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ON GERGONNE POINT OF THE TRIANGLE IN

ISOTROPIC PLANE

J. Beban–Brkić, V.Volenec, Z.Kolar–Begović
and R.Kolar–Šuper

Abstract. Using the standard position of the allowable triangle in the isotropic

plane relationships between this triangle and its contact and tangential triangle

are studied. Thereby different properties of the symmedian center, the Ger-

gonne point, the Lemoine line and the de Longchamps line of these triangles

are obtained.

It has been shown in [3] that any allowable triangle ABC in the
isotropic plane I2 can be set in the so called standard position by choos-
ing an appropriate affine coordinate system and having the circumcircle
equation y = x2, while its vertices are of the form

A = (a, a2), B = (b, b2), C = (c, c2),

with a+ b+ c = 0. Along with the abbreviations

p = abc, q = bc+ ca+ ab

other useful relations hold too, for example: a2 = bc−q and a2+b2+c2 =
−2q, wherefrom it follows that q < 0.

In order to prove any statement on any allowable triangle it is suffi-
cient to prove the considered statement for the triangle in the standard
position (the expression standard triangle will further on be in use).

Following [1] the inscribed circle of the standard triangle ABC has
the equation

Ki . . . y =
1

4
x2 − q (1)

Key words and phrases: isotropic plane, standard triangle, contact triangle,
Gergonne point, tangential triangle, Lemoine line

Rad HAZU
Volume 515 (2013), 95-106 

Faculty of Mechanical Engineering and Naval Architecture, Univer-
sity of Zagreb, Croatia

E-mail address: julije@math.hr

Faculty of Textile Technology, University of Zagreb, Pierottijeva 6,
10000 Zagreb, Croatia

E-mail address: pecaric@mahazu.hazu.hr



96

Theorem 4. A given triangle and its contact triangle have the same
Euler line, i.e. parallel centroids, and corresponding altitudes of equal
length.

Proof. The points Bi and Ci from (2) lie on the line with the
equation

y =
a

2
x− bc− q (3)

since for example for the first of the two points we get

a

2
(−2b)− bc− q = −ab− bc− q = ca− 2q.

We compute the isotropic span of the point Ai given in (2) to the line
(3), i.e.

bc− 2q − a

2
(−2a) + bc+ q = 2bc+ a2 − q = 3bc− 2q,

while the isotropic span of the point A = (a, a2) to the line BC with the
equation y = −ax− bc (see [1]) is

a2 + a · a+ bc = 2a2 + bc = 3bc− 2q,

showing that the two spans are equal. The three points (2) have the
centroid Gi = (0,−5

3q), parallel to the centroid G = (0,−2
3q) of the

triangle ABC. �

Corollary 1. The sides BiCi, CiAi, AiBi of the contact triangle AiBiCi

of the standard triangle ABC are given successively in the equations

y =
a

2
x− bc− q, y =

b

2
x− ca− q, y =

c

2
x− ab− q. (4)

For the slopes of the lines CA and AB are, according to [3], −b and
−c respectively their bisector has the slope −1

2(b + c) = a
2 , and it is

parallel to the first line (4). Hence,

Corollary 2. The sides of the contact triangle of a given triangle are
parallel to the angle bisectors of that triangle.

The equation of a polar of any point (x0, y0) with respect to the
circle (1) is y + y0 = 1

2xx0 − 2q. By choosing x0 = 0, y0 = −5
3q we

get y = − q
3 , being according to [3] the equation of the orthic axis of the

triangle ABC. Thus we have:

while the points of contact with the straight lines BC, CA, AB are

Ai = (−2a, bc− 2q), Bi = (−2b, ca− 2q), Ci = (−2c, ab− 2q). (2)

We call the triangle AiBiCi the contact triangle of the reference triangle
ABC.

Theorem 1. Let AiBiCi be the contact triangle of the triangle ABC,
and Ah, Bh, Ch the feet of its altitudes. Then, the pairs of line segments
BC,AhAi; CA,BhBi; AB,ChCi have the same midpoints, and the points
A,B,C lie successively on the bisectors of the line segments BiCi, CiAi,
AiBi.

