) = Arf(@)] |-

On the other hand, if ® is a positive concave function and ¢t = % € (0,1],
that is, 0 < ¢ < p < o0 or —o0 < p < ¢ < 0, then (3.13) holds with the
reversed order of terms on its left-hand side. Moreover, if p € (0,1], then

the function ®? is concave, so the order of terms on the left-hand side of
(3.14) is reversed. [ |

Now, we consider some particularly interesting convex (or concave) func-
tions in (3.4), namely, power and exponential functions. We start with the
function ® : Ry — R, ®(z) = 2P, where p € R, p #0. For p > 1 and p < 0,
this function is convex, while it is concave for p € (0,1]. In both cases we
have ¢(x) = prP~!, 2 € R,. In this setting, we obtain the following direct
consequence of Theorem 3.1 and Remark 3.3.

Corollary 3.1. Suppose that p,q € R, % > 0, that Qq, Qo, 1, po, u, k, and

q
K are as in Theorem 3.1, that the function x — u(x) (klgf))) P is integrable
on 0y for each fixed y € o, and that the function v is defined on €y by
(1.13). Further, suppose that f : Qo — R is a non-negative measurable
function (positive in the case when p < 0), that Apf is defined on Q1 by

(1.9), and

k(@ y) = [1FP(y) — (Arf (@)P] = Ipl - (Aef (@) £ (y) — Af ()] ],
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forx e Qi,ye Q. If1 <p<qg<ooor—o00<q<p<O0, then the
inequality

Hf”%zg(ﬂzyuz) B ”Akf”%Z(QLM)
@19 =2 [ @) [ bt dusty) din (o)

holds, while for 0 < g < p < 1 relation (3.15) holds with the reversed order
of terms on its left-hand side.

Remark 3.4. For p = ¢ in Corollary 3.1, we obtain Corollary 2.1 in [5].
Moreover, for p = ¢ = 1, relation (3.15) is trivial since its both-hand sides
are equal to 0. |

Our analysis continues by considering the convex function ¢ : R — R,
®(z) = e¢”. Then ¢ = ® = @ and we obtain the following new general
refined weighted Pdélya—Knopp—type inequality with a kernel, which is a
generalization of a result from [5, Corollary 2.2].

Corollary 3.2. Let p,qg € R be such that 0 < p < q < 00 or —0 <
q < p<0. Let Q1, Qo, p1, p2, u, k, and K be as in Theorem 3.1, the

q
unction © — u(x) (&L )7 pe integrable on Q for each fized y € Qa, and
K(x)

the function v be defined on 1 by (1.13). Then the inequality

HquLg(Qz,Mz) N HkaHqL%(Ql,m)
q ulr _
316) 2 [ DG [ H)sntey) i) du )
pJo, K(z) Qo
holds for all positive measurable functions f on Qa, where Gpf(x) and
spk(z,y) are for x € Q1 and y € Qy respectively defined by

Gt = (55 | ko) ) )

and
suae) = 19700 = (G @) = bl G (@) i G .
’ Grf(z)
Proof. Follows by applying (3.13) with ® : R — R, ®(x) = e”, and replacing
the function f with pln f. [ |

Remark 3.5. In particular, for p = g our Corollary 3.2 reduces to Corollary
2.2 from [5]. [ |

We conclude this section by considering the simplest kernels k, that is,
those with separate variables.
Corollary 3.3. Letp,q € R, % > 0. Let (2,3, 1) be a measure space with a

positive o-finite measure i, let m € LY(Q, i) be a non-negative function such
that |m|; > 0, ® be a non-negative convex function on an interval I C R,
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and ¢ : I — R be any function such that p(x) € 0P(x) for all x € Int I. Let
f:Q —= R be a measurable function with values in I and

1
Anf=rr / m(y)f(y) du(y)-
Iml1 Jo
If0<p<g<ooor—oco<qg<p<0, then the inequality
(B17) [An(®0f))r — @0 (Anf) 2 85 (Anf) - Apr

holds, where r(y) = |[®(f(y)) — ®(Amf)| = [(Amf)] - [f(y) = Amfl], v €
Q. If ® is a positive concave function and 0 < g <p < oo or —o0 <p<gq<

0, then (3.17) holds with the reversed order of terms on its left-hand side.

