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A NEW CLASS OF GENERAL REFINED HARDY-TYPE

INEQUALITIES WITH KERNELS

ALEKSANDRA ČIŽMEŠIJA, KRISTINA KRULIĆ, AND JOSIP PEČARIĆ

Abstract. Let µ1 and µ2 be positive σ-finite measures on Ω1 and Ω2

respectively, k : Ω1 × Ω2 → R be a non-negative function, and

K(x) =

∫

Ω2

k(x, y) dµ2(y), x ∈ Ω1.

We state and prove a new class of refined general Hardy-type inequalities
related to the weighted Lebesgue spaces Lp and Lq, where 0 < p ≤ q <
∞ or −∞ < q ≤ p < 0, convex functions and the integral operators Ak

of the form

Akf(x) =
1

K(x)

∫

Ω2

k(x, y)f(y) dµ2(y).

We also provide a class of new sufficient conditions for a weighted mod-
ular inequality involving operator Ak to hold. As special cases of our
results, we obtain refinements of the classical one-dimensional Hardy’s,
Pólya–Knopp’s and Hardy–Hilbert’s inequality and of related dual in-
equalities, as well as a generalization and refinement of the classical
Godunova’s inequality. Finally, we show that our results may be seen
as generalizations of some recent results related to Riemann-Liouville’s
and Weyl’s operator.

1. Introduction

To start with, we recall some well-known integral inequalities. The first
of them is the classical Hardy’s inequality,

(1.1)

∫ ∞

0

(
1

x

∫ x

0
f(t) dt

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0
fp(x) dx,

where 1 < p < ∞, R+ = (0,∞), and f ∈ Lp(R+) is a non-negative function.

By rewriting (1.1) with the function f replaced with f
1
p and then by letting

p → ∞, we obtain the limiting case of Hardy’s inequality,

(1.2)

∫ ∞

0
exp

(
1

x

∫ x

0
ln f(t) dt

)
dx < e

∫ ∞

0
f(x) dx ,
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Notice that (1.5) follows directly by only a standard application of Jensen’s
inequality and Fubini’s theorem.

On the other hand, Godunova [11] (see also [26, Chapter VIII, p. 233])
proved that the inequality

∫

Rn
+

Φ

(
1

x1 · · ·xn

∫

Rn
+

l

(
y1
x1

, . . . ,
yn
xn

)
f(y) dy

)
dx

x1 · · ·xn

≤
∫

Rn
+

Φ(f(x))

x1 · · ·xn
dx(1.8)

holds for all non-negative functions l : Rn
+ → R+, such that

∫
Rn
+
l(x) dx = 1,

convex functions Φ : [0,∞) → [0,∞), and non-negative functions f on Rn
+,

such that the function x �→ Φ(f(x))
x1···xn

is integrable on Rn
+.

Recently, Krulić et al. [19] unified all the above results by studying the
measure spaces (Ω1,Σ1, µ1), (Ω2,Σ2, µ2), and the general integral operator
Ak defined by

(1.9) Akf(x) =
1

K(x)

∫

Ω2

k(x, y)f(y) dµ2(y), x ∈ Ω1,

where f : Ω2 −→ R is a measurable function, k : Ω1×Ω2 → R is a measurable
and non-negative function, and

(1.10) K(x) =

∫

Ω2

k(x, y) dµ2(y) > 0, x ∈ Ω1.

They proved, again by using Jensen’s inequality and Fubini’s theorem, that
the weighted inequality

(1.11)

∫

Ω1

u(x)Φ(Akf(x)) dµ1(x) ≤
∫

Ω2

v(y)Φ(f(y)) dµ2(y)

holds for all non-negative measurable functions u : Ω1 → R, such that

(1.12) v(y) =

∫

Ω1

u(x)
k(x, y)

K(x)
dµ1(x) < ∞, y ∈ Ω2,

convex functions Φ on an interval I ⊆ R, and functions f : Ω2 → R with
values in I. In the same paper they also proved a generalization of inequality
(1.11). Namely, if 0 < p ≤ q < ∞, v is now defined with

(1.13) v(y) =

(∫

Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)

) p
q

< ∞, y ∈ Ω2,

and Φ is a non-negative convex function on an interval I ⊆ R, then the
inequality

(1.14)

(∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

) 1
q

≤
(∫

Ω2

v(y)Φ(f(y)) dµ2(y)

) 1
p

which holds for all positive functions f ∈ L1(R+). That inequality is referred
to as Pólya–Knopp’s inequality. Another two important classical inequali-
ties, closely related to (1.1), are Hardy–Hilbert’s inequality,

(1.3)

∫ ∞

0

(∫ ∞

0

f(x)

x+ y
dx

)p

dy ≤

(
π

sin π
p

)p ∫ ∞

0
fp(x) dx,

and Hardy–Littlewood–Pólya’s inequality

(1.4)

∫ ∞

0

(∫ ∞

0

f(y)

max{x, y}

)p

dy ≤
(
pp′

)p ∫ ∞

0
fp(y) dy,

which hold for 1 < p < ∞ and non-negative functions f ∈ Lp(R+). Notice

that the constants
(

p
p−1

)p
, e,

(
π

sin π
p

)p
and (pp′)p, respectively appearing on

the right-hand sides of (1.1) – (1.4), are the best possible, that is, neither of
them can be replaced with any smaller constant.

Since Hardy, Hilbert, and Pólya established inequalities (1.1), (1.2), and
(1.3), they have been investigated and generalized in several directions. Fur-
ther information and remarks concerning the rich history of the integral in-
equalities mentioned above can be found e.g. in the monographs [13,21,25,26]
and expository papers [2,3,6–9,15,16,20,28] and the references given therein.
Here we mention only results that to some extent have guided us in our re-
search.

In particular, S. Kaijser et al. [17] (see also [16, 24]) pointed out that
(1.1), (1.2) and (1.3) are special cases of a more general inequality of Hardy–
Knopp’s type with a kernel,

(1.5)

∫ ∞

0
u(x)Φ(Akf(x))

dx

x
≤

∫ ∞

0
v(x)Φ(f(x))

dx

x
,

where 0 < b ≤ ∞, k : (0, b)× (0, b) → R and u : (0, b) → R are non-negative
functions, such that

(1.6) K(x) =

∫ x

0
k(x, y) dy > 0, x ∈ (0, b),

and

v(y) = y

∫ b

y
u(x)

k(x, y)

K(x)

dx

x
< ∞, y ∈ (0, b),

Φ is a convex function on an interval I ⊆ R, f : (0, b) → R is a function
with values in I, and

(1.7) Akf(x) =
1

K(x)

∫ x

0
k(x, y)f(y) dy, x ∈ (0, b).
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Notice that (1.5) follows directly by only a standard application of Jensen’s
inequality and Fubini’s theorem.

On the other hand, Godunova [11] (see also [26, Chapter VIII, p. 233])
proved that the inequality

∫
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Φ
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x1 · · ·xn

∫

Rn
+

l
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x1

, . . . ,
yn
xn

)
f(y) dy
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dx

x1 · · ·xn

≤
∫

Rn
+

Φ(f(x))

x1 · · ·xn
dx(1.8)

holds for all non-negative functions l : Rn
+ → R+, such that

∫
Rn
+
l(x) dx = 1,

convex functions Φ : [0,∞) → [0,∞), and non-negative functions f on Rn
+,

such that the function x �→ Φ(f(x))
x1···xn

is integrable on Rn
+.

Recently, Krulić et al. [19] unified all the above results by studying the
measure spaces (Ω1,Σ1, µ1), (Ω2,Σ2, µ2), and the general integral operator
Ak defined by

(1.9) Akf(x) =
1

K(x)

∫

Ω2

k(x, y)f(y) dµ2(y), x ∈ Ω1,

where f : Ω2 −→ R is a measurable function, k : Ω1×Ω2 → R is a measurable
and non-negative function, and

(1.10) K(x) =

∫

Ω2

k(x, y) dµ2(y) > 0, x ∈ Ω1.

They proved, again by using Jensen’s inequality and Fubini’s theorem, that
the weighted inequality

(1.11)

∫

Ω1

u(x)Φ(Akf(x)) dµ1(x) ≤
∫

Ω2

v(y)Φ(f(y)) dµ2(y)

holds for all non-negative measurable functions u : Ω1 → R, such that

(1.12) v(y) =

∫

Ω1

u(x)
k(x, y)

K(x)
dµ1(x) < ∞, y ∈ Ω2,

convex functions Φ on an interval I ⊆ R, and functions f : Ω2 → R with
values in I. In the same paper they also proved a generalization of inequality
(1.11). Namely, if 0 < p ≤ q < ∞, v is now defined with

(1.13) v(y) =

(∫

Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)

) p
q

< ∞, y ∈ Ω2,

and Φ is a non-negative convex function on an interval I ⊆ R, then the
inequality

(1.14)

(∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

) 1
q

≤
(∫

Ω2

v(y)Φ(f(y)) dµ2(y)

) 1
p
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which holds for all positive functions f ∈ L1(R+). That inequality is referred
to as Pólya–Knopp’s inequality. Another two important classical inequali-
ties, closely related to (1.1), are Hardy–Hilbert’s inequality,

(1.3)

∫ ∞

0

(∫ ∞

0

f(x)

x+ y
dx

)p

dy ≤

(
π

sin π
p

)p ∫ ∞

0
fp(x) dx,

and Hardy–Littlewood–Pólya’s inequality

(1.4)

∫ ∞

0

(∫ ∞
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f(y)

max{x, y}

)p

dy ≤
(
pp′

)p ∫ ∞

0
fp(y) dy,

which hold for 1 < p < ∞ and non-negative functions f ∈ Lp(R+). Notice

that the constants
(

p
p−1

)p
, e,

(
π

sin π
p

)p
and (pp′)p, respectively appearing on

the right-hand sides of (1.1) – (1.4), are the best possible, that is, neither of
them can be replaced with any smaller constant.

Since Hardy, Hilbert, and Pólya established inequalities (1.1), (1.2), and
(1.3), they have been investigated and generalized in several directions. Fur-
ther information and remarks concerning the rich history of the integral in-
equalities mentioned above can be found e.g. in the monographs [13,21,25,26]
and expository papers [2,3,6–9,15,16,20,28] and the references given therein.
Here we mention only results that to some extent have guided us in our re-
search.

In particular, S. Kaijser et al. [17] (see also [16, 24]) pointed out that
(1.1), (1.2) and (1.3) are special cases of a more general inequality of Hardy–
Knopp’s type with a kernel,

(1.5)

∫ ∞

0
u(x)Φ(Akf(x))

dx

x
≤

∫ ∞

0
v(x)Φ(f(x))

dx

x
,

where 0 < b ≤ ∞, k : (0, b)× (0, b) → R and u : (0, b) → R are non-negative
functions, such that

(1.6) K(x) =

∫ x

0
k(x, y) dy > 0, x ∈ (0, b),

and

v(y) = y

∫ b

y
u(x)

k(x, y)

K(x)

dx

x
< ∞, y ∈ (0, b),

Φ is a convex function on an interval I ⊆ R, f : (0, b) → R is a function
with values in I, and

(1.7) Akf(x) =
1

K(x)

∫ x

0
k(x, y)f(y) dy, x ∈ (0, b).
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Ω with respect to the measure µ. In particular, we use the symbol | |1
as an abbreviation for ‖ ‖L1(Ω1,µ1). Also, by a weight function (shortly: a
weight) we mean a non-negative measurable function on the actual set. An
interval in R is any convex subset of R, while by Int I we denote its interior.
B( · ; · , · ) denotes the incomplete Beta function, defined by

B(x; a, b) =

∫ x

0
ta−1(1− t)b−1 dt, x ∈ [0, 1], a, b > 0.

As usual, B(a, b) = B(1; a, b) stands for the standard Beta function. Finally,
inequalities like (1.11) are interpreted to mean if the right-hand side is finite,
so is the left-hand side and the inequality holds.

2. A new class of general Hardy–type inequalities with
kernels

To begin with, in this section we provide a new class of sufficient con-
ditions on weight functions u and w, and on a kernel k, for a modular
inequality involving the Hardy–type operator Ak, defined by (1.9), to hold.
The first result in that direction is given in the following theorem.

Theorem 2.1. Let 0 < p ≤ q < ∞. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be
measure spaces with positive σ-finite measures, u be a weight function on
Ω1, w be a µ2–a.e. positive function on Ω2, k be a non-negative measurable
function on Ω1×Ω2, and K be defined on Ω1 by (1.10). Suppose that K(x) >

0 for all x ∈ Ω1 and that the function x �→ u(x)
(
k(x,y)
K(x)

) q
p
is integrable on

Ω1 for each fixed y ∈ Ω2. Let Φ be a non-negative convex function on an
interval I ⊆ R. If

(2.1) A = sup
y∈Ω2

w
− 1

p (y)

(∫

Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)

) 1
q

< ∞,

then there exists a positive real constant C, such that the inequality

(2.2)

(∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

) 1
q

≤ C

(∫

Ω2

w(y)Φ(f(y)) dµ2(y)

) 1
p

holds for all measurable functions f : Ω2 → R with values in I and Akf
defined on Ω1 by (1.9). Moreover, if C is the smallest constant for (2.2) to
hold, then C ≤ A.

Proof. By using Jensen’s inequality, monotonicity of the power functions
α �→ αt for a positive exponent t, and then Minkowski’s inequality, we find

holds for all functions f : Ω2 → R, such that f(Ω2) ⊆ I.

In addition to proving direct inequalities of the form (1.11), there are
many classical and recent results concerning the mapping properties of in-
tegral operators such as (1.7) and (1.9), that is, necessary and sufficient
conditions of the Muckenhoupt type on weight functions and a kernel for
boundedness of the operator Ak between two function spaces. Some im-
portant and useful modular inequalities related to (1.11) can be found e.g.
in [14, 18, 23]. Without stating them, here we emphasize just a class of suf-
ficient conditions on u, v, and k, related to the operator (1.7), obtained
in [17].

Motivated by all the results mentioned, in this paper we provide a new
two-parametric class of sufficient conditions for a weighted modular inequal-
ity involving operator (1.9) to hold. Further, we state and prove a new
refined general weighted Hardy–type inequality with a non-negative kernel,
related to an arbitrary convex (or concave) function, and point out that
our result refines relation (1.14). Applying the obtained general relation to
some important particular kernels and concrete measure spaces, we derive
new refinements of the classical one-dimensional Hardy’s, Pólya–Knopp’s
and Hardy–Hilbert’s inequality and related dual inequalities, as well as a
generalization and a refinement of the classical Godunova’s inequality. Fi-
nally, we show that our results may be seen as generalizations of some recent
results related to Riemann-Liouville’s and Weyl’s operator.

The paper is organized in the following way. In Section 2 we establish and
discuss a new class of sufficient conditions for a weighted modular inequality
involving operator Ak defined by (1.9) to hold, while in Section 3 we state,
prove and discuss a general refined weighted Hardy–type inequality with a
non-negative kernel and an arbitrary convex function. In the same section,
we discuss some particular cases of the obtained general inequality, related
to power and exponential functions, and to the simplest possible kernel –
the one with separate variables. In the following two sections, our general
results are applied to various one-dimensional settings and the Lebesgue
measure. Namely, in Section 4 we obtain a new refinement of the classical
one-dimensional Hardy’s, Pólya–Knopp’s, and related dual inequalities and
point out that our results generalize some recent results related to Riemann-
Liouville’s and Weyl’s operator. In Section 5, we obtain new generalized
Hardy–Hilbert’s and Hardy–Littlewood–Pólya’s inequality. The paper con-
cludes with Section 6, where a new refinement of the classical Godunova’s
inequality is given.

Conventions. Throughout this paper, all measures are assumed to be
positive, all functions are assumed to be measurable, and expressions of the
form 0 · ∞, 0

0 ,
a
∞ (a ∈ R), and ∞

∞ are taken to be equal to zero. For a real
parameter 0 �= p �= 1, by p′ we denote its conjugate exponent p′ = p

p−1 ,

that is, 1
p + 1

p′ = 1. By |Ω|µ we denote the measure of a measurable set
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Ω with respect to the measure µ. In particular, we use the symbol | |1
as an abbreviation for ‖ ‖L1(Ω1,µ1). Also, by a weight function (shortly: a
weight) we mean a non-negative measurable function on the actual set. An
interval in R is any convex subset of R, while by Int I we denote its interior.
B( · ; · , · ) denotes the incomplete Beta function, defined by

B(x; a, b) =

∫ x

0
ta−1(1− t)b−1 dt, x ∈ [0, 1], a, b > 0.