Proof. Let us first recall from [3] that, for example, Ah = (a, q−2bc),
and that the vertices of the contact triangle AiBiCi of the standard tri-
angle ABC are given in (2). The points Ah and Ai have the midpoint
with the abscissa 1

2(a − 2a) = −a
2 , being in the same time according

to [3] the abscissa of the midpoint of the side BC. Since for example
1
2(−2b−2c) = a, the bisector of the side BiCi passes through the pointA.

�

The incircles of the triangles ABAi and ACAi have in the Euclidean
geometry the same point of contact with the straight line AAi. In the
isotropic plane we have the following:

Theorem 2. If Ai is the point of contact of the line BC with the incircle
of the triangle ABC, then the circles inscribed in the triangles ABAi and
ACAi have points of contact with the line AAi symmetric according to
the midpoint of the line segment AAi and at the same time being parallel
with the points C and B respectively.

Proof. Let u1 and u2 be the abscissae of the points of contact of the
two considered circles with the line AAi. Applying Theorem 1 we get
b+ u1 = a− 2a and c+ u2 = a− 2a, i.e. u1 = c and u2 = b. �

Theorem 3. The potential axis of the circumcircle and the incircle of
a triangle is its de Longchamps line.

Proof. Eliminating the terms involving x2 from the circumcircle
equations y = x2 and (1) we get the equation y = −4

3q, that is the
potential axis of the two circles. On the other hand, according to [5] the
latter equation is the de Longchamps line of the triangle ABC. �
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2(b + c) = a
2 , and it is
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while the points of contact with the straight lines BC, CA, AB are

Ai = (−2a, bc− 2q), Bi = (−2b, ca− 2q), Ci = (−2c, ab− 2q). (2)

We call the triangle AiBiCi the contact triangle of the reference triangle
ABC.

Theorem 1. Let AiBiCi be the contact triangle of the triangle ABC,
and Ah, Bh, Ch the feet of its altitudes. Then, the pairs of line segments
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2 , being in the same time according

to [3] the abscissa of the midpoint of the side BC. Since for example
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2(−2b−2c) = a, the bisector of the side BiCi passes through the pointA.
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The incircles of the triangles ABAi and ACAi have in the Euclidean
geometry the same point of contact with the straight line AAi. In the
isotropic plane we have the following:

Theorem 2. If Ai is the point of contact of the line BC with the incircle
of the triangle ABC, then the circles inscribed in the triangles ABAi and
ACAi have points of contact with the line AAi symmetric according to
the midpoint of the line segment AAi and at the same time being parallel
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two considered circles with the line AAi. Applying Theorem 1 we get
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Theorem 3. The potential axis of the circumcircle and the incircle of
a triangle is its de Longchamps line.

Proof. Eliminating the terms involving x2 from the circumcircle
equations y = x2 and (1) we get the equation y = −4

3q, that is the
potential axis of the two circles. On the other hand, according to [5] the
latter equation is the de Longchamps line of the triangle ABC. �
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since for example for the line (7) and the point Bt in (6) we get

2a(− b

2
) + q − bc = b2 + q = ca.

The triangle AtBtCt with the vertices given in (6) has the centroid Gt =
(0, q3).

In [2] it is shown that the triangles ABC and AtBtCt are homological.
The center respectively the axis of homology are the symmedian center
K and the Lemoine line L of the triangle ABC. In case of the standard
triangle ABC we have

K = (
3p

2q
,−q

3
) (8)

and

L . . . y =
3p

q
x+

q

3
. (9)

Assuming that G is the centroid of the triangle ABC, then the ho-
mothecy (G,−2) maps each point P to its anticomplementary point P ′.
Thus by the equality 2P + P ′ = 3G, i.e. P ′ = 3G− 2P follows that the
point P ′ = (−2x,−2q−2y) is anticomplementary to the point P = (x, y).
Therefore, we have:

Theorem 6. The Gergonne point of a triangle is anticomplementary to
its symmedian center.

Proof. Really, the point Γ from (5) is anticomplementary to the
point K from (8) due to

−2q− 2(−q

3
) = −4

3
q. �

Theorem 7. The Gergonne point of a triangle is isogonal to the centroid
of its tangential triangle with respect to the given triangle, this centroid
being parallel to the centroid of the given triangle.