Proof. Suppose that in Theorem 3.1 and in relation (3.13) we have 2y = Q,

po = p, u € LY(Qq, 1) such that |ul; > 0, and k of the form k(z,y) =

I(z)m(y), for some positive measurable function [ : 9y — R. Then K(z) =
D

Im|il(x) and Apf(z) = Amf € I, x € Qq, while v(y) = Mm(y), y € Q.

— Imh

Thus, (3.13) reduces to (3.17) and it does not depend on €5, [, and v. W

Remark 3.6. Observe that for 0 < |Q|, < oo and m(y) = 1 on  we have
|m|1 = |y, so (3.17) becomes the generalized refined Jensen’s inequality

[A(® o )] — D7 (Af) > g@%’l(flf) Ar

where

1
Af = /Q £() du(y)
and r(y) = ||B(f (1)) — B(AS)| - |0(Af)|- |f(y) — Afl|, y € Q. Notice

that, for p = ¢ we obtain the classical refined Jensen’s inequality that was
recently obtained in [5, Remark 2.4]. n

4. GENERALIZED ONE-DIMENSIONAL HARDY’S AND POLYA-KNOPP’S
INEQUALITY

In the following three sections, general results from Section 3 are applied
to some usual measure spaces, convex functions, weights and kernels and
new refinements and generalizations of the inequalities mentioned in the In-
troduction are derived. We start with the standard one-dimensional setting,
that is, by considering intervals in R and the Lebesgue measure, and obtain
generalized refined Hardy and Pélya—Knopp—type inequalities, as well as re-
lated dual inequalities. In the following theorem we generalize and refine
inequality (1.5).

Theorem 4.1. Let 0 < b < oo and k : (0,b) x (0,0) = R, uw: (0,b) — R be
non-negative measurable functions satisfying (1.6) and

q

w(y) =y (/ybucc) (@i“;jﬁ)f) < o0, y € (0.B).
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If0<p<g<ooor—oo<q<p<0, P is a non-negative convez function
on an interval I C R, and ¢ : I — R is such that p(x) € 0P(x) for all
x € Int I, then the inequality

( / bw(y)<1>(f(y)) dy)g - [ ' @)@ (Apf ()

Y x
(11) @) [ ke dy S
. x,y)r(x —
K o Y yy)ay -
holds for all measumble functzons f:(0,0) = R with values in I, where
Arf and r are respectively defined by (1.7) and (3.5). If 0 < ¢ < p < ©
or —o00 < p < q <0, and ® is a non-negative concave function, then (4.1)
holds with the reversed order of integrals on its left-hand side.

Proof. Let S1, €1, and €y be as in the proof of Theorem 2.3. Relation
(4.1) follows from (3.13) by replacing dui(z), dua(y), w(z), v(y), and k
u(@) wy) and kXS1 [ ]

z 0y

respectively with dz, dy,

In the following theorem we formulate a result dual to Theorem 4.1.

Theorem 4.2. For (0 <b < oo, let k : (b,00) X (b,00) = R and u : (b,c0) —
R be non-negative measurable functions satisfying

(4.2) K(xz) = /Ook(x,y) dy >0, z € (b,00),

and ,
w(y) =y (/byU(w) (k;:(xy))f Cf:) "< 00, y € (b, 00).