As usual, B(a, b) = B(1; a, b) stands for the standard Beta function. Finally,
inequalities like (1.11) are interpreted to mean if the right-hand side is finite,
so is the left-hand side and the inequality holds.

2. A new class of general Hardy–type inequalities with
kernels

To begin with, in this section we provide a new class of sufficient con-
ditions on weight functions u and w, and on a kernel k, for a modular
inequality involving the Hardy–type operator Ak, defined by (1.9), to hold.
The first result in that direction is given in the following theorem.

Theorem 2.1. Let 0 < p ≤ q < ∞. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be
measure spaces with positive σ-finite measures, u be a weight function on
Ω1, w be a µ2–a.e. positive function on Ω2, k be a non-negative measurable
function on Ω1×Ω2, and K be defined on Ω1 by (1.10). Suppose that K(x) >

0 for all x ∈ Ω1 and that the function x �→ u(x)
(
k(x,y)
K(x)

) q
p
is integrable on

Ω1 for each fixed y ∈ Ω2. Let Φ be a non-negative convex function on an
interval I ⊆ R. If

(2.1) A = sup
y∈Ω2

w
− 1

p (y)

(∫

Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)

) 1
q

< ∞,

then there exists a positive real constant C, such that the inequality

(2.2)

(∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

) 1
q

≤ C

(∫

Ω2

w(y)Φ(f(y)) dµ2(y)

) 1
p

holds for all measurable functions f : Ω2 → R with values in I and Akf
defined on Ω1 by (1.9). Moreover, if C is the smallest constant for (2.2) to
hold, then C ≤ A.

Proof. By using Jensen’s inequality, monotonicity of the power functions
α �→ αt for a positive exponent t, and then Minkowski’s inequality, we find

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 53-80
Aleksandra Cizmesija, Kristina Krulic, and Josip Pecaric A new class of general

holds for all functions f : Ω2 → R, such that f(Ω2) ⊆ I.

In addition to proving direct inequalities of the form (1.11), there are
many classical and recent results concerning the mapping properties of in-
tegral operators such as (1.7) and (1.9), that is, necessary and sufficient
conditions of the Muckenhoupt type on weight functions and a kernel for
boundedness of the operator Ak between two function spaces. Some im-
portant and useful modular inequalities related to (1.11) can be found e.g.
in [14, 18, 23]. Without stating them, here we emphasize just a class of suf-
ficient conditions on u, v, and k, related to the operator (1.7), obtained
in [17].

Motivated by all the results mentioned, in this paper we provide a new
two-parametric class of sufficient conditions for a weighted modular inequal-
ity involving operator (1.9) to hold. Further, we state and prove a new
refined general weighted Hardy–type inequality with a non-negative kernel,
related to an arbitrary convex (or concave) function, and point out that
our result refines relation (1.14). Applying the obtained general relation to
some important particular kernels and concrete measure spaces, we derive
new refinements of the classical one-dimensional Hardy’s, Pólya–Knopp’s
and Hardy–Hilbert’s inequality and related dual inequalities, as well as a
generalization and a refinement of the classical Godunova’s inequality. Fi-
nally, we show that our results may be seen as generalizations of some recent
results related to Riemann-Liouville’s and Weyl’s operator.

The paper is organized in the following way. In Section 2 we establish and
discuss a new class of sufficient conditions for a weighted modular inequality
involving operator Ak defined by (1.9) to hold, while in Section 3 we state,
prove and discuss a general refined weighted Hardy–type inequality with a
non-negative kernel and an arbitrary convex function. In the same section,
we discuss some particular cases of the obtained general inequality, related
to power and exponential functions, and to the simplest possible kernel –
the one with separate variables. In the following two sections, our general
results are applied to various one-dimensional settings and the Lebesgue
measure. Namely, in Section 4 we obtain a new refinement of the classical
one-dimensional Hardy’s, Pólya–Knopp’s, and related dual inequalities and
point out that our results generalize some recent results related to Riemann-
Liouville’s and Weyl’s operator. In Section 5, we obtain new generalized
Hardy–Hilbert’s and Hardy–Littlewood–Pólya’s inequality. The paper con-
cludes with Section 6, where a new refinement of the classical Godunova’s
inequality is given.

Conventions. Throughout this paper, all measures are assumed to be
positive, all functions are assumed to be measurable, and expressions of the
form 0 · ∞, 0

0 ,
a
∞ (a ∈ R), and ∞

∞ are taken to be equal to zero. For a real
parameter 0 �= p �= 1, by p′ we denote its conjugate exponent p′ = p

p−1 ,

that is, 1
p + 1

p′ = 1. By |Ω|µ we denote the measure of a measurable set



58

Corollary 2.2. Let 0 < p ≤ q < ∞ and 0 < b ≤ ∞. Let u be a non-
negative and v be a positive function on (0,b) and let Φ be a non-negative
convex function on an interval I ⊆ R. If

A = sup
y∈(0,b)

(
y

v(y)

) 1
p

(∫

(y,b)
u(x)x

− q
p
−1

dx

) 1
q

< ∞,

then there exists a positive real constant C, such that the inequality

(2.5)

(∫

(0,b)
u(x)Φ

q
p (Hf(x))

dx

x1

) 1
q

≤ C

(∫

(0,b)
v(y)Φ(f(y))

dy

y1

) 1
p

holds for all measurable functions f : (0,b) → R with values in I and

Hf(x) = x−1

∫

(0,x)
f(y) dy, x ∈ (0,b).

Moreover, if A is the smallest constant for (2.5) to hold, then C ≤ A.

Proof. Let Sn = {(x,y) ∈ Rn ×Rn : 0 < y ≤ x < b} and Ω1 = Ω2 = (0,b).
The proof follows directly from Theorem 2.1, applied with dµ1(x) = dx,

dµ2(y) = dy, k = χSn , and with u(x)
x1 instead of u(x), x ∈ (0,b). Observe

that w(y) = y−1v(y), y ∈ (0,b). �

Remark 2.1. The result given in Corollary 2.2 was published in [17, The-
orem 3.1], so we see that Theorem 3.1 from [17] is just a special case of our
Theorem 2.1. �

Our analysis continues by providing a new two-parametric class of suf-
ficient conditions for a weighted modular inequality involving the operator
Ak to hold. The conditions obtained depend on a real parameter s and a
positive function V on Ω2. That result is given in the following theorem.

Theorem 2.2. Let 1 < p ≤ q < ∞. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be
measure spaces with positive σ-finite measures, u be a weight function on
Ω1, v be a measurable µ2–a.e. positive function on Ω2, k be a non-negative
measurable function on Ω1 × Ω2, and K be defined on Ω1 by (1.10). Let

K(x) > 0 for all x ∈ Ω1 and let the function x �→ u(x)
(
k(x,y)
K(x)

)q
be integrable

on Ω1 for each fixed y ∈ Ω2. Suppose that Φ : I → [0,∞) is a bijective convex
function on an interval I ⊆ R. If there exist a real parameter s ∈ (1, p) and
a positive measurable function V : Ω2 → R such that

A(s, V ) = F (V, v) sup
y∈Ω2

V
s−1
p (y)

[∫

Ω1

u(x)

(
k(x, y)

K(x)

)q

dµ1(x)

] 1
q

< ∞,

where

F (V, v) =

(∫

Ω2

V
−p′(s−1)

p (y)v1−p′(y) dµ2(y)

) 1
p′

,

that
(∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

) 1
q

=

(∫

Ω1

u(x)

[
Φ

(
1

K(x)

∫

Ω2

k(x, y)f(y) dµ2(y)

)] q
p

dµ1(x)

) 1
q

≤

(∫

Ω1

u(x)

[
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

] q
p

dµ1(x)

) 1
q

≤



∫

Ω2

(
w

− q
p (y)

∫

Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)

) p
q

w(y)Φ(f(y)) dµ2(y)




1
p

≤ A

(∫

Ω2

w(y)Φ(f(y)) dµ2(y)

) 1
p

.

(2.3)

Hence, (2.2) holds with C = A, so the proof is complete. �

Following the same lines as in the proof of Theorem 2.1, we get the next
corollary.

Corollary 2.1. Let −∞ < q ≤ p < 0 and let the assumptions of Theorem
2.1 be satisfied with a positive convex function Φ. If

B = inf
y∈Ω2

w
− 1

p (y)

(∫

Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)

) 1
q

< ∞,

then there exists a positive real constant C, such that the inequality

(2.4)

(∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

) 1
q

≥ C

(∫

Ω2

w(y)Φ(f(y)) dµ2(y)

) 1
p

holds for all measurable functions f : Ω2 → R with values in Ω2. Moreover,
if C is the largest constant for (2.4) to hold, then C ≥ B.

In order to apply Theorem 2.1 to n-dimensional cells in Rn
+, we need

to introduce some further notation. For u,v ∈ Rn
+, u = (u1, u2, . . . , un),

v = (v1, vn, . . . , vn), we denote

u

v
=

(
u1
v1

,
u2
v2

, . . . ,
un
vn

)
and uv = uv11 uv22 · · ·uvnn .

Especially, u1 =
∏n

i=1 ui and u-1 = (
∏n

i=1 ui)
−1, where 1 = (1, 1, . . . , 1).

We write u < v if componentwise ui < vi, i = 1, . . . , n. Relations ≤, >, and
≥ are defined analogously. Finally,

(0,b) = {x ∈ Rn : 0 < x < b}, and (b,∞) = {x ∈ Rn : b < x < ∞}.
In this setting, Theorem 2.1 reads as follows.
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Corollary 2.2. Let 0 < p ≤ q < ∞ and 0 < b ≤ ∞. Let u be a non-
negative and v be a positive function on (0,b) and let Φ be a non-negative
convex function on an interval I ⊆ R. If

A = sup
y∈(0,b)

(
y

v(y)

) 1
p

(∫

(y,b)
u(x)x

− q
p
−1

dx

) 1
q

< ∞,

then there exists a positive real constant C, such that the inequality

(2.5)

(∫

(0,b)
u(x)Φ

q
p (Hf(x))

dx

x1

) 1
q

≤ C

(∫

(0,b)
v(y)Φ(f(y))

dy

y1

) 1
p

holds for all measurable functions f : (0,b) → R with values in I and

Hf(x) = x−1

∫

(0,x)
f(y) dy, x ∈ (0,b).

Moreover, if A is the smallest constant for (2.5) to hold, then C ≤ A.

Proof. Let Sn = {(x,y) ∈ Rn ×Rn : 0 < y ≤ x < b} and Ω1 = Ω2 = (0,b).
The proof follows directly from Theorem 2.1, applied with dµ1(x) = dx,

dµ2(y) = dy, k = χSn , and with u(x)
x1 instead of u(x), x ∈ (0,b). Observe

that w(y) = y−1v(y), y ∈ (0,b). �

Remark 2.1. The result given in Corollary 2.2 was published in [17, The-
orem 3.1], so we see that Theorem 3.1 from [17] is just a special case of our
Theorem 2.1. �

Our analysis continues by providing a new two-parametric class of suf-
ficient conditions for a weighted modular inequality involving the operator
Ak to hold. The conditions obtained depend on a real parameter s and a
positive function V on Ω2. That result is given in the following theorem.

Theorem 2.2. Let 1 < p ≤ q < ∞. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be
measure spaces with positive σ-finite measures, u be a weight function on
Ω1, v be a measurable µ2–a.e. positive function on Ω2, k be a non-negative
measurable function on Ω1 × Ω2, and K be defined on Ω1 by (1.10). Let

K(x) > 0 for all x ∈ Ω1 and let the function x �→ u(x)
(
k(x,y)
K(x)

)q
be integrable

on Ω1 for each fixed y ∈ Ω2. Suppose that Φ : I → [0,∞) is a bijective convex
function on an interval I ⊆ R. If there exist a real parameter s ∈ (1, p) and
a positive measurable function V : Ω2 → R such that

A(s, V ) = F (V, v) sup
y∈Ω2

V
s−1
p (y)

[∫

Ω1

u(x)

(
k(x, y)

K(x)

)q

dµ1(x)

] 1
q

< ∞,

where

F (V, v) =

(∫

Ω2

V
−p′(s−1)

p (y)v1−p′(y) dµ2(y)

) 1
p′

,
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that
(∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

) 1
q

=

(∫

Ω1

u(x)

[
Φ

(
1

K(x)

∫

Ω2

k(x, y)f(y) dµ2(y)

)] q
p

dµ1(x)

) 1
q

≤

(∫

Ω1

u(x)

[
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

] q
p

dµ1(x)

) 1
q

≤



∫

Ω2

(
w

− q
p (y)

∫

Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)

) p
q

w(y)Φ(f(y)) dµ2(y)




1
p

≤ A

(∫

Ω2

w(y)Φ(f(y)) dµ2(y)

) 1
p

.

(2.3)

Hence, (2.2) holds with C = A, so the proof is complete. �

Following the same lines as in the proof of Theorem 2.1, we get the next
corollary.

Corollary 2.1. Let −∞ < q ≤ p < 0 and let the assumptions of Theorem
2.1 be satisfied with a positive convex function Φ. If

B = inf
y∈Ω2

w
− 1

p (y)

(∫

Ω1

u(x)

(
k(x, y)

K(x)

) q
p

dµ1(x)

) 1
q

< ∞,

then there exists a positive real constant C, such that the inequality

(2.4)

(∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

) 1
q

≥ C

(∫

Ω2

w(y)Φ(f(y)) dµ2(y)

) 1
p

holds for all measurable functions f : Ω2 → R with values in Ω2. Moreover,
if C is the largest constant for (2.4) to hold, then C ≥ B.

In order to apply Theorem 2.1 to n-dimensional cells in Rn
+, we need

to introduce some further notation. For u,v ∈ Rn
+, u = (u1, u2, . . . , un),

v = (v1, vn, . . . , vn), we denote

u

v
=

(
u1
v1

,
u2
v2

, . . . ,
un
vn

)
and uv = uv11 uv22 · · ·uvnn .

Especially, u1 =
∏n

i=1 ui and u-1 = (
∏n

i=1 ui)
−1, where 1 = (1, 1, . . . , 1).

We write u < v if componentwise ui < vi, i = 1, . . . , n. Relations ≤, >, and
≥ are defined analogously. Finally,

(0,b) = {x ∈ Rn : 0 < x < b}, and (b,∞) = {x ∈ Rn : b < x < ∞}.
In this setting, Theorem 2.1 reads as follows.
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function V : Ω2 → R:
{∫

Ω1

u(x)

[
1

K(x)

∫

Ω2

k(x, y)Φ
1
p (g(y))v

− 1
p (y) dµ2(y)

]q
dµ1(x)

} 1
q

=

{∫

Ω1

u(x)

Kq(x)

[∫

Ω2

(
k(x, y)Φ

1
p (g(y))V

s−1
p (y)

)(
V

1−s
p (y)v

− 1
p (y)

)
dµ2(y)

]q
dµ1(x)

} 1
q

≤

{∫

Ω1

u(x)

Kq(x)

(∫

Ω2

kp(x, y)Φ(g(y))V s−1(y) dµ2(y)

) q
p

×

×
(∫

Ω2

V
− p′(s−1)

p (y)v1−p′(y) dµ2(y)

) q
p′

dµ1(x)

} 1
q

= F (V, v)

{∫

Ω1

u(x)

Kq(x)

(∫

Ω2

kp(x, y)Φ(g(y))V s−1(y) dµ2(y)

) q
p

dµ1(x)

} 1
q

≤ F (V, v)

{∫

Ω2

Φ(g(y))V s−1(y)

[∫

Ω1

u(x)

(
k(x, y)

K(x)

)q

dµ1(x)

] p
q

dµ2(y)

} 1
p

≤ A(s, V )

(∫

Ω2

Φ(g(y)) dµ2(y)

) 1
p

.

(2.10)

Thus, inequalities (2.9) and (2.8) hold. Relation (2.6) follows by considering
(2.7), so the proof is complete. �

By modifying Theorem 2.2 for the setting from relations (1.6) and (1.7),
we obtain the following result.