Proof. The centroid of the triangle AtBtCt with the vertices given
in (6) is the point

Gt = (0,
q

3
). (10)

The proof indicates that the point Gt from (10) is isogonal to the point
Γ from (5). Indeed, for the point Gt = (x, y) we have

y − x2 =
q

3
, xy − qx− p = −p, px− qy − y2 = −4

9
q2,

Corollary 3. The orthic axis of a triangle is a polar of the centroid of
its contact triangle with respect to its inscribed circle.

Theorem 5. Assuming that AiBiCi is a contact triangle of the allowable
triangle ABC, the lines AAi, BBi, CCi intersect in one point Γ.

Proof. The line with the equation

y =
q

3a
x+ bc− 4

3
q

passes through the point A = (a, a2) as well as through the point Ai

from (2) due to

q

3
+ bc− 4

3
q = bc− q = a2, and − 2

3
q + bc− 4

3
q = bc− 2q = a2,

representing therefore the line AAi. This line passes through the point

Γ = (−3p

q
,−4q

3
) (5)

as well, since the equality − p
a + bc− 4

3 q = −4
3 q is valid. Because of the

symmetry in a, b, and c the point Γ lies on the lines BBi, CCi as well.
�

By accordance with the Euclidean case we call the point Γ from
Theorem 5 Gergonne point of the triangle ABC. Γ obviously lies on the
de Longchamps line with the equation y = −4

3q.

Corollary 4. The Gergonne point of the standard triangle ABC is
given in (5). The Gergonne point of an allowable triangle lies on its
de Longchamps line.

Let us recall now a notion and some facts on a tangential triangle.
The tangential triangle of the given triangle ABC is a triangle deter-
mined by the three tangents to the circumcircle of the triangle ABC in
its vertices. It has been shown in [1] that the vertices of the tangential
triangle in the case of a standard triangle are

At = (−a

2
, bc), Bt = (− b

2
, ca), Ct = (− c

2
, ab) (6)

and for example the side BtCt has the equation

y = 2ax+ q − bc (7)
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q
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+ bc− 4

3
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3
q + bc− 4

3
q = bc− 2q = a2,

representing therefore the line AAi. This line passes through the point
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q
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3
) (5)
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3 q is valid. Because of the
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By adding the equation (9) and the equation (11) previously mul-
tiplied by 2, we get the equation 3y = −q, i.e. according to [3] the
equation of the orthic axis H of the triangle ABC. This very axis is the
axis of homology of the triangle ABC and its orthic triangle AhBhCh.

Using y = − q
3 in (9) or (11) we get x = −2q2

9p , providing that

T = (−2q2

9p
,−q

3
) (12)

is the common point of the three observed lines. Hence, we have:

Theorem 9. The Lemoine line L and the orthic axis H of the allowable
triangle ABC intersect in the point T which lies on the Lemoine line Li

of its contact triangle AiBiCi. In case of a standard triangle ABC, T
is given in (12).

The triangle ABC is homological with both of the triangles AtBtCt

and AiBiCi. On the other hand, the next theorem provides that the
two latter triangles are homological.

Theorem 10. The tangential triangle AtBtCt and the contact trian-
gle AiBiCi of the allowable triangle ABC are homological. The center
respectively the axis of that homology are, in the case of the standard
triangle ABC, the point

S = (−3p

4q
,
2

3
q) (13)

and the line S with the equation

S . . . y =
3p

4q
x− 5

3
q. (14)

Proof. The line with the equations y = 4q
3ax+

2
3q+ bc passes through

the points At, Ai, and S given in (6), (2), and (13) respectively because

4q

3a
(−a

2
) +

2

3
q + bc = bc,

4q

3a
(−2a) +

2

3
q + bc = bc− 2q,

and
4q

3a
(−3p

4q
) +

2

3
q + bc =

2

3
q.

and according to [4] for its isogonal point (x′, y′) we get

x′ =
xy + qx− p

y − x2
= −3p

q
, y′ =

px− qy − y2

y − x2
= −4

3
q. �

Theorem 8. The Gergonne point of the allowable triangle ABC is the
homology center of that triangle and its contact triangle. In the case of
the standard triangle ABC the homology axis of the same transformation
is the line with the equation

y = −3p

2q
x− 2q

3
. (11)

Proof. From the equations y = −ax − bc and (3) for the lines BC
and BiCi we obtain the equation −ax = a