If0<p<g<ooor—oo<q<p<0, P is a non-negative convexr function
on an interval I C R and ¢ : I — R is such that ¢(x) € 0®(x) for all
x € Int I, then the inequality

([ oween™®) - [ uewot o &

¢ [0 g1 g [ iz
a2 [T EEel ) [ ke i

holds for all measurable functions f : (b,00) — R with values in I and for
A f(x) and 7(x,y) respectively defined by

Af(a) = f(tm / T k() f ) dy

and
F(z,y) = ||0(f () — ®(Arf(2)] — [@(Arf (@) - |f () — Apf(2)]],

where z,y € (by,o0). If0 < g<p<oor—o0<p<qg<O0,and ® isa
non-negative concave function, the order of integrals on the left-hand side of
(4.3) is reversed.
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Proof. Let Sy = {(x,y) € R? : b < z < y < oco}. Inequality (4.3) fol-
lows directly from (3.13), rewritten with Q1 = Qo = (b, 0), dui(x) = dx,

dps(y) = dy, and with “& ), w;y), and kg, instead of u(x), v(y), and k. W

Remark 4.1. For p = ¢ Theorem 4.1 and Theorem 4.2 respectively reduce

to [17, Theorem 3.1] and [17, Theorem 4.3]. In particular, (4.1) refines (1.5).
Of course, in that case, the function ® does not need to be non-negative.

The rest of this section is dedicated to generalizations and refinements of
the well-known Hardy’s and Pélya—Knopp’s inequality (1.1) and (1.2) and of
their dual inequalities. Since being direct consequences of the above results,
we state them as examples.

Example 4.1. Let 0 < b < o0, v € Ry, p,q € R be such that % > 0, and
let S1 be as in the proofs of Theorem 2.3 and Theorem 4.1. Let the kernel

: (0,b) x (0, b) — R and the weight function u : (0,b) — R be defined
byk:(xy) L(x—y) 'xs, and u(z) = 1. If%21,'y>l—§,¢>i8a
non-negative convex function on an interval 7 C R and f : (0,b) - R is a
function with values in I, then (4.1) reads

([ vt ‘jj’) - [obmen s
dz

b a4 x vt
ad  =a? e R @) [ -0

where R, is the Riemann-Liouville operator given by

Rof(x)= L /0 @ -y () dy, 7€ (0,b),

x

while for z,y € (0,b) we set

p
1-¥ 4 . q .
wy(y) =~ (/ D3 - t)p—ldt> = B4 <1 — % (v—1Z 41, )
0 p p

and

(2, y) = [|2(f(y)) = (R, f(2))| = [p(By f(2))] - [f(y) = By f(2)]]-
Observe that B(-; -, -) denotes the incomplete Beta function defined in the
Introduction. In the case when % € (0, 1] and @ is non-negative and concave,

the order of terms on the left-hand side of (4.4) is reversed and the inequality
obtained holds for any v > 0.

Rewriting (4.4) with some suitable parameters and with ® being a power
function, we get a new refined Hardy’s inequality. Namely, let ®(z) = aP,
k € R be such that &=L > 0,

k—1
(1 (YT )
wﬁ,,k@)—Bq(l (4) 7 -0l en D)t e o),
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f be a non-negative function on (0,b) (positive, if p < 0) and

ri) = [[1- (y)k;]%1 Fw)dy, € (0,D).

T

For 1 <p<g<ooor—oco<q<p<0,replace b and f(y) in (4.4)
k—1
respectively with b » and f (y%) yﬁfl. After a sequence of suitable

variable changes, we get the inequality

() ([ e F [ A Ry
<W(k 1)> 0 0

| a) [ [ ()]
x oy’ ) - (W)pxl_k(f?f(l‘))p dy da
ol /Obxlf_’k“wf(x))“ - (i)ﬂv_l -
(4.5)
< |rw - T2 (2) T Ri@)| dyda

For 0 < g < p < 1, the order of terms on the left-hand side of relation (4.5)
is reversed. Notice that for b = co, p = ¢ = k > 1 and 7 = 1 inequality
(4.5) reduces to a refinement of the classical Hardy’s inequality (1.1). It
can be seen that our result generalizes refined and strengthened Hardy—type
inequalities from [3] and [5].