Theorem 2.3. Let 1 < p ≤ q < ∞, 1 < s < p, and 0 < b ≤ ∞. Let u be a
weight function on (0, b), w be an a.e. positive measurable function on (0, b),
and k be a non-negative measurable function on (0, b)×(0, b) satisfying (1.6).
Let I be an interval in R and Φ : I → [0,∞) be a bijective convex function.
If

(2.11) V (y) =

∫ y

0
w1−p′(x)xp

′−1 dx < ∞

holds almost everywhere in (0, b) and

(2.12) A(s) = sup
0<y<b

(∫ b

y
u(x)

(
k(x, y)

K(x)

)q

V
q(p−s)

p (x)
dx

x

) 1
q

V
s−1
p (y) < ∞,

then there exists a positive real constant C such that

(2.13)

(∫ b

0
u(x)Φq(Akf(x))

dx

x

) 1
q

≤ C

(∫ b

0
w(x)Φp(f(x))

dx

x

) 1
p

then there is a positive real constant C such that the inequality

(2.6)

(∫

Ω1

u(x)Φq(Akf(x)) dµ1(x)

) 1
q

≤ C

(∫

Ω2

v(y)Φp(f(y)) dµ2(y)

) 1
p

holds for all measurable functions f : Ω2 → R with values in I and Akf
defined on Ω1 by (1.9). Moreover, if C is the best possible constant in (2.6),
then

(2.7) C ≤ inf
1<s<p

V >0

A(s, V ).

Proof. Let f : Ω2 → R be an arbitrary measurable function with values in
I. Applying Jensen’s inequality to the left-hand side of (2.6) we get

(∫

Ω1

u(x)Φq(Akf(x)) dµ1(x)

) 1
q

≤
[∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)q

dµ1(x)

] 1
q

.

Hence, to prove inequality (2.6) it suffices to prove that there is a real
constant C > 0, independent on f , such that

[∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)q

dµ1(x)

] 1
q

≤ C

(∫

Ω2

v(y)Φp(f(y)) dµ2(y)

) 1
p

.(2.8)

Taking into account properties of the function Φ, let g : Ω2 → R be defined
by Φ(g(y)) = v(y)Φp(f(y)). Then g(Ω2) ⊆ I holds and (2.8) is equivalent
to

[∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ
1
p (g(y))v

− 1
p (y) dµ2(y)

)q

dµ1(x)

] 1
q

≤ C

(∫

Ω2

Φ(g(y)) dµ2(y)

) 1
p

.(2.9)

Therefore, instead of proving (2.8), we prove that (2.9) holds for all mea-
surable functions g : Ω2 → R with values in I. Applying Hölder’s inequal-
ity, monotonicity of the power functions α �→ αt for positive exponents t,
Minkowski’s inequality, and the definitions of F (V, v) and A(s, V ), we get the
following sequence of inequalities involving an arbitrary positive measurable
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function V : Ω2 → R:
{∫

Ω1

u(x)

[
1

K(x)

∫

Ω2

k(x, y)Φ
1
p (g(y))v

− 1
p (y) dµ2(y)

]q
dµ1(x)

} 1
q

=

{∫

Ω1

u(x)

Kq(x)

[∫

Ω2

(
k(x, y)Φ

1
p (g(y))V

s−1
p (y)

)(
V

1−s
p (y)v

− 1
p (y)

)
dµ2(y)

]q
dµ1(x)

} 1
q

≤

{∫

Ω1

u(x)

Kq(x)

(∫

Ω2

kp(x, y)Φ(g(y))V s−1(y) dµ2(y)

) q
p

×

×
(∫

Ω2

V
− p′(s−1)

p (y)v1−p′(y) dµ2(y)

) q
p′

dµ1(x)

} 1
q

= F (V, v)

{∫

Ω1

u(x)

Kq(x)

(∫

Ω2

kp(x, y)Φ(g(y))V s−1(y) dµ2(y)

) q
p

dµ1(x)

} 1
q

≤ F (V, v)

{∫

Ω2

Φ(g(y))V s−1(y)

[∫

Ω1

u(x)

(
k(x, y)

K(x)

)q

dµ1(x)

] p
q

dµ2(y)

} 1
p

≤ A(s, V )

(∫

Ω2

Φ(g(y)) dµ2(y)

) 1
p

.

(2.10)

Thus, inequalities (2.9) and (2.8) hold. Relation (2.6) follows by considering
(2.7), so the proof is complete. �

By modifying Theorem 2.2 for the setting from relations (1.6) and (1.7),
we obtain the following result.

Theorem 2.3. Let 1 < p ≤ q < ∞, 1 < s < p, and 0 < b ≤ ∞. Let u be a
weight function on (0, b), w be an a.e. positive measurable function on (0, b),
and k be a non-negative measurable function on (0, b)×(0, b) satisfying (1.6).
Let I be an interval in R and Φ : I → [0,∞) be a bijective convex function.
If

(2.11) V (y) =

∫ y

0
w1−p′(x)xp

′−1 dx < ∞

holds almost everywhere in (0, b) and

(2.12) A(s) = sup
0<y<b

(∫ b

y
u(x)

(
k(x, y)

K(x)

)q

V
q(p−s)

p (x)
dx

x

) 1
q

V
s−1
p (y) < ∞,

then there exists a positive real constant C such that

(2.13)

(∫ b

0
u(x)Φq(Akf(x))

dx

x

) 1
q

≤ C

(∫ b

0
w(x)Φp(f(x))

dx

x

) 1
p
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then there is a positive real constant C such that the inequality

(2.6)

(∫

Ω1

u(x)Φq(Akf(x)) dµ1(x)

) 1
q

≤ C

(∫

Ω2

v(y)Φp(f(y)) dµ2(y)

) 1
p

holds for all measurable functions f : Ω2 → R with values in I and Akf
defined on Ω1 by (1.9). Moreover, if C is the best possible constant in (2.6),
then

(2.7) C ≤ inf
1<s<p

V >0

A(s, V ).

Proof. Let f : Ω2 → R be an arbitrary measurable function with values in
I. Applying Jensen’s inequality to the left-hand side of (2.6) we get

(∫

Ω1

u(x)Φq(Akf(x)) dµ1(x)

) 1
q

≤
[∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)q

dµ1(x)

] 1
q

.

Hence, to prove inequality (2.6) it suffices to prove that there is a real
constant C > 0, independent on f , such that

[∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)q

dµ1(x)

] 1
q

≤ C

(∫

Ω2

v(y)Φp(f(y)) dµ2(y)

) 1
p

.(2.8)

Taking into account properties of the function Φ, let g : Ω2 → R be defined
by Φ(g(y)) = v(y)Φp(f(y)). Then g(Ω2) ⊆ I holds and (2.8) is equivalent
to

[∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ
1
p (g(y))v

− 1
p (y) dµ2(y)

)q

dµ1(x)

] 1
q

≤ C

(∫

Ω2

Φ(g(y)) dµ2(y)

) 1
p

.(2.9)

Therefore, instead of proving (2.8), we prove that (2.9) holds for all mea-
surable functions g : Ω2 → R with values in I. Applying Hölder’s inequal-
ity, monotonicity of the power functions α �→ αt for positive exponents t,
Minkowski’s inequality, and the definitions of F (V, v) and A(s, V ), we get the
following sequence of inequalities involving an arbitrary positive measurable
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every function ϕ : I −→ R, for which ϕ(r) ∈ ∂Φ(r) whenever r ∈ Int I,
is increasing on Int I. Notice that for any such function ϕ and arbitrary
r ∈ Int I, s ∈ I we have

Φ(s)− Φ(r)− ϕ(r)(s− r) ≥ 0

and further

Φ(s)− Φ(r)− ϕ(r)(s− r) = |Φ(s)− Φ(r)− ϕ(r)(s− r)|
≥ | |Φ(s)− Φ(r)| − |ϕ(r)| · |s− r| | .(3.1)

On the other hand, if Φ : I → R is a concave function, that is, −Φ is convex,
then ∂Φ(r) = {α ∈ R : Φ(r) − Φ(s) − α(r − s) ≥ 0, s ∈ I} denotes the
superdifferential of Φ at the point r ∈ I. For all r ∈ Int I, in this setting we
have −∞ < Φ′

+(r) ≤ Φ′
−(r) < ∞ and ∂Φ(r) = [Φ′

+(r), Φ
′
−(r)] �= ∅. Hence,

the inequality
Φ(r)− Φ(s)− ϕ(r)(r − s) ≥ 0

holds for all r ∈ Int I, s ∈ I, and all real functions ϕ on I, such that
ϕ(t) ∈ ∂Φ(t), t ∈ Int I. Therefrom, we also get

Φ(r)− Φ(s)− ϕ(r)(r − s) = |Φ(r)− Φ(s)− ϕ(r)(r − s)|
≥ | |Φ(s)− Φ(r)| − |ϕ(r)| · |s− r| | .(3.2)

Observe that, although the symbol ∂Φ(r) has two different notions, it will
be clear from the context whether it applies to a convex or to a concave
function Φ. Many further information on convex and concave functions can
be found e.g. in the monographs [25] and [26] and in references cited therein.

Now, we are ready to state and prove the central result of this section,
that is, a new general refined weighted Hardy-type inequality with a non-
negative kernel, related to an arbitrary non-negative convex function. It is
given in the following theorem.

Theorem 3.1. Let t ∈ R+, (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces
with positive σ-finite measures, u be a weight function on Ω1, k a non-
negative measurable function on Ω1×Ω2, and K be defined on Ω1 by (1.10).

Suppose that K(x) > 0 for all x ∈ Ω1, that the function x �→ u(x)
(
k(x,y)
K(x)

)t

is integrable on Ω1 for each fixed y ∈ Ω2, and that v is defined on Ω1 by

(3.3) v(y) =

(∫

Ω1

u(x)

(
k(x, y)

K(x)

)t

dµ1(x)

) 1
t

.

If Φ is a non-negative convex function on an interval I ⊆ R and ϕ : I → R
is any function, such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality

(∫

Ω2

v(y)Φ(f(y)) dµ2(y)

)t

−
∫

Ω1

u(x)Φt(Akf(x)) dµ1(x)

≥ t

∫

Ω1

u(x)

K(x)
Φt−1(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)(3.4)

holds for all measurable functions f : (0, b) → R with values in I and the
Hardy-type operator Ak defined by (1.7). Moreover, if C is the best possible
constant in (2.13), then

C ≤ inf
1<s<p

(
p− 1

p− s

) 1
p′

A(s).

Proof. Denote S1 = {(x, y) ∈ R2 : 0 < y ≤ x < b} and set Ω1 = Ω2 = (0, b).
In Theorem 2.2, replace dµ1(x), dµ2(y), u(x), v(y), and k respectively with

dx, dy, u(x)
x , w(y)

y , and kχS1 . In this setting, inequality (2.6) reduces to

(2.13). Moreover, following the lines of the proof of Theorem 2.2, the first
inequality in (2.10) becomes

{∫ b

0
u(x)

[
1

K(x)

∫ x

0
k(x, y)Φ

1
p (g(y))

(
y

v(y)

) 1
p

(y) dy

]q
dx

x

} 1
q

≤

{∫ b

0

u(x)

Kq(x)

(∫ x

0
kp(x, y)Φ(g(y))V s−1(y) dy

) q
p

×

×
(∫ x

0
V

− p′(s−1)
p (y)v1−p′(y)yp

′−1 dy

) q
p′ dx

x

} 1
q

.(2.14)

Since definition (2.11) yields∫ x

0
V

− p′(s−1)
p (y)v1−p′(y)yp

′−1 dy =
p− 1

p− s
V

p−s
p−1 (x), x ∈ (0, b),

the right-hand side of (2.14) is further equal to

(
p− 1

p− s

) 1
p′
{∫ b

0

u(x)

Kq(x)
V

q(p−s)
p (x)

(∫ x

0
kp(x, y)Φ(g(y))V s−1(y) dy

) q
p dx

x

} 1
q

.

As in (2.10), the rest of the proof follows by applying Minkowski’s inequality
and definition (2.12) of A(s). �

Remark 2.2. The result of Theorem 2.3 is given in [17, Theorem 4.4].
Hence, Theorem 4.4 in [17] can be seen a special case of Theorem 2.2. �

3. Refined Hardy-type inequalities with kernels

The rest of the paper is dedicated to new refined inequalities related to the
general Hardy-type operator Ak with a non-negative kernel, defined by (1.9).
First, we introduce some necessary notation and recall basic facts regarding
convex and concave functions. Suppose I is an interval in R and Φ : I → R
is a convex function. By ∂Φ(r) we denote the subdifferential of Φ at r ∈ I,
that is, the set ∂Φ(r) = {α ∈ R : Φ(s)− Φ(r)− α(s− r) ≥ 0, s ∈ I}. It is
well-known that ∂Φ(r) �= ∅ for all r ∈ Int I. More precisely, at each point
r ∈ Int I we have −∞ < Φ′

−(r) ≤ Φ′
+(r) < ∞ and ∂Φ(r) = [Φ′

−(r), Φ
′
+(r)],

while the set on which Φ is not differentiable is at most countable. Moreover,
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every function ϕ : I −→ R, for which ϕ(r) ∈ ∂Φ(r) whenever r ∈ Int I,
is increasing on Int I. Notice that for any such function ϕ and arbitrary
r ∈ Int I, s ∈ I we have

Φ(s)− Φ(r)− ϕ(r)(s− r) ≥ 0

and further

Φ(s)− Φ(r)− ϕ(r)(s− r) = |Φ(s)− Φ(r)− ϕ(r)(s− r)|
≥ | |Φ(s)− Φ(r)| − |ϕ(r)| · |s− r| | .(3.1)

On the other hand, if Φ : I → R is a concave function, that is, −Φ is convex,
then ∂Φ(r) = {α ∈ R : Φ(r) − Φ(s) − α(r − s) ≥ 0, s ∈ I} denotes the
superdifferential of Φ at the point r ∈ I. For all r ∈ Int I, in this setting we
have −∞ < Φ′

+(r) ≤ Φ′
−(r) < ∞ and ∂Φ(r) = [Φ′

+(r), Φ
′
−(r)] �= ∅. Hence,

the inequality
Φ(r)− Φ(s)− ϕ(r)(r − s) ≥ 0

holds for all r ∈ Int I, s ∈ I, and all real functions ϕ on I, such that
ϕ(t) ∈ ∂Φ(t), t ∈ Int I. Therefrom, we also get

Φ(r)− Φ(s)− ϕ(r)(r − s) = |Φ(r)− Φ(s)− ϕ(r)(r − s)|
≥ | |Φ(s)− Φ(r)| − |ϕ(r)| · |s− r| | .(3.2)

Observe that, although the symbol ∂Φ(r) has two different notions, it will
be clear from the context whether it applies to a convex or to a concave
function Φ. Many further information on convex and concave functions can
be found e.g. in the monographs [25] and [26] and in references cited therein.

Now, we are ready to state and prove the central result of this section,
that is, a new general refined weighted Hardy-type inequality with a non-
negative kernel, related to an arbitrary non-negative convex function. It is
given in the following theorem.

Theorem 3.1. Let t ∈ R+, (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces
with positive σ-finite measures, u be a weight function on Ω1, k a non-
negative measurable function on Ω1×Ω2, and K be defined on Ω1 by (1.10).

Suppose that K(x) > 0 for all x ∈ Ω1, that the function x �→ u(x)
(
k(x,y)
K(x)

)t

is integrable on Ω1 for each fixed y ∈ Ω2, and that v is defined on Ω1 by

(3.3) v(y) =

(∫

Ω1

u(x)

(
k(x, y)

K(x)

)t

dµ1(x)

) 1
t

.

If Φ is a non-negative convex function on an interval I ⊆ R and ϕ : I → R
is any function, such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality

(∫

Ω2

v(y)Φ(f(y)) dµ2(y)

)t

−
∫

Ω1

u(x)Φt(Akf(x)) dµ1(x)

≥ t

∫

Ω1

u(x)

K(x)
Φt−1(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)(3.4)
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holds for all measurable functions f : (0, b) → R with values in I and the
Hardy-type operator Ak defined by (1.7). Moreover, if C is the best possible
constant in (2.13), then

C ≤ inf
1<s<p

(
p− 1

p− s

) 1
p′

A(s).