2x−q with the solution x = 2q
3a ,

while inserting it in y = −ax − bc we get y = −2
3 q − bc. The obtained

values for x and y satisfy (11) because of p
a = bc. �

The triangle ABC is a contact triangle of its tangential triangle
AtBtCt. Therefore the symmedian center K of the triangle ABC is
the Gergonne point Γt of AtBtCt. Further on, the triangle ABC is a
tangential triangle of its contact triangle AiBiCi. Hence, the Gergonne
point Γ of the triangle ABC is the symmedian centerKi of AiBiCi, while
the axis of homology from Theorem 8 is the Lemoine line Li for that
triangle. The line Li with the equation (11) obviously passes through
the centroid G = (0,−2q

3 ) of the triangle ABC. Thus, we have:

Corollary 5. The centroid of a triangle lies on the Lemoine line of its
contact triangle.

Applying Corollary 5 to the tangential triangle AtBtCt, it follows:

Corollary 6. The Lemoine line of a triangle passes through the centroid
of its tangential triangle.

The claim of Corollary 6 can be deduced directly by checking the
stated properties for the point Gt from (10) and the line Li from (9).

The next statement follows from above as well.

Corollary 7. The symmedian center of a triangle is the Gergonne point
of its tangential triangle. The Gergonne point of a triangle is the sym-
median center of its contact triangle.
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2

3
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3
q. (14)

Proof. The line with the equations y = 4q
3ax+

2
3q+ bc passes through
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4q

3a
(−a

2
) +

2

3
q + bc = bc,

4q

3a
(−2a) +

2

3
q + bc = bc− 2q,

and
4q

3a
(−3p

4q
) +

2

3
q + bc =

2

3
q.
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3
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Proof. From the equations y = −ax − bc and (3) for the lines BC
and BiCi we obtain the equation −ax = a

2x−q with the solution x = 2q
3a ,

while inserting it in y = −ax − bc we get y = −2
3 q − bc. The obtained

values for x and y satisfy (11) because of p
a = bc. �

The triangle ABC is a contact triangle of its tangential triangle
AtBtCt. Therefore the symmedian center K of the triangle ABC is
the Gergonne point Γt of AtBtCt. Further on, the triangle ABC is a
tangential triangle of its contact triangle AiBiCi. Hence, the Gergonne
point Γ of the triangle ABC is the symmedian centerKi of AiBiCi, while
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triangle. The line Li with the equation (11) obviously passes through
the centroid G = (0,−2q
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Applying Corollary 5 to the tangential triangle AtBtCt, it follows:

Corollary 6. The Lemoine line of a triangle passes through the centroid
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2x = −3p

2q
, 2y = 3 · q

3
− (−q

3
) =

4

3
q

showing that Kt coincides with the point S from (13). We have thus
proved Theorem 12.

Theorem 12. By the notation from the previous theorem, the center of
homology of the triangles AtBtCt and AiBiCi is the symmedian center
Kt of the triangle AtBtCt. In case of standard triangle ABC we have
that

Kt = (−3p

4q
,
2

3
q).

The geometrical meaning of the line S is given by the theorem below.

Theorem 13. Let AiiBiiCii be the contact triangle of the contact tri-
angle AiBiCi of the allowable triangle ABC. The line S from Theorem
10 is the Lemoine line Lii of the triangle AiiBiiCii.

Proof. Let Kii be the circle with the equation

y =
1

16
x2 − 2q. (17)

From this equation and the equation of the line BiCi given in (3) we get
1
16x

2−2q = a
2x−bc−q, which due to bc−q2 = a2 becomes 1

16x
2−a

2x+a2 =
0, i.e. an equation with double solution x = 4a. Therefore the line BiCi

touches the circle Kii in the point Aii having the abscissa 4a and the
ordinate a2 − 2q, i.e. bc − 3q. We thus provide the first of the three
analogous equalities:

Aii = (4a, bc− 3q), Bii = (4b, ca− 3q), Cii = (4c, ab− 3q). (18)

The equation of the line BiiCii is

y = −a

4
x− bc− 2q (19)

because for example, for the point Bii from (18) we have

−a

4
(4b)− bc− 2q = b2 − 2q = ca− 3q.