On the other hand, rewriting (4.4) with ®(z) = e and v = 1, as well as
with the function y — In(y f(y)) instead of a positive function f : (0,b) — R,
we derive the following new refined strengthened Pdélya—Knopp-type in-

equality:
o (/Ob [1 _ (Z)Z]Zﬂy) dy>z - /(]b;cZ—l(Gf(x))de
24| ) [ tevst) — 2610 ay e
(+6) [ @t [ (57| vee)

where 1% > 1 and

Gf(x) = exp <31: / In f(y) dy) 2 (0,b).

0
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For p = ¢ relation (4.6) reduces to a refined strengthened Pdlya—Knopp’s
inequality from [3] and [5]. Moreover, for b = co we obtained a refinement
of the classical Pélya—Knopp’s inequality (1.2). [ |

The following example provides results dual to those from Example 4.1.

Example 4.2. Suppose 0 < b < oo, v € Ry, p,g € R are such that
% > 0, and 59 is as in the proof of Theorem 4.2. Define the kernel k :
(b,00) x (b,c0) — R and the weight function u : (b,00) — R as k(z,y) =
Wyfﬁ(yfx)'y’lxgb(x,y) and u(x) = 1. For % >1,v> lfg, a non-negative
convex function ® on an interval I C R and a function f : (b,00) — R with
values in I, inequality (4.3) becomes

R O A L A
</b ?J) /b x

g > d
an = [Te ) [Cw—ar e S

where W, denotes the Weyl’s operator W,

dy
y'YJF]. ’

Wy f(z) =~z /oo(y — )7 f(y) z € (0,0),

and for z,y € (b, 00) we define w,(y) = ng (1 - 5; (vy— 1)% +1, %) and
o (,9) = 100/ (1) — BWy £ (@) — (W, @) - [f ) — Wy f@)l]. T & €
(0,1] and @ is non-negative and concave, (4.7) holds for all v > 0 and with
the reversed order of terms on its left-hand side.

As in Example 4.1, to get a new refined dual Hardy’s inequality, we rewrite

(4.7) with ®(x) = xP. More precisely, let & € R be such that £ >0,

1-k
. B b\ 7 q )\ pk
kay:Bq 1_<> ;7_174—]—77 yp 7y€ b,OO,
7k (Y) ( ; (=D, +15 (b, o0)
f be a non-negative function on (b, c0) (positive, if p < 0) and

1-k

v [ (5)

1—k
Forl <p<g<ooor—oo < q<p<0,substituteb » and f (y&) yﬁﬂ
in (4.7) respectively for b and f(y). After some computations, we obtain the
73
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inequality

() e [ ()]

1|, p—k+1rpr,\ (1 —k) pml—k 2))P
L () (p ) (W f(2))

_ / S @yt [ [1 - (j)] ><

)-8 (1) 7 Wi

ko1
Xy P dy dx

dydx| .
Py

For 0 < ¢ < p < 1, relation (4.8) holds with the reversed order of terms
on its left-hand side. In the case with p = ¢, (4.8) becomes a refined and
strengthened dual Hardy’s inequality from Example 3.2 in [5].

Finally, for % >1,v=1, () = €” and y — In(yf(y)) instead of a
positive function f : (b, 00) — R, inequality (4.7) becomes

iy | - /b T NG ) d

q| [ 1.1, = a_q [0 = dy
>4 [T et G [t - oG] o
T taeong (L vfw) | dy
| at@san? | w 2 ,
where

61w =ew (= [T10s0) %) v e 000

Thus, we proved a new refined strengthened dual Pélya—Knopp’s inequality.
Its special case p = g was already considered in [3] and [5]. u

5. GENERALIZED ONE-DIMENSIONAL HARDY—HILBERT’S INEQUALITY

In this section, we consider Theorem 3.1, that is, inequality (3.13), with
some important kernels related to Q; = Qy =Ry and & : Ry — R, &(x) =
aP, where p € R, p # 0. We also assume that du;(x) = dz and dus(y) = d