Proof. Denote S1 = {(x, y) ∈ R2 : 0 < y ≤ x < b} and set Ω1 = Ω2 = (0, b).
In Theorem 2.2, replace dµ1(x), dµ2(y), u(x), v(y), and k respectively with

dx, dy, u(x)
x , w(y)

y , and kχS1 . In this setting, inequality (2.6) reduces to

(2.13). Moreover, following the lines of the proof of Theorem 2.2, the first
inequality in (2.10) becomes

{∫ b

0
u(x)

[
1

K(x)

∫ x

0
k(x, y)Φ

1
p (g(y))

(
y

v(y)

) 1
p

(y) dy

]q
dx

x

} 1
q

≤

{∫ b

0

u(x)

Kq(x)

(∫ x

0
kp(x, y)Φ(g(y))V s−1(y) dy

) q
p

×

×
(∫ x

0
V

− p′(s−1)
p (y)v1−p′(y)yp

′−1 dy

) q
p′ dx

x

} 1
q

.(2.14)

Since definition (2.11) yields∫ x

0
V

− p′(s−1)
p (y)v1−p′(y)yp

′−1 dy =
p− 1

p− s
V

p−s
p−1 (x), x ∈ (0, b),

the right-hand side of (2.14) is further equal to

(
p− 1

p− s

) 1
p′
{∫ b

0

u(x)

Kq(x)
V

q(p−s)
p (x)

(∫ x

0
kp(x, y)Φ(g(y))V s−1(y) dy

) q
p dx

x

} 1
q

.

As in (2.10), the rest of the proof follows by applying Minkowski’s inequality
and definition (2.12) of A(s). �

Remark 2.2. The result of Theorem 2.3 is given in [17, Theorem 4.4].
Hence, Theorem 4.4 in [17] can be seen a special case of Theorem 2.2. �

3. Refined Hardy-type inequalities with kernels

The rest of the paper is dedicated to new refined inequalities related to the
general Hardy-type operator Ak with a non-negative kernel, defined by (1.9).
First, we introduce some necessary notation and recall basic facts regarding
convex and concave functions. Suppose I is an interval in R and Φ : I → R
is a convex function. By ∂Φ(r) we denote the subdifferential of Φ at r ∈ I,
that is, the set ∂Φ(r) = {α ∈ R : Φ(s)− Φ(r)− α(s− r) ≥ 0, s ∈ I}. It is
well-known that ∂Φ(r) �= ∅ for all r ∈ Int I. More precisely, at each point
r ∈ Int I we have −∞ < Φ′

−(r) ≤ Φ′
+(r) < ∞ and ∂Φ(r) = [Φ′

−(r), Φ
′
+(r)],

while the set on which Φ is not differentiable is at most countable. Moreover,
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while applying (3.7) we get

1

K(x)

∫

Ω2

k(x, y)ϕ(Akf(x))hx(y) dµ2(y) = 0.

Hence, (3.9) reduces to

Φ(Akf(x))+
1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y) ≤
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y).

Let t ≥ 1. Since the functions Φ, k, and r are non-negative and the power
functions with positive exponents are strictly increasing on [0,∞), we further
have

Φt(Akf(x)) + t
Φt−1(Akf(x))

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

≤
(
Φ(Akf(x)) +

1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

)t

≤
(

1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)t

,(3.10)

where the first inequality in (3.10) is a consequence of Bernoulli’s inequality.
Multiplying (3.10) by u(x), integrating the inequalities obtained over Ω1 and
then applying Minkowski’s inequality to the right-hand side of the second
inequality, we get the following sequence of inequalities:

∫

Ω1

u(x)Φt(Akf(x)) dµ1(x)

+ t

∫

Ω1

u(x)

K(x)
Φt−1(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)

≤
∫

Ω1

u(x)

(
Φ(Akf(x)) +

1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

)t

dµ1(x)

≤
∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)t

dµ1(x)

=




[∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)t

dµ1(x)

] 1
t




t

≤



∫

Ω2

Φ(f(y))

[∫

Ω1

u(x)

(
k(x, y)

K(x)

)t

dµ1(x)

] 1
t

dµ2(y)




t

=

(∫

Ω2

Φ(f(y))v(y) dµ2(y)

)t

,(3.11)

so (3.4) holds. The proof for a concave function Φ and t ∈ (0, 1] is similar.
Namely, by the same arguments as for convex functions, from (3.2) we first

holds for all t ≥ 1 and all measurable functions f : Ω2 → R with values in
I, where Akf is defined on Ω1 by (1.9) and the function r : Ω1 ×Ω2 → R is
defined by

(3.5) r(x, y) = ||Φ(f(y))− Φ(Akf(x))| − |ϕ(Akf(x))| · |f(y)−Akf(x)|| .

If t ∈ (0, 1] and the function Φ : I → R is positive and concave, then the
order of terms on the left-hand side of (3.4) is reversed, that is, the inequality

∫

Ω1

u(x)Φt(Akf(x)) dµ1(x)−
(∫

Ω2

v(y)Φ(f(y)) dµ2(y)

)t

≥ t

∫

Ω1

u(x)

K(x)
Φt−1(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)(3.6)

holds.

Proof. First, fix an arbitrary x ∈ Ω1. It is not hard to see that Akf(x) ∈ I.
Moreover, for the function hx : Ω2 → R defined by hx(y) = f(y) − Akf(x)
we have

(3.7)

∫

Ω2

k(x, y)hx(y) dµ2(y) = 0, x ∈ Ω1.

Now, suppose that Φ is a convex function. If Akf(x) ∈ Int I, then for all
y ∈ Ω2 by substituting r = Akf(x), s = f(y) in (3.1) and multiplying the

inequality obtained by k(x,y)
K(x) ≥ 0, we get

(3.8)
k(x, y)

K(x)
[Φ(f(y))− Φ(Akf(x))− ϕ(Akf(x))hx(y)] ≥

k(x, y)

K(x)
r(x, y).

Relation (3.8) holds even if Akf(x) is an endpoint of I. In that case, the
function hx is either non-negative or non-positive on Ω2, so (3.7) and non-
negativity of the kernel k imply that k(x, y)hx(y) = 0 for µ2–a.e. y ∈ Ω2.
Therefore, the identity hx(y) = 0, that is, f(y) = Akf(x) holds whenever
k(x, y) > 0 and we conclude that the both-hand sides of inequality (3.8) are
equal to 0 for µ2–a.e. y ∈ Ω2. Since K(x) > 0, notice that the set of all
y ∈ Ω2 such that k(x, y) > 0 is of a positive µ2 measure.

Integrating (3.8) over Ω2 we obtain

1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)−
1

K(x)

∫

Ω2

k(x, y)Φ(Akf(x)) dµ2(y)

− 1

K(x)

∫

Ω2

k(x, y)ϕ(Akf(x))hx(y) dµ2(y)

≥ 1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y).(3.9)

Observe that the second integral on the left-side of (3.9) is equal to

1

K(x)

∫

Ω2

k(x, y)Φ(Akf(x)) dµ2(y) = Φ(Akf(x)),
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while applying (3.7) we get

1

K(x)

∫

Ω2

k(x, y)ϕ(Akf(x))hx(y) dµ2(y) = 0.

Hence, (3.9) reduces to

Φ(Akf(x))+
1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y) ≤
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y).

Let t ≥ 1. Since the functions Φ, k, and r are non-negative and the power
functions with positive exponents are strictly increasing on [0,∞), we further
have

Φt(Akf(x)) + t
Φt−1(Akf(x))

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

≤
(
Φ(Akf(x)) +

1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

)t

≤
(

1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)t

,(3.10)

where the first inequality in (3.10) is a consequence of Bernoulli’s inequality.
Multiplying (3.10) by u(x), integrating the inequalities obtained over Ω1 and
then applying Minkowski’s inequality to the right-hand side of the second
inequality, we get the following sequence of inequalities:

∫

Ω1

u(x)Φt(Akf(x)) dµ1(x)

+ t

∫

Ω1

u(x)

K(x)
Φt−1(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)

≤
∫

Ω1

u(x)

(
Φ(Akf(x)) +

1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

)t

dµ1(x)

≤
∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)t

dµ1(x)

=




[∫

Ω1

u(x)

(
1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)t

dµ1(x)

] 1
t




t

≤



∫

Ω2

Φ(f(y))

[∫

Ω1

u(x)

(
k(x, y)

K(x)

)t

dµ1(x)

] 1
t

dµ2(y)




t

=

(∫

Ω2

Φ(f(y))v(y) dµ2(y)

)t

,(3.11)

so (3.4) holds. The proof for a concave function Φ and t ∈ (0, 1] is similar.
Namely, by the same arguments as for convex functions, from (3.2) we first
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holds for all t ≥ 1 and all measurable functions f : Ω2 → R with values in
I, where Akf is defined on Ω1 by (1.9) and the function r : Ω1 ×Ω2 → R is
defined by

(3.5) r(x, y) = ||Φ(f(y))− Φ(Akf(x))| − |ϕ(Akf(x))| · |f(y)−Akf(x)|| .

If t ∈ (0, 1] and the function Φ : I → R is positive and concave, then the
order of terms on the left-hand side of (3.4) is reversed, that is, the inequality

∫

Ω1

u(x)Φt(Akf(x)) dµ1(x)−
(∫

Ω2

v(y)Φ(f(y)) dµ2(y)

)t

≥ t

∫

Ω1

u(x)

K(x)
Φt−1(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)(3.6)

holds.

Proof. First, fix an arbitrary x ∈ Ω1. It is not hard to see that Akf(x) ∈ I.
Moreover, for the function hx : Ω2 → R defined by hx(y) = f(y) − Akf(x)
we have

(3.7)

∫

Ω2

k(x, y)hx(y) dµ2(y) = 0, x ∈ Ω1.

Now, suppose that Φ is a convex function. If Akf(x) ∈ Int I, then for all
y ∈ Ω2 by substituting r = Akf(x), s = f(y) in (3.1) and multiplying the

inequality obtained by k(x,y)
K(x) ≥ 0, we get

(3.8)
k(x, y)

K(x)
[Φ(f(y))− Φ(Akf(x))− ϕ(Akf(x))hx(y)] ≥

k(x, y)

K(x)
r(x, y).

Relation (3.8) holds even if Akf(x) is an endpoint of I. In that case, the
function hx is either non-negative or non-positive on Ω2, so (3.7) and non-
negativity of the kernel k imply that k(x, y)hx(y) = 0 for µ2–a.e. y ∈ Ω2.
Therefore, the identity hx(y) = 0, that is, f(y) = Akf(x) holds whenever
k(x, y) > 0 and we conclude that the both-hand sides of inequality (3.8) are
equal to 0 for µ2–a.e. y ∈ Ω2. Since K(x) > 0, notice that the set of all
y ∈ Ω2 such that k(x, y) > 0 is of a positive µ2 measure.

Integrating (3.8) over Ω2 we obtain

1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)−
1

K(x)

∫

Ω2

k(x, y)Φ(Akf(x)) dµ2(y)

− 1

K(x)

∫

Ω2

k(x, y)ϕ(Akf(x))hx(y) dµ2(y)

≥ 1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y).(3.9)

Observe that the second integral on the left-side of (3.9) is equal to

1

K(x)

∫

Ω2

k(x, y)Φ(Akf(x)) dµ2(y) = Φ(Akf(x)),
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we obtain

(∫

Ω2

v(y)Φ(f(y)) dµ2(y)

) q
p

−
∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

≥ q

p

∫

Ω1

u(x)

K(x)
Φ

q
p
−1

(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x) ≥ 0,(3.13)

where v is defined by (1.13). Therefore, we get (1.14) as an immediate
consequence of Theorem 3.1 and our inequality (3.4) is a refinement of (1.14).
Especially, if p ≥ 1 or p < 0 (in that case, Φ should be positive), then the
function Φp is convex as well, so by replacing Φ with Φp relation (3.13)
becomes

‖Φf‖q
Lp
v(Ω2,µ2)

− ‖Φ(Akf)‖qLq
u(Ω1,µ1)

≥ q

p

∫

Ω1

u(x)

K(x)
Φq−p(Akf(x))

∫

Ω2

k(x, y)rp(x, y) dµ2(y) dµ1(x),(3.14)

where for x ∈ Ω1, y ∈ Ω2 we set

rp(x, y) = | |Φp(f(y))− Φp(Akf(x))|
− |p|Φp−1(Akf(x)) |ϕ(Akf(x))| · |f(y)−Akf(x)|

∣∣ .

On the other hand, if Φ is a positive concave function and t = q
p ∈ (0, 1],

that is, 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0, then (3.13) holds with the
reversed order of terms on its left-hand side. Moreover, if p ∈ (0, 1], then
the function Φp is concave, so the order of terms on the left-hand side of
(3.14) is reversed. �

Now, we consider some particularly interesting convex (or concave) func-
tions in (3.4), namely, power and exponential functions. We start with the
function Φ : R+ → R, Φ(x) = xp, where p ∈ R, p �= 0. For p ≥ 1 and p < 0,
this function is convex, while it is concave for p ∈ (0, 1]. In both cases we
have ϕ(x) = pxp−1, x ∈ R+. In this setting, we obtain the following direct
consequence of Theorem 3.1 and Remark 3.3.

Corollary 3.1. Suppose that p, q ∈ R, q
p > 0, that Ω1, Ω2, µ1, µ2, u, k, and

K are as in Theorem 3.1, that the function x �→ u(x)
(
k(x,y)
K(x)

) q
p
is integrable

on Ω1 for each fixed y ∈ Ω2, and that the function v is defined on Ω1 by
(1.13). Further, suppose that f : Ω2 → R is a non-negative measurable
function (positive in the case when p < 0), that Akf is defined on Ω1 by
(1.9), and

rp,k(x, y) =
∣∣ |fp(y)− (Akf(x))

p| − |p| · (Akf(x))
p−1 |f(y)−Akf(x)|

∣∣ ,

obtain

k(x, y)

K(x)
[Φ(Akf(x))− Φ(f(y)) + ϕ(Akf(x))hx(y)] ≥

k(x, y)

K(x)
r(x, y), x ∈ Ω1, y ∈ Ω2,

then

Φt(Akf(x))− t
Φt−1(Akf(x))

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

≥
(
Φ(Akf(x))−

1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

)t

≥
(

1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)t

,

and finally
∫

Ω1

u(x)Φt(Akf(x)) dµ1(x)

− t

∫

Ω1

u(x)

K(x)
Φt−1(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)

≥
∫

Ω1

u(x)

(
Φ(Akf(x))−

1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

)t

dµ1(x)

≥
(∫

Ω2

Φ(f(y))v(y) dµ2(y)

)t

that is, we get (3.6). �

Remark 3.1. The discrete version of Theorem 3.1 for sequences of real
numbers is given in [4, Theorem 2.1]. �

Remark 3.2. In particular, for t = 1 inequality (3.4) reduces to
∫

Ω2

v(y)Φ(f(y)) dµ2(y)−
∫

Ω1

u(x)Φ(Akf(x)) dµ1(x)

≥
∫

Ω1

u(x)

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)(3.12)

where in this setting v is defined as in (1.12). Moreover, by analyzing the
proof of Theorem 3.1, we see that (3.12) holds for all convex functions Φ :
I → R, that is, Φ does not need to be non-negative. Similarly, if Φ is any
real concave function on I (not necessarily positive), then (3.12) holds with
the reversed order of terms on its left-hand side. This result was already
proved in [5, Theorem 2.1]. �

Remark 3.3. Rewriting (3.4) with t = q
p ≥ 1, that is, with 0 < p ≤ q < ∞

or −∞ < q ≤ p < 0, and with an arbitrary non-negative convex function Φ,

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 53-80
Aleksandra Cizmesija, Kristina Krulic, and Josip Pecaric A new class of general



67

we obtain

(∫

Ω2

v(y)Φ(f(y)) dµ2(y)

) q
p

−
∫

Ω1

u(x)Φ
q
p (Akf(x)) dµ1(x)

≥ q

p

∫

Ω1

u(x)

K(x)
Φ

q
p
−1

(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x) ≥ 0,(3.13)

where v is defined by (1.13). Therefore, we get (1.14) as an immediate
consequence of Theorem 3.1 and our inequality (3.4) is a refinement of (1.14).
Especially, if p ≥ 1 or p < 0 (in that case, Φ should be positive), then the
function Φp is convex as well, so by replacing Φ with Φp relation (3.13)
becomes

‖Φf‖q
Lp
v(Ω2,µ2)

− ‖Φ(Akf)‖qLq
u(Ω1,µ1)

≥ q

p

∫

Ω1

u(x)

K(x)
Φq−p(Akf(x))

∫

Ω2

k(x, y)rp(x, y) dµ2(y) dµ1(x),(3.14)

where for x ∈ Ω1, y ∈ Ω2 we set

rp(x, y) = | |Φp(f(y))− Φp(Akf(x))|
− |p|Φp−1(Akf(x)) |ϕ(Akf(x))| · |f(y)−Akf(x)|

∣∣ .