Further on, we see at once that the the point D = BiCi ∩ S lies on the
line (19) owing to

−a

4
(−4q

3a
)− bc− 2q = −5

3
q − bc,

This is the reason that the point S lies on the line AtAi and at the same
time on analogous lines BtBi and CtCi. The point

D = (−4q

3a
,−5

3
q − bc) (15)

lies on the lines BtCt and BiCi with the equations (7) and (3) as well
as on the line S with the equation (14) because each of the three sums

2a(−4q

3a
) + q − bc,

a

2
(−4q

3a
)− bc− q,

3p

4q
(−4q

3a
)− 5

3
q

equals −5
3q−bc. Therefore the line (14) passes through the point BtCt∩

BiCi and through the analogous points CtAt ∩ CiAi and AtBt ∩ AiBi

too. �

We use now the rule from the proof of Theorem 6 to deduce that,
because of −2q − 2(− q

3) = −4
3q, the point T from (12) is anticomple-

mentary to the point

Ti = (
4q2

9p
,−4

3
q). (16)

This very point lies on the lines Li and S from (11) and (14) because
each of the two sums

−3p

2q
(
4q2

9p
)− 2

3
q,

3p

4q
(
4q2

9p
)− 5

3
q

equals −4
3q. We have thus proved the following theorem.

Theorem 11. Let AtBtCt and AiBiCi be the tangential and the contact
triangle of the allowable triangle ABC, and let L, Li, and S be the axes
of homology for pairs of triangles ABC, AtBtCt; ABC, AiBiCi, and
AtBtCt, AiBiCi. Then the point Ti = Li ∩ S is anticomplementary to
the point T = L ∩ Li regarding the triangle ABC.

Pursuant to Theorem 6, the symmedian center of a triangle is com-
plementary to its Gergonne point. Therefore, the symmedian center Kt

of the triangle AtBtCt is complementary with respect to that triangle to
its Gergonne point Γt which is the point K from (8), being the symme-
dian center of the triangle ABC according to Theorem 7. This means
that the equality 2Kt + K = 3Gt is valid, with Gt = (0, q3) being the
centroid of the triangle AtBtCt. Hence, for the point Kt = (x, y) we get
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2x = −3p

2q
, 2y = 3 · q

3
− (−q

3
) =

4

3
q

showing that Kt coincides with the point S from (13). We have thus
proved Theorem 12.

Theorem 12. By the notation from the previous theorem, the center of
homology of the triangles AtBtCt and AiBiCi is the symmedian center
Kt of the triangle AtBtCt. In case of standard triangle ABC we have
that

Kt = (−3p

4q
,
2

3
q).

The geometrical meaning of the line S is given by the theorem below.

Theorem 13. Let AiiBiiCii be the contact triangle of the contact tri-
angle AiBiCi of the allowable triangle ABC. The line S from Theorem
10 is the Lemoine line Lii of the triangle AiiBiiCii.

Proof. Let Kii be the circle with the equation

y =
1

16
x2 − 2q. (17)

From this equation and the equation of the line BiCi given in (3) we get
1
16x

2−2q = a
2x−bc−q, which due to bc−q2 = a2 becomes 1

16x
2−a

2x+a2 =
0, i.e. an equation with double solution x = 4a. Therefore the line BiCi

touches the circle Kii in the point Aii having the abscissa 4a and the
ordinate a2 − 2q, i.e. bc − 3q. We thus provide the first of the three
analogous equalities:

Aii = (4a, bc− 3q), Bii = (4b, ca− 3q), Cii = (4c, ab− 3q). (18)

The equation of the line BiiCii is

y = −a

4
x− bc− 2q (19)

because for example, for the point Bii from (18) we have

−a

4
(4b)− bc− 2q = b2 − 2q = ca− 3q.