In the first example, we generalize and refine the classical Hardy—Hilbert’s
inequality (1.3).
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Example 5.1. Let p,q,s € R be such that 2 > > 0 and == 2 5p2 —1, and

let o € <—};(;, +1>,};<?+1>). Denote
n (351 o5 (500)
p p p p

-2 -2
CQ—B<S +1,S+1),
p p

and

/

where B(-, -) is the usual Beta function, and define k : Ri — R and

s—2

u : Ry — R respectively by k(z,y) = (£) » (z+y)~* and u(z) = z*~ L.
Finally, let f be a non-negative function on R (positive, if p < 0) and S f
its generalized Stieltjes transform,

o0
fy)
Sf(x :/ ———dy, x €R
D=Jy Gy '
(see [1] and [27] for further information). Rewriting (3.15) with the above

2—s
parameters and with f(y)y » instead of f(y), for 1 < p < ¢ < oo or
—o0 < g < p <0 we obtain the inequality

0102’7 </ y” a S+1f (y )dy)p —/ xa_1+§(5_1)+%(5f(x))qu
0

0
o0 s—
2 Slegt [Tarr e sy
0

5—2
yp
0 (:r—i—y)

ol [ s

X /OOO(:E +y)°

while for 0 < ¢ < p < 1 the order of terms on the left-hand side of (5.1)
is reversed. The case p = ¢ was already studied in [5, Example 4.1]. In

o)

(y)y?~* — Oy Pa®P- DD+ (G £ (z) (dydx

(5.1)

) = C3'a 7 YT Sf (@) dydal,

particular, for p=¢ > 1, a =0 and s =1 we have C; = Cy = B (%, z%) =
o, 80 (5.1) provides a new generalization and refinement of the classical
p

Hardy-Hilbert’s inequality (1.3). |

Similarly, in the next example we generalize and refine the classical Hardy—
Littlewood-Pélya’s inequality (1.4).
Example 5.2. Let the parameters p, ¢, s, o and the functions v and f be
s—2
as in Example 5.1. Define k : RZ — R by k(z,y) = (£) » max{z,y} * and
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the transform Lf as

> fly)
L = —7 R..
f(flf) /0 max{x,y}s Y, T E -+
Finally, set
p°p'qs

Dy =
(app’ + p'q+ qs — 2q)(pq + qs — ap? — 2q)

and
pp's
(p+s—=2)p+5-2)

Dy =

2—s
Considering 1 < p < ¢ < o0, or —00 < ¢ < p <0, and f(y)y » instead of
f(y), relation (3.15) becomes

q
o o al—s P a1 (s S
DD} (/ Y +1f”(y)dy> —/ 2 TN (L () dee
0

0

q 1 [ atg—p+iSE(g—p+)
> oyt [T S e
D 0

s—2

L
« / oy
0 max{x,y}s
oo 5—2 1
) / I (0))1
0

(5.2)

PPy = Dy DL f(2))P| dy da

1, A =2
fly) =Dy "y Lf(x)| dydx

oo
X / max{z,y} °
0

If 0 < ¢ < p < 1, the order of terms on the left-hand side of (5.2) is reversed.
For p = ¢, (5.2) reduces to [5, Example 4.2]. Moreover, since for p = ¢ > 1,
a=0and s =1 we have Dy = Dy = pp/, our result generalizes and refines
(1.4). [ |

We complete this section with another refined Hardy—Hilbert—type in-
equality, making use of the well-known reflection formula for the Digamma
function 1,

00 2
/ I o gt = /(1= a) + v/(a) = . ac(0,1),
0

t—1 sin” Tar
and of the fact that

Z(a,b) = / the—at (1 — e_t)b dt <oo, a € Ry, b>1.
0

More precisely, Z(a,b) = I'(b+ 1)¢;(1,b + 1,a), where ¢}, is the so-called
unified Riemann-Zeta function,
1 o _
o1 (z,8,a) = / t57 e (1 — ze7 )" at,
n e /s ( )
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where ;1 > 1, Rea > 0 and either |z| < 1, 2 # 1 and Res > 0, or z = 1
and Res > p (for more information regarding the unified Riemann-Zeta
function, see e.g. [12]).