On the other hand, if Φ is a positive concave function and t = q
p ∈ (0, 1],

that is, 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0, then (3.13) holds with the
reversed order of terms on its left-hand side. Moreover, if p ∈ (0, 1], then
the function Φp is concave, so the order of terms on the left-hand side of
(3.14) is reversed. �

Now, we consider some particularly interesting convex (or concave) func-
tions in (3.4), namely, power and exponential functions. We start with the
function Φ : R+ → R, Φ(x) = xp, where p ∈ R, p �= 0. For p ≥ 1 and p < 0,
this function is convex, while it is concave for p ∈ (0, 1]. In both cases we
have ϕ(x) = pxp−1, x ∈ R+. In this setting, we obtain the following direct
consequence of Theorem 3.1 and Remark 3.3.

Corollary 3.1. Suppose that p, q ∈ R, q
p > 0, that Ω1, Ω2, µ1, µ2, u, k, and

K are as in Theorem 3.1, that the function x �→ u(x)
(
k(x,y)
K(x)

) q
p
is integrable

on Ω1 for each fixed y ∈ Ω2, and that the function v is defined on Ω1 by
(1.13). Further, suppose that f : Ω2 → R is a non-negative measurable
function (positive in the case when p < 0), that Akf is defined on Ω1 by
(1.9), and

rp,k(x, y) =
∣∣ |fp(y)− (Akf(x))

p| − |p| · (Akf(x))
p−1 |f(y)−Akf(x)|

∣∣ ,
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obtain

k(x, y)

K(x)
[Φ(Akf(x))− Φ(f(y)) + ϕ(Akf(x))hx(y)] ≥

k(x, y)

K(x)
r(x, y), x ∈ Ω1, y ∈ Ω2,

then

Φt(Akf(x))− t
Φt−1(Akf(x))

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

≥
(
Φ(Akf(x))−

1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

)t

≥
(

1

K(x)

∫

Ω2

k(x, y)Φ(f(y)) dµ2(y)

)t

,

and finally
∫

Ω1

u(x)Φt(Akf(x)) dµ1(x)

− t

∫

Ω1

u(x)

K(x)
Φt−1(Akf(x))

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)

≥
∫

Ω1

u(x)

(
Φ(Akf(x))−

1

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y)

)t

dµ1(x)

≥
(∫

Ω2

Φ(f(y))v(y) dµ2(y)

)t

that is, we get (3.6). �

Remark 3.1. The discrete version of Theorem 3.1 for sequences of real
numbers is given in [4, Theorem 2.1]. �

Remark 3.2. In particular, for t = 1 inequality (3.4) reduces to
∫

Ω2

v(y)Φ(f(y)) dµ2(y)−
∫

Ω1

u(x)Φ(Akf(x)) dµ1(x)

≥
∫

Ω1

u(x)

K(x)

∫

Ω2

k(x, y)r(x, y) dµ2(y) dµ1(x)(3.12)

where in this setting v is defined as in (1.12). Moreover, by analyzing the
proof of Theorem 3.1, we see that (3.12) holds for all convex functions Φ :
I → R, that is, Φ does not need to be non-negative. Similarly, if Φ is any
real concave function on I (not necessarily positive), then (3.12) holds with
the reversed order of terms on its left-hand side. This result was already
proved in [5, Theorem 2.1]. �

Remark 3.3. Rewriting (3.4) with t = q
p ≥ 1, that is, with 0 < p ≤ q < ∞

or −∞ < q ≤ p < 0, and with an arbitrary non-negative convex function Φ,
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and ϕ : I → R be any function such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I. Let
f : Ω → R be a measurable function with values in I and

Amf =
1

|m|1

∫

Ω
m(y)f(y) dµ(y).

If 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, then the inequality

(3.17) [Am(Φ ◦ f)]
q
p − Φ

q
p (Amf) ≥ q

p
Φ

q
p
−1

(Amf) ·Amr

holds, where r(y) = | |Φ(f(y))− Φ(Amf)| − |ϕ(Amf)| · |f(y)−Amf | |, y ∈
Ω. If Φ is a positive concave function and 0 < q ≤ p < ∞ or −∞ < p ≤ q <
0, then (3.17) holds with the reversed order of terms on its left-hand side.

Proof. Suppose that in Theorem 3.1 and in relation (3.13) we have Ω2 = Ω,
µ2 = µ, u ∈ L1(Ω1, µ1) such that |u|1 > 0, and k of the form k(x, y) =
l(x)m(y), for some positive measurable function l : Ω1 → R. Then K(x) =

|m|1l(x) and Akf(x) = Amf ∈ I, x ∈ Ω1, while v(y) =
|u|

p
q
1

|m|1 m(y), y ∈ Ω.

Thus, (3.13) reduces to (3.17) and it does not depend on Ω1, l, and u. �

Remark 3.6. Observe that for 0 < |Ω|µ < ∞ and m(y) ≡ 1 on Ω we have
|m|1 = |Ω|µ, so (3.17) becomes the generalized refined Jensen’s inequality

[A(Φ ◦ f)]
q
p − Φ

q
p (Af) ≥ q

p
Φ

q
p
−1

(Af) ·Ar

where

Af =
1

|Ω|µ

∫

Ω
f(y) dµ(y)

and r(y) = | |Φ(f(y))− Φ(Af)| − |ϕ(Af)| · |f(y)−Af | |, y ∈ Ω. Notice
that, for p = q we obtain the classical refined Jensen’s inequality that was
recently obtained in [5, Remark 2.4]. �

4. Generalized one-dimensional Hardy’s and Pólya–Knopp’s
inequality

In the following three sections, general results from Section 3 are applied
to some usual measure spaces, convex functions, weights and kernels and
new refinements and generalizations of the inequalities mentioned in the In-
troduction are derived. We start with the standard one-dimensional setting,
that is, by considering intervals in R and the Lebesgue measure, and obtain
generalized refined Hardy and Pólya–Knopp–type inequalities, as well as re-
lated dual inequalities. In the following theorem we generalize and refine
inequality (1.5).

Theorem 4.1. Let 0 < b ≤ ∞ and k : (0, b)× (0, b) → R, u : (0, b) → R be
non-negative measurable functions satisfying (1.6) and

w(y) = y

(∫ b

y
u(x)

(
k(x, y)

K(x)

) q
p dx

x

) p
q

< ∞, y ∈ (0, b).

for x ∈ Ω1, y ∈ Ω2. If 1 ≤ p ≤ q < ∞ or −∞ < q ≤ p < 0, then the
inequality

‖f‖q
Lp
v(Ω2,µ2)

− ‖Akf‖qLq
u(Ω1,µ1)

≥ q

p

∫

Ω1

u(x)

K(x)
(Akf(x))

q−p

∫

Ω2

k(x, y)rp,k(x, y) dµ2(y) dµ1(x)(3.15)

holds, while for 0 < q ≤ p < 1 relation (3.15) holds with the reversed order
of terms on its left-hand side.

Remark 3.4. For p = q in Corollary 3.1, we obtain Corollary 2.1 in [5].
Moreover, for p = q = 1, relation (3.15) is trivial since its both-hand sides
are equal to 0. �

Our analysis continues by considering the convex function Φ : R → R,
Φ(x) = ex. Then ϕ = Φ′ = Φ and we obtain the following new general
refined weighted Pólya–Knopp–type inequality with a kernel, which is a
generalization of a result from [5, Corollary 2.2].

Corollary 3.2. Let p, q ∈ R be such that 0 < p ≤ q < ∞ or −∞ <
q ≤ p < 0. Let Ω1, Ω2, µ1, µ2, u, k, and K be as in Theorem 3.1, the

function x �→ u(x)
(
k(x,y)
K(x)

) q
p
be integrable on Ω1 for each fixed y ∈ Ω2, and

the function v be defined on Ω1 by (1.13). Then the inequality

‖f‖q
Lp
v(Ω2,µ2)

− ‖Gkf‖qLq
u(Ω1,µ1)

≥ q

p

∫

Ω1

u(x)

K(x)
(Gkf(x))

q−p

∫

Ω2

k(x, y)sp,k(x, y) dµ2(y) dµ1(x)(3.16)

holds for all positive measurable functions f on Ω2, where Gkf(x) and
sp,k(x, y) are for x ∈ Ω1 and y ∈ Ω2 respectively defined by

Gkf(x) = exp

(
1

K(x)

∫

Ω2

k(x, y) ln f(y) dµ2(y)

)

and

sp,k(x, y) =

∣∣∣∣ |fp(y)− (Gkf(x))
p| − |p| (Gkf(x))

p

∣∣∣∣ln
f(y)

Gkf(x)

∣∣∣∣
∣∣∣∣ .

Proof. Follows by applying (3.13) with Φ : R → R, Φ(x) = ex, and replacing
the function f with p ln f . �

Remark 3.5. In particular, for p = q our Corollary 3.2 reduces to Corollary
2.2 from [5]. �

We conclude this section by considering the simplest kernels k, that is,
those with separate variables.

Corollary 3.3. Let p, q ∈ R, q
p > 0. Let (Ω,Σ, µ) be a measure space with a

positive σ-finite measure µ, let m ∈ L1(Ω, µ) be a non-negative function such
that |m|1 > 0, Φ be a non-negative convex function on an interval I ⊆ R,
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and ϕ : I → R be any function such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I. Let
f : Ω → R be a measurable function with values in I and

Amf =
1

|m|1

∫

Ω
m(y)f(y) dµ(y).

If 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, then the inequality

(3.17) [Am(Φ ◦ f)]
q
p − Φ

q
p (Amf) ≥ q

p
Φ

q
p
−1

(Amf) ·Amr

holds, where r(y) = | |Φ(f(y))− Φ(Amf)| − |ϕ(Amf)| · |f(y)−Amf | |, y ∈
Ω. If Φ is a positive concave function and 0 < q ≤ p < ∞ or −∞ < p ≤ q <
0, then (3.17) holds with the reversed order of terms on its left-hand side.

Proof. Suppose that in Theorem 3.1 and in relation (3.13) we have Ω2 = Ω,
µ2 = µ, u ∈ L1(Ω1, µ1) such that |u|1 > 0, and k of the form k(x, y) =
l(x)m(y), for some positive measurable function l : Ω1 → R. Then K(x) =

|m|1l(x) and Akf(x) = Amf ∈ I, x ∈ Ω1, while v(y) =
|u|

p
q
1

|m|1 m(y), y ∈ Ω.

Thus, (3.13) reduces to (3.17) and it does not depend on Ω1, l, and u. �

Remark 3.6. Observe that for 0 < |Ω|µ < ∞ and m(y) ≡ 1 on Ω we have
|m|1 = |Ω|µ, so (3.17) becomes the generalized refined Jensen’s inequality

[A(Φ ◦ f)]
q
p − Φ

q
p (Af) ≥ q

p
Φ

q
p
−1

(Af) ·Ar

where

Af =
1

|Ω|µ

∫

Ω
f(y) dµ(y)

and r(y) = | |Φ(f(y))− Φ(Af)| − |ϕ(Af)| · |f(y)−Af | |, y ∈ Ω. Notice
that, for p = q we obtain the classical refined Jensen’s inequality that was
recently obtained in [5, Remark 2.4]. �

4. Generalized one-dimensional Hardy’s and Pólya–Knopp’s
inequality

In the following three sections, general results from Section 3 are applied
to some usual measure spaces, convex functions, weights and kernels and
new refinements and generalizations of the inequalities mentioned in the In-
troduction are derived. We start with the standard one-dimensional setting,
that is, by considering intervals in R and the Lebesgue measure, and obtain
generalized refined Hardy and Pólya–Knopp–type inequalities, as well as re-
lated dual inequalities. In the following theorem we generalize and refine
inequality (1.5).

Theorem 4.1. Let 0 < b ≤ ∞ and k : (0, b)× (0, b) → R, u : (0, b) → R be
non-negative measurable functions satisfying (1.6) and

w(y) = y

(∫ b

y
u(x)

(
k(x, y)

K(x)

) q
p dx

x

) p
q

< ∞, y ∈ (0, b).
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for x ∈ Ω1, y ∈ Ω2. If 1 ≤ p ≤ q < ∞ or −∞ < q ≤ p < 0, then the
inequality

‖f‖q
Lp
v(Ω2,µ2)

− ‖Akf‖qLq
u(Ω1,µ1)

≥ q

p

∫

Ω1

u(x)

K(x)
(Akf(x))

q−p

∫

Ω2

k(x, y)rp,k(x, y) dµ2(y) dµ1(x)(3.15)

holds, while for 0 < q ≤ p < 1 relation (3.15) holds with the reversed order
of terms on its left-hand side.

Remark 3.4. For p = q in Corollary 3.1, we obtain Corollary 2.1 in [5].
Moreover, for p = q = 1, relation (3.15) is trivial since its both-hand sides
are equal to 0. �

Our analysis continues by considering the convex function Φ : R → R,
Φ(x) = ex. Then ϕ = Φ′ = Φ and we obtain the following new general
refined weighted Pólya–Knopp–type inequality with a kernel, which is a
generalization of a result from [5, Corollary 2.2].

Corollary 3.2. Let p, q ∈ R be such that 0 < p ≤ q < ∞ or −∞ <
q ≤ p < 0. Let Ω1, Ω2, µ1, µ2, u, k, and K be as in Theorem 3.1, the

function x �→ u(x)
(
k(x,y)
K(x)

) q
p
be integrable on Ω1 for each fixed y ∈ Ω2, and

the function v be defined on Ω1 by (1.13). Then the inequality

‖f‖q
Lp
v(Ω2,µ2)

− ‖Gkf‖qLq
u(Ω1,µ1)

≥ q

p

∫

Ω1

u(x)

K(x)
(Gkf(x))

q−p

∫

Ω2

k(x, y)sp,k(x, y) dµ2(y) dµ1(x)(3.16)

holds for all positive measurable functions f on Ω2, where Gkf(x) and
sp,k(x, y) are for x ∈ Ω1 and y ∈ Ω2 respectively defined by

Gkf(x) = exp

(
1

K(x)

∫

Ω2

k(x, y) ln f(y) dµ2(y)

)

and

sp,k(x, y) =

∣∣∣∣ |fp(y)− (Gkf(x))
p| − |p| (Gkf(x))

p

∣∣∣∣ln
f(y)

Gkf(x)

∣∣∣∣
∣∣∣∣ .

Proof. Follows by applying (3.13) with Φ : R → R, Φ(x) = ex, and replacing
the function f with p ln f . �

Remark 3.5. In particular, for p = q our Corollary 3.2 reduces to Corollary
2.2 from [5]. �

We conclude this section by considering the simplest kernels k, that is,
those with separate variables.

Corollary 3.3. Let p, q ∈ R, q
p > 0. Let (Ω,Σ, µ) be a measure space with a

positive σ-finite measure µ, let m ∈ L1(Ω, µ) be a non-negative function such
that |m|1 > 0, Φ be a non-negative convex function on an interval I ⊆ R,
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Proof. Let S2 = {(x, y) ∈ R2 : b < x ≤ y < ∞}. Inequality (4.3) fol-
lows directly from (3.13), rewritten with Ω1 = Ω2 = (b,∞), dµ1(x) = dx,

dµ2(y) = dy, and with u(x)
x , w(y)

y , and kχS2 instead of u(x), v(y), and k. �

Remark 4.1. For p = q Theorem 4.1 and Theorem 4.2 respectively reduce
to [17, Theorem 3.1] and [17, Theorem 4.3]. In particular, (4.1) refines (1.5).
Of course, in that case, the function Φ does not need to be non-negative. �

The rest of this section is dedicated to generalizations and refinements of
the well-known Hardy’s and Pólya–Knopp’s inequality (1.1) and (1.2) and of
their dual inequalities. Since being direct consequences of the above results,
we state them as examples.