Further on, we see at once that the the point D = BiCi ∩ S lies on the
line (19) owing to

−a

4
(−4q

3a
)− bc− 2q = −5

3
q − bc,
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This is the reason that the point S lies on the line AtAi and at the same
time on analogous lines BtBi and CtCi. The point

D = (−4q

3a
,−5

3
q − bc) (15)

lies on the lines BtCt and BiCi with the equations (7) and (3) as well
as on the line S with the equation (14) because each of the three sums

2a(−4q

3a
) + q − bc,

a

2
(−4q

3a
)− bc− q,

3p

4q
(−4q

3a
)− 5

3
q

equals −5
3q−bc. Therefore the line (14) passes through the point BtCt∩

BiCi and through the analogous points CtAt ∩ CiAi and AtBt ∩ AiBi

too. �

We use now the rule from the proof of Theorem 6 to deduce that,
because of −2q − 2(− q

3) = −4
3q, the point T from (12) is anticomple-

mentary to the point

Ti = (
4q2

9p
,−4

3
q). (16)

This very point lies on the lines Li and S from (11) and (14) because
each of the two sums

−3p

2q
(
4q2

9p
)− 2

3
q,

3p

4q
(
4q2

9p
)− 5

3
q

equals −4
3q. We have thus proved the following theorem.

Theorem 11. Let AtBtCt and AiBiCi be the tangential and the contact
triangle of the allowable triangle ABC, and let L, Li, and S be the axes
of homology for pairs of triangles ABC, AtBtCt; ABC, AiBiCi, and
AtBtCt, AiBiCi. Then the point Ti = Li ∩ S is anticomplementary to
the point T = L ∩ Li regarding the triangle ABC.

Pursuant to Theorem 6, the symmedian center of a triangle is com-
plementary to its Gergonne point. Therefore, the symmedian center Kt

of the triangle AtBtCt is complementary with respect to that triangle to
its Gergonne point Γt which is the point K from (8), being the symme-
dian center of the triangle ABC according to Theorem 7. This means
that the equality 2Kt + K = 3Gt is valid, with Gt = (0, q3) being the
centroid of the triangle AtBtCt. Hence, for the point Kt = (x, y) we get
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Theorem 15. If Gt is the centroid of the tangential triangle AtBtCt of
the allowable triangle ABC, then the homothecy (Gt, 4) maps the point
T from Theorem 11 into the point Tii from Theorem 14.

Relationships between all the discussed elements are given in the
Figure 1.

Figure 1.

wherefrom we deduce that S passes through the point BiCi∩BiiCii and
analogously through the points CiAi ∩CiiAii and AiBi ∩AiiBii. Hence,
we conclude that S is the axis of homology of the triangle AiBiCi and
its contact triangle AiiBiiCii. �

Corollary 8. The contact triangle AiBiCi of the standard triangle ABC
has the incircle Kii with the equation (17) and the contact triangle
AiiBiiCii with the vertices given in (18), while for example the equa-
tion of its side BiiCii is given in (19). The Lemoine line Lii of the
triangle AiiBiiCii has the equation (14).

We see now that the point Li ∩ Lii = Li ∩ S = Ti in the triangle
AiBiCi has the same role as the point T = L∩Li in the triangle ABC,
and using Theorem 9 on the triangle AiBiCi it follows that its orthic
axis Hi passes through the point Ti and has the equation y = −4

3q. We
then apply Theorem 11 on the triangle AiBiCi. It follows that the point
Tii of the triangle AiiBiiCii which corresponds to the point Ti of the
triangle AiBiCi, is anticomplementary to the latter point regarding the
triangle AiBiCi, that is the equality 2Ti + Tii = 3Gi is valid. From the
equality (16) and Gi = (0, −5

3q) we get

Tii = (−8q2

9p
,−7

3
q). (20)

On the other hand, the point Tii from (18) lies on the line L with the
equation (9) due to

3p

q
(−8q2

9p
) +

q

3
= −7

3
q.

We have actually proved:

Theorem 14. By the notation from Theorem 11 the point Tii = L∩Lii

is anticomplementary to the point Ti = Li ∩ S regarding the triangle
AiBiCi.

Using Theorem 11 again and the fact that the point Ti is anticomple-
mentary to the point T regarding the triangle ABC we get 2T+Ti = 3G
that together with the equality 2Ti + Tii = 3Gi gives the equality
4T − Tii = 6G − 3Gi. For G = (0, −2

3q) being the midpoint of the
points Gt = (0, q

3) and Gi = (0, −5
3q) we have Gt + Gi = 2G, i.e.