Example 5.3. Suppose that « € (0,1) and p,q, 5 € R are such that % >1
and a% + 8 € (—1,%— 1). Define the kernel k : R2 — R by k(z,y) =

(03
lng% (f) and the weight function u : R, — R by u(z) = 2. Finally,

denote

*ny—Inx
Mf(fl?):/ yif(y)dgh xeR-ﬁ-a
0 y—x

where f is a non-negative function on R (positive, if p < 0),

q
© /Int \ 7 4a
Elz/ <n>ptg+ﬁdt:2<a —l—B—i—l)—i—Z(—a—B—l)
o \t—1 D P p P P

and

Applying (3.15) to the above parameters and to f(y) replaced with f(y)y®
we get the inequality

q o0 P g >

> gt [T e e

> 1 1
x/ v M‘fp B (M f(a ‘dydx
0

~Ip] /Ooo (M f ()

(5.3)
®Iny—Inx [ 2\*
< [TEEERE ) - By (1) s dys
0 y—T Y
Notice that for p = g we have
o t—1 ~ sin?w(a+ B)

and (5.3) reduces to the Hardy—Hilbert—type inequality obtained in [5, Ex-
ample 4.3]. Therefore our result can be seen as its generalization. |

6. GENERAL GODUNOVA—TYPE INEQUALITIES

We conclude the paper with a multidimensional result related to Go-
dunova’s inequality (1.8). Namely, let Q; = Qo = R%, dui(x) = dx,
dpz(y) = dy, let £ and x¥ be as in Section 2, and let the kernel k :
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R% x R} — R be of the form k(x,y) = (%), where [ : R? — R is a
non-negative measurable function.

Applying Theorem 3.1 to this setting, we get the following generalization
and refinement of Godunova’s inequality (1.8) and a generalization of [5,
Theorem 5.1].

Theorem 6.1. Let 0 <p < g< oo or—oco < q<p<0. Letl and u be non-
negative measurable functions on R’} such that 0 < L(x) = x* [pn I(y)dy <
Jr

')

a
oo for all x € RY, and that the function x — u(x) <L(x)> ' 1s 1ntegrable on

R™ for each fized 'y € R'y. Let the function v be defined on R’} by

v(y) = /R1 u(x) (lL((;))> ' dx | .

If @ is a non-negative convex function on an interval I CR and ¢ : I — R
is any function, such that p(x) € 0P(x) for all x € Int I, then the inequality

(L

(6.1) > q/R U(X)@%_l(Alf(x)) - l (%) r(x,y) dy dx

“p n L(x)

v(y)<1>(f(y))dy)p - /R w(x)E (A f(x)) dx

n
+

holds for all measurable functions f : R} — R with values in I, where
A f(x) and r(x,y) are for x,y € R respectively defined by

a0 = o [ 1(2) sy

n
+
and

r(x,y) = [12(f(y)) = @(Af ()] = le(Af ()] - [f(y) = Af ()]

If ® is a positive concave function and 0 < ¢ < p < oo or —co < p < q <0,
then (6.1) holds with the reversed order of terms on its left-hand side.

Remark 6.1. Observe that for p = ¢ inequality (6.1) reduces to [5, Theorem
5.1]. If, additionally, [p. I(y)dy =1 and u(x) = x~1, we get a refinement
+

of (1.8). [ |

The above results can be rewritten with particular convex (or concave)
functions, for example, with power and exponential functions. This leads to
multidimensional analogues of corollaries and examples from Sections 4 and
5. Due to the lack of space, we omit them here.
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