Example 4.1. Let 0 < b ≤ ∞, γ ∈ R+, p, q ∈ R be such that q
p > 0, and

let S1 be as in the proofs of Theorem 2.3 and Theorem 4.1. Let the kernel
k : (0, b) × (0, b) → R and the weight function u : (0, b) → R be defined
by k(x, y) = γ

xγ (x − y)γ−1χS1 and u(x) ≡ 1. If q
p ≥ 1, γ > 1 − p

q , Φ is a

non-negative convex function on an interval I ⊆ R and f : (0, b) → R is a
function with values in I, then (4.1) reads

(∫ b

0
wγ(y)Φ(f(y))

dy

y

) q
p

−
∫ b

0
Φ

q
p (Rγf(x))

dx

x

≥ γ
q

p

∫ b

0
Φ

q
p
−1

(Rγf(x))

∫ x

0
(x− y)γ−1rγ(x, y) dy

dx

xγ+1
,(4.4)

where Rγ is the Riemann-Liouville operator given by

Rγf(x) =
γ

xγ

∫ x

0
(x− y)γ−1f(y) dy, x ∈ (0, b),

while for x, y ∈ (0, b) we set

wγ(y) = γ

(∫ 1− y
b

0
t
(γ−1) q

p (1− t)
q
p
−1

dt

) p
q

= γB
p
q

(
1− y

b
; (γ − 1)

q

p
+ 1,

q

p

)

and

rγ(x, y) = ||Φ(f(y))− Φ(Rγf(x))| − |ϕ(Rγf(x))| · |f(y)−Rγf(x)|| .

Observe that B( · ; · , · ) denotes the incomplete Beta function defined in the
Introduction. In the case when q

p ∈ (0, 1] and Φ is non-negative and concave,

the order of terms on the left-hand side of (4.4) is reversed and the inequality
obtained holds for any γ > 0.

Rewriting (4.4) with some suitable parameters and with Φ being a power
function, we get a new refined Hardy’s inequality. Namely, let Φ(x) = xp,
k ∈ R be such that k−1

p > 0,

wγ,k(y) = B
p
q

(
1−

(y
b

) k−1
p

; (γ − 1)
q

p
+ 1,

q

p

)
yp−k, y ∈ (0, b),

If 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, Φ is a non-negative convex function
on an interval I ⊆ R, and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for all
x ∈ Int I, then the inequality

(∫ b

0
w(y)Φ(f(y))

dy

y

) q
p

−
∫ b

0
u(x)Φ

q
p (Akf(x))

dx

x

≥ q

p

∫ b

0

u(x)

K(x)
Φ

q
p
−1

(Akf(x))

∫ x

0
k(x, y)r(x, y) dy

dx

x
(4.1)

holds for all measurable functions f : (0, b) → R with values in I, where
Akf and r are respectively defined by (1.7) and (3.5). If 0 < q ≤ p < ∞
or −∞ < p ≤ q < 0, and Φ is a non-negative concave function, then (4.1)
holds with the reversed order of integrals on its left-hand side.

Proof. Let S1, Ω1, and Ω2 be as in the proof of Theorem 2.3. Relation
(4.1) follows from (3.13) by replacing dµ1(x), dµ2(y), u(x), v(y), and k

respectively with dx, dy, u(x)
x , w(y)

y , and kχS1 . �

In the following theorem we formulate a result dual to Theorem 4.1.

Theorem 4.2. For 0 ≤ b < ∞, let k : (b,∞)×(b,∞) → R and u : (b,∞) →
R be non-negative measurable functions satisfying

(4.2) K̃(x) =

∫ ∞

x
k(x, y) dy > 0, x ∈ (b,∞),

and

w̃(y) = y

(∫ y

b
u(x)

(
k(x, y)

K̃(x)

) q
p dx

x

) p
q

< ∞, y ∈ (b,∞).

If 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, Φ is a non-negative convex function
on an interval I ⊆ R and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for all
x ∈ Int I, then the inequality

(∫ ∞

b
w̃(y)Φ(f(y))

dy

y

) q
p

−
∫ ∞

b
u(x)Φ

q
p (Ãkf(x))

dx

x

≥ q

p

∫ ∞

b

u(x)

K̃(x)
Φ

q
p
−1

(Ãkf(x))

∫ ∞

x
k(x, y)r̃(x, y) dy

dx

x
(4.3)

holds for all measurable functions f : (b,∞) → R with values in I and for

Ãkf(x) and r̃(x, y) respectively defined by

Ãkf(x) =
1

K̃(x)

∫ ∞

x
k(x, y)f(y) dy

and

r̃(x, y) =
∣∣∣|Φ(f(y))− Φ(Ãkf(x))| − |ϕ(Ãkf(x))| · |f(y)− Ãkf(x)|

∣∣∣ ,
where x, y ∈ (b,∞). If 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0, and Φ is a
non-negative concave function, the order of integrals on the left-hand side of
(4.3) is reversed.
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Proof. Let S2 = {(x, y) ∈ R2 : b < x ≤ y < ∞}. Inequality (4.3) fol-
lows directly from (3.13), rewritten with Ω1 = Ω2 = (b,∞), dµ1(x) = dx,

dµ2(y) = dy, and with u(x)
x , w(y)

y , and kχS2 instead of u(x), v(y), and k. �

Remark 4.1. For p = q Theorem 4.1 and Theorem 4.2 respectively reduce
to [17, Theorem 3.1] and [17, Theorem 4.3]. In particular, (4.1) refines (1.5).
Of course, in that case, the function Φ does not need to be non-negative. �

The rest of this section is dedicated to generalizations and refinements of
the well-known Hardy’s and Pólya–Knopp’s inequality (1.1) and (1.2) and of
their dual inequalities. Since being direct consequences of the above results,
we state them as examples.

Example 4.1. Let 0 < b ≤ ∞, γ ∈ R+, p, q ∈ R be such that q
p > 0, and

let S1 be as in the proofs of Theorem 2.3 and Theorem 4.1. Let the kernel
k : (0, b) × (0, b) → R and the weight function u : (0, b) → R be defined
by k(x, y) = γ

xγ (x − y)γ−1χS1 and u(x) ≡ 1. If q
p ≥ 1, γ > 1 − p

q , Φ is a

non-negative convex function on an interval I ⊆ R and f : (0, b) → R is a
function with values in I, then (4.1) reads

(∫ b

0
wγ(y)Φ(f(y))

dy

y

) q
p

−
∫ b

0
Φ

q
p (Rγf(x))

dx

x

≥ γ
q

p

∫ b

0
Φ

q
p
−1

(Rγf(x))

∫ x

0
(x− y)γ−1rγ(x, y) dy

dx

xγ+1
,(4.4)

where Rγ is the Riemann-Liouville operator given by

Rγf(x) =
γ

xγ

∫ x

0
(x− y)γ−1f(y) dy, x ∈ (0, b),

while for x, y ∈ (0, b) we set

wγ(y) = γ

(∫ 1− y
b

0
t
(γ−1) q

p (1− t)
q
p
−1

dt

) p
q

= γB
p
q

(
1− y

b
; (γ − 1)

q

p
+ 1,

q

p

)

and

rγ(x, y) = ||Φ(f(y))− Φ(Rγf(x))| − |ϕ(Rγf(x))| · |f(y)−Rγf(x)|| .

Observe that B( · ; · , · ) denotes the incomplete Beta function defined in the
Introduction. In the case when q

p ∈ (0, 1] and Φ is non-negative and concave,

the order of terms on the left-hand side of (4.4) is reversed and the inequality
obtained holds for any γ > 0.

Rewriting (4.4) with some suitable parameters and with Φ being a power
function, we get a new refined Hardy’s inequality. Namely, let Φ(x) = xp,
k ∈ R be such that k−1

p > 0,

wγ,k(y) = B
p
q

(
1−

(y
b

) k−1
p

; (γ − 1)
q

p
+ 1,

q

p

)
yp−k, y ∈ (0, b),
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If 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, Φ is a non-negative convex function
on an interval I ⊆ R, and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for all
x ∈ Int I, then the inequality

(∫ b

0
w(y)Φ(f(y))

dy

y

) q
p

−
∫ b

0
u(x)Φ

q
p (Akf(x))

dx

x

≥ q

p

∫ b

0

u(x)

K(x)
Φ

q
p
−1

(Akf(x))

∫ x

0
k(x, y)r(x, y) dy

dx

x
(4.1)

holds for all measurable functions f : (0, b) → R with values in I, where
Akf and r are respectively defined by (1.7) and (3.5). If 0 < q ≤ p < ∞
or −∞ < p ≤ q < 0, and Φ is a non-negative concave function, then (4.1)
holds with the reversed order of integrals on its left-hand side.

Proof. Let S1, Ω1, and Ω2 be as in the proof of Theorem 2.3. Relation
(4.1) follows from (3.13) by replacing dµ1(x), dµ2(y), u(x), v(y), and k

respectively with dx, dy, u(x)
x , w(y)

y , and kχS1 . �

In the following theorem we formulate a result dual to Theorem 4.1.

Theorem 4.2. For 0 ≤ b < ∞, let k : (b,∞)×(b,∞) → R and u : (b,∞) →
R be non-negative measurable functions satisfying

(4.2) K̃(x) =

∫ ∞

x
k(x, y) dy > 0, x ∈ (b,∞),

and

w̃(y) = y

(∫ y

b
u(x)

(
k(x, y)

K̃(x)

) q
p dx

x

) p
q

< ∞, y ∈ (b,∞).

If 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, Φ is a non-negative convex function
on an interval I ⊆ R and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for all
x ∈ Int I, then the inequality

(∫ ∞

b
w̃(y)Φ(f(y))

dy

y

) q
p

−
∫ ∞

b
u(x)Φ

q
p (Ãkf(x))

dx

x

≥ q

p

∫ ∞

b

u(x)

K̃(x)
Φ

q
p
−1

(Ãkf(x))

∫ ∞

x
k(x, y)r̃(x, y) dy

dx

x
(4.3)

holds for all measurable functions f : (b,∞) → R with values in I and for

Ãkf(x) and r̃(x, y) respectively defined by

Ãkf(x) =
1

K̃(x)

∫ ∞

x
k(x, y)f(y) dy

and

r̃(x, y) =
∣∣∣|Φ(f(y))− Φ(Ãkf(x))| − |ϕ(Ãkf(x))| · |f(y)− Ãkf(x)|

∣∣∣ ,
where x, y ∈ (b,∞). If 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0, and Φ is a
non-negative concave function, the order of integrals on the left-hand side of
(4.3) is reversed.
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For p = q relation (4.6) reduces to a refined strengthened Pólya–Knopp’s
inequality from [3] and [5]. Moreover, for b = ∞ we obtained a refinement
of the classical Pólya–Knopp’s inequality (1.2). �

The following example provides results dual to those from Example 4.1.

Example 4.2. Suppose 0 ≤ b < ∞, γ ∈ R+, p, q ∈ R are such that
q
p > 0, and S2 is as in the proof of Theorem 4.2. Define the kernel k :

(b,∞) × (b,∞) → R and the weight function u : (b,∞) → R as k(x, y) =
γ x
yγ+1 (y−x)γ−1χS2(x, y) and u(x) ≡ 1. For q

p ≥ 1, γ > 1− p
q , a non-negative

convex function Φ on an interval I ⊆ R and a function f : (b,∞) → R with
values in I, inequality (4.3) becomes

(∫ ∞

b
w̃γ(y)Φ(f(y))

dy

y

) q
p

−
∫ ∞

b
Φ

q
p (Wγf(x))

dx

x

≥ γ
q

p

∫ ∞

b
Φ

q
p
−1

(Wγf(x))

∫ ∞

x
(y − x)γ−1r̃γ(x, y)

dy

yγ+1
dx,(4.7)

where Wγ denotes the Weyl’s operator Wγ ,

Wγf(x) = γx

∫ ∞

x
(y − x)γ−1f(y)

dy

yγ+1
, x ∈ (0, b),

and for x, y ∈ (b,∞) we define w̃γ(y) = γB
p
q

(
1− b

y ; (γ − 1) qp + 1, qp

)
and

r̃γ(x, y) = ||Φ(f(y))− Φ(Wγf(x))| − |ϕ(Wγf(x))| · |f(y)−Wγf(x)||. If q
p ∈

(0, 1] and Φ is non-negative and concave, (4.7) holds for all γ > 0 and with
the reversed order of terms on its left-hand side.

As in Example 4.1, to get a new refined dual Hardy’s inequality, we rewrite
(4.7) with Φ(x) = xp. More precisely, let k ∈ R be such that p

1−k > 0,

w̃γ,k(y) = B
p
q

(
1−

(
b

y

) 1−k
p

; (γ − 1)
q

p
+ 1,

q

p

)
yp−k, y ∈ (b,∞),

f be a non-negative function on (b,∞) (positive, if p < 0) and

Wf(x) =

∫ ∞

x

[
1−

(
x

y

) 1−k
p

]γ−1

f(y) dy, x ∈ (b,∞).

For 1 ≤ p ≤ q < ∞ or−∞ < q ≤ p < 0, substitute b
1−k
p and f

(
y

p
1−k

)
y

p
1−k

+1

in (4.7) respectively for b and f(y). After some computations, we obtain the

f be a non-negative function on (0, b) (positive, if p < 0) and

Rf(x) =

∫ x

0

[
1−

(y
x

) k−1
p

]γ−1

f(y) dy, x ∈ (0, b).

For 1 ≤ p ≤ q < ∞ or −∞ < q ≤ p < 0, replace b and f(y) in (4.4)

respectively with b
k−1
p and f

(
y

p
k−1

)
y

p
k−1

−1. After a sequence of suitable

variable changes, we get the inequality

γ

(
p

γ(k − 1)

)q+1− q
p
(∫ b

0
wγ,k(y)f

p(y) dy

) q
p

−
∫ b

0
x

q
p
(1−k)−1

(Rf(x))q dx

≥ q

p

∣∣∣∣∣
(

p

γ(k − 1)

)p−1 ∫ b

0
x

k−1
p

(p−q−1)−1
(Rf(x))q−p

∫ x

0

[
1−

(y
x

) k−1
p

]γ−1

×

× y
k−1
p

−1

∣∣∣∣yp−k+1fp(y)−
(
γ(k − 1)

p

)p

x1−k(Rf(x))p
∣∣∣∣ dy dx

−|p|
∫ b

0
x

1−k
p

q−1
(Rf(x))q−1

∫ x

0

[
1−

(y
x

) k−1
p

]γ−1

×

×
∣∣∣∣f(y)−

γ(k − 1)

py

(y
x

) k−1
p

Rf(x)

∣∣∣∣ dy dx
∣∣∣∣ .

(4.5)

For 0 < q ≤ p < 1, the order of terms on the left-hand side of relation (4.5)
is reversed. Notice that for b = ∞, p = q = k > 1 and γ = 1 inequality
(4.5) reduces to a refinement of the classical Hardy’s inequality (1.1). It
can be seen that our result generalizes refined and strengthened Hardy–type
inequalities from [3] and [5].

On the other hand, rewriting (4.4) with Φ(x) = ex and γ = 1, as well as
with the function y �→ ln(yf(y)) instead of a positive function f : (0, b) → R,
we derive the following new refined strengthened Pólya–Knopp–type in-
equality:

p

q
e

q
p

(∫ b

0

[
1−

(y
b

) q
p

] p
q

f(y) dy

) q
p

−
∫ b

0
x

q
p
−1

(Gf(x))
q
p dx

≥ q

p

∣∣∣∣
∫ b

0
x

q
p
−3

(Gf(x))
q
p
−1

∫ x

0
|eyf(y)− xGf(x)| dy dx

−
∫ b

0
x

q
p
−2

(Gf(x))
q
p

∫ x

0

∣∣∣∣ln
(

eyf(y)

xGf(x)

)∣∣∣∣ dy dx
∣∣∣∣ ,(4.6)

where q
p ≥ 1 and

Gf(x) = exp

(
1

x

∫ x

0
ln f(y) dy

)
, x ∈ (0, b).
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For p = q relation (4.6) reduces to a refined strengthened Pólya–Knopp’s
inequality from [3] and [5]. Moreover, for b = ∞ we obtained a refinement
of the classical Pólya–Knopp’s inequality (1.2). �

The following example provides results dual to those from Example 4.1.