6G − 3Gi = 3Gt. Hence, it follows that 4T − Tii = 3Gt which written
in the form of 4(T −Gt) = Tii −Gt proves that the homothecy (Gt, 4)
maps the point T into the point Tii. So, we have:
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Theorem 15. If Gt is the centroid of the tangential triangle AtBtCt of
the allowable triangle ABC, then the homothecy (Gt, 4) maps the point
T from Theorem 11 into the point Tii from Theorem 14.

Relationships between all the discussed elements are given in the
Figure 1.

Figure 1.
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wherefrom we deduce that S passes through the point BiCi∩BiiCii and
analogously through the points CiAi ∩CiiAii and AiBi ∩AiiBii. Hence,
we conclude that S is the axis of homology of the triangle AiBiCi and
its contact triangle AiiBiiCii. �

Corollary 8. The contact triangle AiBiCi of the standard triangle ABC
has the incircle Kii with the equation (17) and the contact triangle
AiiBiiCii with the vertices given in (18), while for example the equa-
tion of its side BiiCii is given in (19). The Lemoine line Lii of the
triangle AiiBiiCii has the equation (14).

We see now that the point Li ∩ Lii = Li ∩ S = Ti in the triangle
AiBiCi has the same role as the point T = L∩Li in the triangle ABC,
and using Theorem 9 on the triangle AiBiCi it follows that its orthic
axis Hi passes through the point Ti and has the equation y = −4

3q. We
then apply Theorem 11 on the triangle AiBiCi. It follows that the point
Tii of the triangle AiiBiiCii which corresponds to the point Ti of the
triangle AiBiCi, is anticomplementary to the latter point regarding the
triangle AiBiCi, that is the equality 2Ti + Tii = 3Gi is valid. From the
equality (16) and Gi = (0, −5

3q) we get

Tii = (−8q2

9p
,−7

3
q). (20)

On the other hand, the point Tii from (18) lies on the line L with the
equation (9) due to

3p

q
(−8q2

9p
) +

q

3
= −7

3
q.

We have actually proved:

Theorem 14. By the notation from Theorem 11 the point Tii = L∩Lii

is anticomplementary to the point Ti = Li ∩ S regarding the triangle
AiBiCi.

Using Theorem 11 again and the fact that the point Ti is anticomple-
mentary to the point T regarding the triangle ABC we get 2T+Ti = 3G
that together with the equality 2Ti + Tii = 3Gi gives the equality
4T − Tii = 6G − 3Gi. For G = (0, −2

3q) being the midpoint of the
points Gt = (0, q

3) and Gi = (0, −5
3q) we have Gt + Gi = 2G, i.e.

6G − 3Gi = 3Gt. Hence, it follows that 4T − Tii = 3Gt which written
in the form of 4(T −Gt) = Tii −Gt proves that the homothecy (Gt, 4)
maps the point T into the point Tii. So, we have:



106

ON SOME CONVERSIONS OF THE

JENSEN-STEFFENSEN INEQUALITY

S. IVELIĆ AND J. PEČARIĆ

Abstract. Some conversions of the Jensen-Steffensen inequality
for convex functions are considered. Applying exp-convex method
improvements and reverses of the Slater-Pečarić inequality are ob-
tained. Related Cauchy’s type means are defined and some basic
properties are given.

1. Introduction

A function ϕ : (a, b) ⊆ R → R is convex if

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

holds for all x, y ∈ (a, b) and λ ∈ [0, 1].
It is well known that for a convex function ϕ : (a, b) → R, any mono-

tonic n-tuple x = (x1, ..., xn) ∈ (a, b)n and a real n-tuple a = (a1, ..., an)
that satisfies

0 ≤ Aj =

j∑
i=1

ai ≤ An, j = 1, ..., n, An > 0, (1.1)

the Jensen-Steffensen inequality

ϕ

(
1

An

n∑
i=1

aixi

)
≤ 1

An

n∑
i=1

aiϕ (xi) (1.2)

holds (see [9]).
The next integral variant of the Jensen-Steffensen inequality is proved

by R. P. Boas [5].

Theorem 1. Let ϕ : (a, b) → R be a convex function. Let f : [α, β] →
(a, b) be continuous and monotonic, where −∞ ≤ a < b ≤ +∞ and

Date: .
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Key words and phrases. Cauchy’s means, convex functions, Jensen-Steffensen in-

equality, Slater-Pečarić inequality .
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