Example 4.2. Suppose 0 ≤ b < ∞, γ ∈ R+, p, q ∈ R are such that
q
p > 0, and S2 is as in the proof of Theorem 4.2. Define the kernel k :

(b,∞) × (b,∞) → R and the weight function u : (b,∞) → R as k(x, y) =
γ x
yγ+1 (y−x)γ−1χS2(x, y) and u(x) ≡ 1. For q

p ≥ 1, γ > 1− p
q , a non-negative

convex function Φ on an interval I ⊆ R and a function f : (b,∞) → R with
values in I, inequality (4.3) becomes

(∫ ∞

b
w̃γ(y)Φ(f(y))

dy

y

) q
p

−
∫ ∞

b
Φ

q
p (Wγf(x))

dx

x

≥ γ
q

p

∫ ∞

b
Φ

q
p
−1

(Wγf(x))

∫ ∞

x
(y − x)γ−1r̃γ(x, y)

dy

yγ+1
dx,(4.7)

where Wγ denotes the Weyl’s operator Wγ ,

Wγf(x) = γx

∫ ∞

x
(y − x)γ−1f(y)

dy

yγ+1
, x ∈ (0, b),

and for x, y ∈ (b,∞) we define w̃γ(y) = γB
p
q

(
1− b

y ; (γ − 1) qp + 1, qp

)
and

r̃γ(x, y) = ||Φ(f(y))− Φ(Wγf(x))| − |ϕ(Wγf(x))| · |f(y)−Wγf(x)||. If q
p ∈

(0, 1] and Φ is non-negative and concave, (4.7) holds for all γ > 0 and with
the reversed order of terms on its left-hand side.

As in Example 4.1, to get a new refined dual Hardy’s inequality, we rewrite
(4.7) with Φ(x) = xp. More precisely, let k ∈ R be such that p

1−k > 0,

w̃γ,k(y) = B
p
q

(
1−

(
b

y

) 1−k
p

; (γ − 1)
q

p
+ 1,

q

p

)
yp−k, y ∈ (b,∞),

f be a non-negative function on (b,∞) (positive, if p < 0) and

Wf(x) =

∫ ∞

x

[
1−

(
x

y

) 1−k
p

]γ−1

f(y) dy, x ∈ (b,∞).

For 1 ≤ p ≤ q < ∞ or−∞ < q ≤ p < 0, substitute b
1−k
p and f

(
y

p
1−k

)
y

p
1−k

+1

in (4.7) respectively for b and f(y). After some computations, we obtain the
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f be a non-negative function on (0, b) (positive, if p < 0) and

Rf(x) =

∫ x

0

[
1−

(y
x

) k−1
p

]γ−1

f(y) dy, x ∈ (0, b).

For 1 ≤ p ≤ q < ∞ or −∞ < q ≤ p < 0, replace b and f(y) in (4.4)

respectively with b
k−1
p and f

(
y

p
k−1

)
y

p
k−1

−1. After a sequence of suitable

variable changes, we get the inequality

γ

(
p

γ(k − 1)

)q+1− q
p
(∫ b

0
wγ,k(y)f

p(y) dy

) q
p

−
∫ b

0
x

q
p
(1−k)−1

(Rf(x))q dx

≥ q

p

∣∣∣∣∣
(

p

γ(k − 1)

)p−1 ∫ b

0
x

k−1
p

(p−q−1)−1
(Rf(x))q−p

∫ x

0

[
1−

(y
x

) k−1
p

]γ−1

×

× y
k−1
p

−1

∣∣∣∣yp−k+1fp(y)−
(
γ(k − 1)

p

)p

x1−k(Rf(x))p
∣∣∣∣ dy dx

−|p|
∫ b

0
x

1−k
p

q−1
(Rf(x))q−1

∫ x

0

[
1−

(y
x

) k−1
p

]γ−1

×

×
∣∣∣∣f(y)−

γ(k − 1)

py

(y
x

) k−1
p

Rf(x)

∣∣∣∣ dy dx
∣∣∣∣ .

(4.5)

For 0 < q ≤ p < 1, the order of terms on the left-hand side of relation (4.5)
is reversed. Notice that for b = ∞, p = q = k > 1 and γ = 1 inequality
(4.5) reduces to a refinement of the classical Hardy’s inequality (1.1). It
can be seen that our result generalizes refined and strengthened Hardy–type
inequalities from [3] and [5].

On the other hand, rewriting (4.4) with Φ(x) = ex and γ = 1, as well as
with the function y �→ ln(yf(y)) instead of a positive function f : (0, b) → R,
we derive the following new refined strengthened Pólya–Knopp–type in-
equality:

p

q
e

q
p

(∫ b

0

[
1−

(y
b

) q
p

] p
q

f(y) dy

) q
p

−
∫ b

0
x

q
p
−1

(Gf(x))
q
p dx

≥ q

p

∣∣∣∣
∫ b

0
x

q
p
−3

(Gf(x))
q
p
−1

∫ x

0
|eyf(y)− xGf(x)| dy dx

−
∫ b

0
x

q
p
−2

(Gf(x))
q
p

∫ x

0

∣∣∣∣ln
(

eyf(y)

xGf(x)

)∣∣∣∣ dy dx
∣∣∣∣ ,(4.6)

where q
p ≥ 1 and

Gf(x) = exp

(
1

x

∫ x

0
ln f(y) dy

)
, x ∈ (0, b).
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Example 5.1. Let p, q, s ∈ R be such that q
p > 0 and s−2

p , s−2
p′ > −1, and

let α ∈
(
− q

p

(
s−2
p′ + 1

)
, qp

(
s−2
p + 1

))
. Denote

C1 = B

(
q

p

(
s− 2

p
+ 1

)
− α,

q

p

(
s− 2

p′
+ 1

)
+ α

)

and

C2 = B

(
s− 2

p
+ 1,

s− 2

p′
+ 1

)
,

where B( · , · ) is the usual Beta function, and define k : R2
+ → R and

u : R+ → R respectively by k(x, y) =
( y
x

) s−2
p (x + y)−s and u(x) = xα−1.

Finally, let f be a non-negative function on R+ (positive, if p < 0) and Sf
its generalized Stieltjes transform,

Sf(x) =

∫ ∞

0

f(y)

(x+ y)s
dy, x ∈ R+

(see [1] and [27] for further information). Rewriting (3.15) with the above

parameters and with f(y)y
2−s
p instead of f(y), for 1 ≤ p ≤ q < ∞ or

−∞ < q ≤ p < 0 we obtain the inequality

C1C
q
p′
2

(∫ ∞

0
y
α p

q
−s+1

fp(y) dy

) q
p

−
∫ ∞

0
x
α−1+ q

p′ (s−1)+ q
p (Sf(x))q dx

≥ q

p

∣∣∣∣Cp−1
2

∫ ∞

0
x
α+q−p+ s−2

p′ (q−p+1)
(Sf(x))q−p×

×
∫ ∞

0

y
s−2
p

(x+ y)s

∣∣∣fp(y)y2−s − C−p
2 x(p−1)(s−1)+1(Sf(x))p

∣∣∣ dy dx

−|p|
∫ ∞

0
x
α+q+ s−2

p′ q−1
(Sf(x))q−1×

×
∫ ∞

0
(x+ y)−s

∣∣∣f(y)− C−1
2 x

s−2
p′ +1

y
s−2
p Sf(x)

∣∣∣ dy dx
∣∣∣∣ ,

(5.1)

while for 0 < q ≤ p < 1 the order of terms on the left-hand side of (5.1)
is reversed. The case p = q was already studied in [5, Example 4.1]. In

particular, for p = q > 1, α = 0 and s = 1 we have C1 = C2 = B
(
1
p ,

1
p′

)
=

π
sin π

p
, so (5.1) provides a new generalization and refinement of the classical

Hardy–Hilbert’s inequality (1.3). �

Similarly, in the next example we generalize and refine the classical Hardy–
Littlewood–Pólya’s inequality (1.4).

Example 5.2. Let the parameters p, q, s, α and the functions u and f be

as in Example 5.1. Define k : R2
+ → R by k(x, y) =

( y
x

) s−2
p max{x, y}−s and

inequality

γ

(
p

γ(1− k)

)q+1− q
p
(∫ ∞

b
w̃γ,k(y)f

p(y) dy

) q
p

−
∫ ∞

b
x

q
p
(1−k)−1

(Wf(x))q dx

≥ q

p

∣∣∣∣∣∣

(
p

γ(1− k)

)p−1 ∫ ∞

b
x

1−k
p

(q−p+1)−1
(Wf(x))q−p

∫ ∞

x

[
1−

(
x

y

) 1−k
p

]γ−1

×

× y
k−1
p

−1

∣∣∣∣yp−k+1fp(y)−
(
γ(1− k)

p

)p

x1−k(Wf(x))p
∣∣∣∣ dy dx

−|p|
∫ ∞

b
x

1−k
p

q−1
(Wf(x))q−1

∫ ∞

x

[
1−

(
x

y

) 1−k
p

]γ−1

×

×

∣∣∣∣∣f(y)−
γ(1− k)

py

(
x

y

) 1−k
p

Wf(x)

∣∣∣∣∣ dy dx
∣∣∣∣∣ .

(4.8)

For 0 < q ≤ p < 1, relation (4.8) holds with the reversed order of terms
on its left-hand side. In the case with p = q, (4.8) becomes a refined and
strengthened dual Hardy’s inequality from Example 3.2 in [5].

Finally, for q
p ≥ 1, γ = 1, Φ(x) = ex and y �→ ln(yf(y)) instead of a

positive function f : (b,∞) → R, inequality (4.7) becomes

p

q
e
− q

p



∫ ∞

b

[
1−

(
b

y

) q
p

] p
q

f(y) dy




q
p

−
∫ ∞

b
x

q
p
−1

(G̃f(x))
q
p dx

≥ q

p

∣∣∣∣
∫ ∞

b
x

q
p
−1

(G̃f(x))
q
p
−1

∫ ∞

x

∣∣∣e−1yf(y)− xG̃f(x)
∣∣∣ dy

y2
dx

−
∫ ∞

b
x

q
p (G̃f(x))

q
p

∫ ∞

x

∣∣∣∣ln
yf(y)

exG̃f(x)

∣∣∣∣
dy

y2
dx

∣∣∣∣ ,

where

G̃f(x) = exp

(
x

∫ ∞

x
ln f(y)

dy

y2

)
, y ∈ (b,∞).

Thus, we proved a new refined strengthened dual Pólya–Knopp’s inequality.
Its special case p = q was already considered in [3] and [5]. �

5. Generalized one-dimensional Hardy–Hilbert’s inequality

In this section, we consider Theorem 3.1, that is, inequality (3.13), with
some important kernels related to Ω1 = Ω2 = R+ and Φ : R+ → R, Φ(x) =
xp, where p ∈ R, p �= 0. We also assume that dµ1(x) = dx and dµ2(y) = dy.

In the first example, we generalize and refine the classical Hardy–Hilbert’s
inequality (1.3).
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Example 5.1. Let p, q, s ∈ R be such that q
p > 0 and s−2

p , s−2
p′ > −1, and

let α ∈
(
− q

p

(
s−2
p′ + 1

)
, qp

(
s−2
p + 1

))
. Denote

C1 = B

(
q

p

(
s− 2

p
+ 1

)
− α,

q

p

(
s− 2

p′
+ 1

)
+ α

)

and

C2 = B

(
s− 2

p
+ 1,

s− 2

p′
+ 1

)
,

where B( · , · ) is the usual Beta function, and define k : R2
+ → R and

u : R+ → R respectively by k(x, y) =
( y
x

) s−2
p (x + y)−s and u(x) = xα−1.

Finally, let f be a non-negative function on R+ (positive, if p < 0) and Sf
its generalized Stieltjes transform,

Sf(x) =

∫ ∞

0

f(y)

(x+ y)s
dy, x ∈ R+

(see [1] and [27] for further information). Rewriting (3.15) with the above

parameters and with f(y)y
2−s
p instead of f(y), for 1 ≤ p ≤ q < ∞ or

−∞ < q ≤ p < 0 we obtain the inequality

C1C
q
p′
2

(∫ ∞

0
y
α p

q
−s+1

fp(y) dy

) q
p

−
∫ ∞

0
x
α−1+ q

p′ (s−1)+ q
p (Sf(x))q dx

≥ q

p

∣∣∣∣Cp−1
2

∫ ∞

0
x
α+q−p+ s−2

p′ (q−p+1)
(Sf(x))q−p×

×
∫ ∞

0

y
s−2
p

(x+ y)s

∣∣∣fp(y)y2−s − C−p
2 x(p−1)(s−1)+1(Sf(x))p

∣∣∣ dy dx

−|p|
∫ ∞

0
x
α+q+ s−2

p′ q−1
(Sf(x))q−1×

×
∫ ∞

0
(x+ y)−s

∣∣∣f(y)− C−1
2 x

s−2
p′ +1

y
s−2
p Sf(x)

∣∣∣ dy dx
∣∣∣∣ ,

(5.1)

while for 0 < q ≤ p < 1 the order of terms on the left-hand side of (5.1)
is reversed. The case p = q was already studied in [5, Example 4.1]. In

particular, for p = q > 1, α = 0 and s = 1 we have C1 = C2 = B
(
1
p ,

1
p′

)
=

π
sin π

p
, so (5.1) provides a new generalization and refinement of the classical

Hardy–Hilbert’s inequality (1.3). �

Similarly, in the next example we generalize and refine the classical Hardy–
Littlewood–Pólya’s inequality (1.4).

Example 5.2. Let the parameters p, q, s, α and the functions u and f be

as in Example 5.1. Define k : R2
+ → R by k(x, y) =

( y
x

) s−2
p max{x, y}−s and
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inequality

γ

(
p

γ(1− k)

)q+1− q
p
(∫ ∞

b
w̃γ,k(y)f

p(y) dy

) q
p

−
∫ ∞

b
x

q
p
(1−k)−1

(Wf(x))q dx

≥ q

p

∣∣∣∣∣∣

(
p

γ(1− k)

)p−1 ∫ ∞

b
x

1−k
p

(q−p+1)−1
(Wf(x))q−p

∫ ∞

x

[
1−

(
x

y

) 1−k
p

]γ−1

×

× y
k−1
p

−1

∣∣∣∣yp−k+1fp(y)−
(
γ(1− k)

p

)p

x1−k(Wf(x))p
∣∣∣∣ dy dx

−|p|
∫ ∞

b
x

1−k
p

q−1
(Wf(x))q−1

∫ ∞

x

[
1−

(
x

y

) 1−k
p

]γ−1

×

×

∣∣∣∣∣f(y)−
γ(1− k)

py

(
x

y

) 1−k
p

Wf(x)

∣∣∣∣∣ dy dx
∣∣∣∣∣ .

(4.8)

For 0 < q ≤ p < 1, relation (4.8) holds with the reversed order of terms
on its left-hand side. In the case with p = q, (4.8) becomes a refined and
strengthened dual Hardy’s inequality from Example 3.2 in [5].

Finally, for q
p ≥ 1, γ = 1, Φ(x) = ex and y �→ ln(yf(y)) instead of a

positive function f : (b,∞) → R, inequality (4.7) becomes

p

q
e−

q
p



∫ ∞

b

[
1−

(
b

y

) q
p

] p
q

f(y) dy




q
p

−
∫ ∞

b
x

q
p
−1

(G̃f(x))
q
p dx

≥ q

p

∣∣∣∣
∫ ∞

b
x

q
p
−1

(G̃f(x))
q
p
−1

∫ ∞

x

∣∣∣e−1yf(y)− xG̃f(x)
∣∣∣ dy

y2
dx

−
∫ ∞

b
x

q
p (G̃f(x))

q
p

∫ ∞

x

∣∣∣∣ln
yf(y)

exG̃f(x)

∣∣∣∣
dy

y2
dx

∣∣∣∣ ,

where

G̃f(x) = exp

(
x

∫ ∞

x
ln f(y)

dy

y2

)
, y ∈ (b,∞).

Thus, we proved a new refined strengthened dual Pólya–Knopp’s inequality.
Its special case p = q was already considered in [3] and [5]. �

5. Generalized one-dimensional Hardy–Hilbert’s inequality

In this section, we consider Theorem 3.1, that is, inequality (3.13), with
some important kernels related to Ω1 = Ω2 = R+ and Φ : R+ → R, Φ(x) =
xp, where p ∈ R, p �= 0. We also assume that dµ1(x) = dx and dµ2(y) = dy.

In the first example, we generalize and refine the classical Hardy–Hilbert’s
inequality (1.3).
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where µ ≥ 1, Re a > 0 and either |z| ≤ 1, z �= 1 and Re s > 0, or z = 1
and Re s > µ (for more information regarding the unified Riemann-Zeta
function, see e.g. [12]).

Example 5.3. Suppose that α ∈ (0, 1) and p, q, β ∈ R are such that q
p ≥ 1

and α q
p + β ∈

(
−1, qp − 1

)
. Define the kernel k : R2

+ → R by k(x, y) =

ln y−lnx
y−x

(
x
y

)α
and the weight function u : R+ → R by u(x) = xβ . Finally,

denote

Mf(x) =

∫ ∞

0

ln y − lnx

y − x
f(y) dy, x ∈ R+,

where f is a non-negative function on R+ (positive, if p < 0),

E1 =

∫ ∞

0

(
ln t

t− 1

) q
p

t
α q

p
+β

dt = Z

(
α
q

p
+ β + 1,

q

p

)
+Z

(
q

p
− α

q

p
− β − 1,

q

p

)

and

E2 =

∫ ∞

0

ln t

t− 1
t−α dt =

π2

sin2 πα
.

Applying (3.15) to the above parameters and to f(y) replaced with f(y)yα,
we get the inequality

E1E
q
p′
2

(∫ ∞

0
y
αp+(β+1) p

q
−1

fp(y) dy

) q
p

−
∫ ∞

0
xαq+β(Mf(x))q dx

≥ q

p

∣∣∣∣Ep−1
2

∫ ∞

0
xα(q−p+1)+β(Mf(x))q−p×

×
∫ ∞

0
y−α ln y − lnx

y − x

∣∣∣fp(y)yαp − E−p
2 xαp(Mf(x))p

∣∣∣ dy dx

−|p|
∫ ∞

0
xαq+β(Mf(x))q−1×

×
∫ ∞

0

ln y − lnx

y − x

∣∣∣∣f(y)− E−1
2

(
x

y

)α

Mf(x)

∣∣∣∣ dy dx
∣∣∣∣ .

(5.3)

Notice that for p = q we have

E1 =

∫ ∞

0

ln t

t− 1
tα+β dt =

π2

sin2 π(α+ β)

and (5.3) reduces to the Hardy–Hilbert–type inequality obtained in [5, Ex-
ample 4.3]. Therefore our result can be seen as its generalization. �

6. General Godunova–type inequalities

We conclude the paper with a multidimensional result related to Go-
dunova’s inequality (1.8). Namely, let Ω1 = Ω2 = Rn

+, dµ1(x) = dx,
dµ2(y) = dy, let y

x and xy be as in Section 2, and let the kernel k :

the transform Lf as

Lf(x) =

∫ ∞

0

f(y)

max{x, y}s
dy, x ∈ R+.

Finally, set

D1 =
p2p′qs

(αpp′ + p′q + qs− 2q)(pq + qs− αp2 − 2q)

and

D2 =
pp′s

(p+ s− 2)(p′ + s− 2)
.

Considering 1 ≤ p ≤ q < ∞, or −∞ < q ≤ p < 0, and f(y)y
2−s
p instead of

f(y), relation (3.15) becomes

D1D
q
p′
2

(∫ ∞

0
y
α p

q
−s+1

fp(y) dy

) q
p

−
∫ ∞

0
x
α−1+ q

p′ (s−1)+ q
p (Lf(x))q dx

≥ q

p

∣∣∣∣Dp−1
2

∫ ∞

0
x
α+q−p+ s−2

p′ (q−p+1)
(Lf(x))q−p×

×
∫ ∞

0

y
s−2
p

max{x, y}s
∣∣∣fp(y)y2−s −D−p

2 x(p−1)(s−1)+1(Lf(x))p
∣∣∣ dy dx

−|p|
∫ ∞

0
x
α+q+ s−2

p′ q−1
(Lf(x))q−1×

×
∫ ∞

0
max{x, y}−s

∣∣∣f(y)−D−1
2 x

s−2
p′ +1

y
s−2
p Lf(x)

∣∣∣ dy dx
∣∣∣∣ .

(5.2)

If 0 < q ≤ p < 1, the order of terms on the left-hand side of (5.2) is reversed.
For p = q, (5.2) reduces to [5, Example 4.2]. Moreover, since for p = q > 1,
α = 0 and s = 1 we have D1 = D2 = pp′, our result generalizes and refines
(1.4). �

We complete this section with another refined Hardy–Hilbert–type in-
equality, making use of the well-known reflection formula for the Digamma
function ψ,

∫ ∞

0

ln t

t− 1
t−α dt = ψ′(1− α) + ψ′(α) =

π2

sin2 πα
, α ∈ (0, 1),

and of the fact that

Z(a, b) =

∫ ∞

0
tbe−at

(
1− e−t

)b
dt < ∞, a ∈ R+, b ≥ 1.

More precisely, Z(a, b) = Γ(b + 1)φ∗
b(1, b + 1, a), where φ∗

µ is the so-called
unified Riemann-Zeta function,

φ∗
µ(z, s, a) =

1

Γ(s)

∫ ∞

0
ts−1e−at

(
1− ze−t

)−µ
dt,
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where µ ≥ 1, Re a > 0 and either |z| ≤ 1, z �= 1 and Re s > 0, or z = 1
and Re s > µ (for more information regarding the unified Riemann-Zeta
function, see e.g. [12]).

Example 5.3. Suppose that α ∈ (0, 1) and p, q, β ∈ R are such that q
p ≥ 1

and α q
p + β ∈

(
−1, qp − 1

)
. Define the kernel k : R2

+ → R by k(x, y) =

ln y−lnx
y−x

(
x
y

)α
and the weight function u : R+ → R by u(x) = xβ . Finally,

denote

Mf(x) =

∫ ∞

0

ln y − lnx

y − x
f(y) dy, x ∈ R+,

where f is a non-negative function on R+ (positive, if p < 0),

E1 =

∫ ∞

0

(
ln t

t− 1

) q
p

t
α q

p
+β

dt = Z

(
α
q

p
+ β + 1,

q

p

)
+Z

(
q

p
− α

q

p
− β − 1,

q

p

)

and

E2 =

∫ ∞

0

ln t

t− 1
t−α dt =

π2

sin2 πα
.

Applying (3.15) to the above parameters and to f(y) replaced with f(y)yα,
we get the inequality

E1E
q
p′
2

(∫ ∞

0
y
αp+(β+1) p

q
−1

fp(y) dy

) q
p

−
∫ ∞

0
xαq+β(Mf(x))q dx

≥ q

p

∣∣∣∣Ep−1
2

∫ ∞

0
xα(q−p+1)+β(Mf(x))q−p×

×
∫ ∞

0
y−α ln y − lnx

y − x

∣∣∣fp(y)yαp − E−p
2 xαp(Mf(x))p

∣∣∣ dy dx

−|p|
∫ ∞

0
xαq+β(Mf(x))q−1×

×
∫ ∞

0

ln y − lnx

y − x

∣∣∣∣f(y)− E−1
2

(
x

y

)α

Mf(x)

∣∣∣∣ dy dx
∣∣∣∣ .

(5.3)

Notice that for p = q we have

E1 =

∫ ∞

0

ln t

t− 1
tα+β dt =

π2

sin2 π(α+ β)

and (5.3) reduces to the Hardy–Hilbert–type inequality obtained in [5, Ex-
ample 4.3]. Therefore our result can be seen as its generalization. �

6. General Godunova–type inequalities

We conclude the paper with a multidimensional result related to Go-
dunova’s inequality (1.8). Namely, let Ω1 = Ω2 = Rn

+, dµ1(x) = dx,
dµ2(y) = dy, let y

x and xy be as in Section 2, and let the kernel k :
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the transform Lf as

Lf(x) =

∫ ∞

0

f(y)

max{x, y}s
dy, x ∈ R+.

Finally, set

D1 =
p2p′qs

(αpp′ + p′q + qs− 2q)(pq + qs− αp2 − 2q)

and

D2 =
pp′s

(p+ s− 2)(p′ + s− 2)
.

Considering 1 ≤ p ≤ q < ∞, or −∞ < q ≤ p < 0, and f(y)y
2−s
p instead of

f(y), relation (3.15) becomes

D1D
q
p′
2

(∫ ∞

0
y
α p

q
−s+1

fp(y) dy

) q
p

−
∫ ∞

0
x
α−1+ q

p′ (s−1)+ q
p (Lf(x))q dx

≥ q

p

∣∣∣∣Dp−1
2

∫ ∞

0
x
α+q−p+ s−2

p′ (q−p+1)
(Lf(x))q−p×

×
∫ ∞

0

y
s−2
p

max{x, y}s
∣∣∣fp(y)y2−s −D−p

2 x(p−1)(s−1)+1(Lf(x))p
∣∣∣ dy dx

−|p|
∫ ∞

0
x
α+q+ s−2

p′ q−1
(Lf(x))q−1×

×
∫ ∞

0
max{x, y}−s

∣∣∣f(y)−D−1
2 x

s−2
p′ +1

y
s−2
p Lf(x)

∣∣∣ dy dx
∣∣∣∣ .

(5.2)

If 0 < q ≤ p < 1, the order of terms on the left-hand side of (5.2) is reversed.
For p = q, (5.2) reduces to [5, Example 4.2]. Moreover, since for p = q > 1,
α = 0 and s = 1 we have D1 = D2 = pp′, our result generalizes and refines
(1.4). �

We complete this section with another refined Hardy–Hilbert–type in-
equality, making use of the well-known reflection formula for the Digamma
function ψ,

∫ ∞

0

ln t

t− 1
t−α dt = ψ′(1− α) + ψ′(α) =

π2

sin2 πα
, α ∈ (0, 1),

and of the fact that

Z(a, b) =

∫ ∞

0
tbe−at

(
1− e−t

)b
dt < ∞, a ∈ R+, b ≥ 1.

More precisely, Z(a, b) = Γ(b + 1)φ∗
b(1, b + 1, a), where φ∗

µ is the so-called
unified Riemann-Zeta function,

φ∗
µ(z, s, a) =

1

Γ(s)

∫ ∞

0
ts−1e−at

(
1− ze−t

)−µ
dt,
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Rn
+ × Rn

+ → R be of the form k(x,y) = l
(y
x

)
, where l : Rn

+ → R is a
non-negative measurable function.

Applying Theorem 3.1 to this setting, we get the following generalization
and refinement of Godunova’s inequality (1.8) and a generalization of [5,
Theorem 5.1].

Theorem 6.1. Let 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0. Let l and u be non-
negative measurable functions on Rn

+, such that 0 < L(x) = x1
∫
Rn
+
l(y) dy <

∞ for all x ∈ Rn
+, and that the function x �→ u(x)

(
l(y

x)
L(x)

) q
p

is integrable on

Rn
+ for each fixed y ∈ Rn

+. Let the function v be defined on Rn
+ by

v(y) =



∫

Rn
+

u(x)

(
l
(y
x

)
L(x)

) q
p

dx




p
q

.

If Φ is a non-negative convex function on an interval I ⊆ R and ϕ : I → R
is any function, such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality

(∫

Rn
+

v(y)Φ(f(y)) dy

) q
p

−
∫

Rn
+

u(x)Φ
q
p (Alf(x)) dx

≥ q

p

∫

Rn
+

u(x)

L(x)
Φ

q
p
−1

(Alf(x))

∫

Rn
+

l
(y
x

)
r(x,y) dy dx(6.1)

holds for all measurable functions f : Rn
+ → R with values in I, where

Alf(x) and r(x,y) are for x,y ∈ Rn
+ respectively defined by

Alf(x) =
1

L(x)

∫

Rn
+

l
(y
x

)
f(y) dy

and

r(x,y) = | |Φ(f(y))− Φ(Alf(x))| − |ϕ(Alf(x))| · |f(y)−Alf(x)| | .

If Φ is a positive concave function and 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0,
then (6.1) holds with the reversed order of terms on its left-hand side.

Remark 6.1. Observe that for p = q inequality (6.1) reduces to [5, Theorem
5.1]. If, additionally,

∫
Rn
+
l(y) dy = 1 and u(x) = x−1, we get a refinement

of (1.8). �

The above results can be rewritten with particular convex (or concave)
functions, for example, with power and exponential functions. This leads to
multidimensional analogues of corollaries and examples from Sections 4 and
5. Due to the lack of space, we omit them here.

Acknowledgements. The research of the authors was supported by the
Croatian Ministry of Science, Education and Sports, under the Research

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 53-80
Aleksandra Cizmesija, Kristina Krulic, and Josip Pecaric A new class of general



79

Grants 058-1170889-1050 (first author) and 117-1170889-0888 (second and
third author).

References

[1] K. F. Andersen, Weighted inequalities for the Stieltjes transformation and Hilbert’s
double series, Proc. Roy. Soc. Edinburgh Sect. A 86(1-2) (1980), 75–84.

[2] R. P. Boas, Some integral inequalities related to Hardy’s inequality, J. Anal. Math.
23 (1970), 53–63.
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[6] A. Čižmešija and J. Pečarić, Classical Hardy’s and Carleman’s inequalities and mixed
means, in: T. M. Rassias (ed.), Survey on Classical Inequalities, Kluwer Academic
Publishers, Dordrecht/Boston/London, 2000, 27–65.
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Rn
+ × Rn

+ → R be of the form k(x,y) = l
(y
x

)
, where l : Rn

+ → R is a
non-negative measurable function.

Applying Theorem 3.1 to this setting, we get the following generalization
and refinement of Godunova’s inequality (1.8) and a generalization of [5,
Theorem 5.1].

Theorem 6.1. Let 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0. Let l and u be non-
negative measurable functions on Rn

+, such that 0 < L(x) = x1
∫
Rn
+
l(y) dy <

∞ for all x ∈ Rn
+, and that the function x �→ u(x)

(
l(y

x)
L(x)

) q
p

is integrable on

Rn
+ for each fixed y ∈ Rn

+. Let the function v be defined on Rn
+ by

v(y) =



∫

Rn
+

u(x)

(
l
(y
x

)
L(x)

) q
p

dx




p
q

.

If Φ is a non-negative convex function on an interval I ⊆ R and ϕ : I → R
is any function, such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality

(∫

Rn
+

v(y)Φ(f(y)) dy

) q
p

−
∫

Rn
+

u(x)Φ
q
p (Alf(x)) dx

≥ q

p

∫

Rn
+

u(x)

L(x)
Φ

q
p
−1

(Alf(x))

∫

Rn
+

l
(y
x

)
r(x,y) dy dx(6.1)

holds for all measurable functions f : Rn
+ → R with values in I, where

Alf(x) and r(x,y) are for x,y ∈ Rn
+ respectively defined by

Alf(x) =
1

L(x)

∫

Rn
+

l
(y
x

)
f(y) dy

and

r(x,y) = | |Φ(f(y))− Φ(Alf(x))| − |ϕ(Alf(x))| · |f(y)−Alf(x)| | .

If Φ is a positive concave function and 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0,
then (6.1) holds with the reversed order of terms on its left-hand side.

Remark 6.1. Observe that for p = q inequality (6.1) reduces to [5, Theorem
5.1]. If, additionally,

∫
Rn
+
l(y) dy = 1 and u(x) = x−1, we get a refinement

of (1.8). �

The above results can be rewritten with particular convex (or concave)
functions, for example, with power and exponential functions. This leads to
multidimensional analogues of corollaries and examples from Sections 4 and
5. Due to the lack of space, we omit them here.
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EXPONENTIAL CONVEXITY, EULER-RADAU

EXPANSIONS AND STOLARSKY MEANS

J. JAKŠETIĆ AND J. PEČARIĆ

Abstract. We use Euler and Radau two-point formulas in order
to generalize Cauchy means defined in [5] that are closely related
to Stolarsky means. The gain of this approach is twofold. First,
we are able to construct exponentially convex functions that are
an essential ingredient of our new means since this fact leads to
proof of monotonicity of constructed Cauchy means. Second, con-
structed exponentially convex functions are added as non-trivial to
sparse examples of exponentially convex functions since invention
of exponential convexity back to 1929.

1. Introduction

Stolarsky means are defined in a well-known paper [8]:

(1.1) Ep,q(x, y) =




(
q(yp−xp)
p(yq−xq)

)1/(p−q)
, pq(p−q)�=0;

(
yq−xq

r(ln y−lnx)

)1/q
, p=0,q �=0;

e
−1
q
(
xxq

yy
q

)1/(xq−yq)
, p=q �=0;

√
xy, p=q=0.

where x and y are positive real numbers x �= y, p and q are any real
numbers but 0.
Stolarsky proved that the function Ep,q(x, y) is increasing in both pa-
rameters p and q i.e. for p ≤ u and q ≤ v, we have

(1.2) Ep,q(x, y) ≤ Eu,v(x, y).

In the recent paper [5] further generalizations are made using mean-
value theorems for both sides of Hadamard’s inequality from [6]. Two
new means of Stolarsky type defined in [5] are
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