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Butterfly Lines’ Curve in pseudo-Euclidean Plane

E. JURKIN, A. SLIEPČEVIĆ

Abstract. Up till now the validity of the Butterfly theorem has been verified in
the Euclidean, isotropic, hyperbolic and pseudo-Euclidean plane. Furthermore, it
has been shown that an infinite number of butterfly points, located on a conic, is
associated with any quadrangle inscribed into a circle.

In the present paper we study the curve formed by butterfly lines. In the Eu-
clidean plane this curve is always a curve of order four and class three having one
real cusp while in the pseudo-Euclidean plane it can also be a curve of order four and
class three having three real cusps or a special parabola.
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1 Introduction

The basic object of the Butterfly theorem is a complete quadrangle in-
scribed into a circle. The numerous proofs, many variants and gener-
alizations of the theorem in the Euclidean plane have been published,
see for instance [2], [9], [14]. The Butterfly theorem is also valid in the
isotropic, hyperbolic and pseudo-Euclidean plane, see [1], [3], [11], [12].

A pseudo-Euclidean plane can be defined as a real projective plane
PG(2,R) where the metric is induced by an absolute figure {f, F1, F2}
in the sense of Cayley-Klein, consisting of a real line f and two real
points F1 and F2 incidental with it, [4], [6]. We assume that PG(2,R)
is embedded into its complexification PG(2,R ⊂ C).

An involution of points on the absolute line f having the absolute
points F1, F2 for the fixed points is called the absolute involution. Two
lines are perpendicular if they meet f in a pair of points corresponding
in the absolute involution. The midpoint of the segment AB is the point
P such that the pair A,B is harmonically separated by the pair P,O,
where O = f ∩AB.

The proper conics in the pseudo-Euclidean plane are in [4] classified
into: ellipses, hyperbolas, parabolas, special hyperbolas, special parabo-
las and circles. The pole of the absolute line with respect to the conic
c is called the center of the conic c and all lines through the center are
its diameters, [6].
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Butterfly Points

The Butterfly Theorem in the pseudo-Euclidean plane says the following:
Let the complete quadrangle ABCD be inscribed into the circle c and let
l be a line perpendicular to the diameter o of the circle c. If L = o ∩ l
is the midpoint of one of the segments formed on l by the pairs of the
opposite sides of the quadrangle, then it is also the midpoint of the other
two.

This theorem has been proved synthetically in [12]. The proof is
based on the fact that L and the isoptropic point O of the line l are
fixed points of the involution determined on l by the conics of the pencil
[ABCD], [5].

The point L with described property is called a butterfly point and
the line l is called a butterfly line of the quadrangle ABCD.

It has been shown in the papers [3], [9], [11] and [12] that in all
four mentioned planes there is a butterfly point on every diameter of c.
All of them lie on a conic, the so-called butterfly points’ curve, passing
through the center of the circle, three diagonal points of the quadrangle
and six midpoints of its sides, Figure 1. In the Euclidean plane this
conic is always a rectangular hyperbola while in the pseudo-Euclidean
plane three cases are possible:

• k is a rectangular hyperbola if the pencil [ABCD] contains the
circle c, ellipses, hyperbolas and two parabolas.

• k is an ellipse if the pencil [ABCD] contains, apart from the circle
c, only hyperbolas.

• k is a special parabola if the pencil [ABCD] contains, apart from
the circle c and one special parabola, only special hyperbolas.

2 Butterfly Lines

In the present paper we move our interest from the butterfly points to
the butterfly lines. It has been shown in [10] that in the Euclidean plane
the envelope of the butterfly lines, so-called butterfly lines’ curve, is a
curve of order four and class three having one real cusp and touching
absolute line at two real points. In our study we will use the approach
introduced in that paper. It is natural to expect that in the pseudo-
Euclidean plane the situation is similar, but not exactly the same.
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Figure 1.

Some of the butterfly lines of the quadrangle ABCD are: six sides
of the quadrangle, perpendiculars at the diagonal points to the joints of
the diagonal points and the center of the circle c, and the absolute line.

Pedal and negative pedal transformations in the pseudo-Euclidean
plane can be defined analogously as in the Euclidean plane.

Definition 1. The pedal KP of a curve K with respect to a point P is
the locus of the foot of the perpendicular from P to the tangent to the
curve K.
The curve K is called the negative pedal of KP .

If the complete quadrangle ABCD is inscribed into the circle c with
the center S, then the butterfly points are feet from S to the butterfly
lines. So, it follows:
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Theorem 1. Let the complete quadrangle ABCD be inscribed into the
circle c with the center S. The butterfly lines’ curve K of the quadrangle
ABCD is the negative pedal of the butterfly points’ curve k with respect
to the pole S.

This theorem allows us one construction of the butterfly lines, Fig-
ure 1. The another construction can be made by applying Pascal’s the-
orem: choose a point O on the absolute line and construct the tangent
l of the conic determined by A,B,C,D,O at O.

The main result of our work is stated in the following theorem:

Theorem 2. Let the complete quadrangle ABCD be inscribed into the
circle c. Let k be the butterfly points’ curve and K be the butterfly lines’
curve of the quadrangle ABCD.

• K is a curve of order four and class three with one real cusp if k
is a hyperbola.

• K is a curve of order four and class three with three real cusps if
k is an ellipse.

• K is a special parabola if k is a special parabola.

Proof. Let us first suppose that k is a hyperbola or an ellipse, Figure
1. For every isotropic point O there is a butterfly line l passing through
it. On the other hand, every point L of the butterfly points’ curve k
has the butterfly property on only one butterfly line l. Therefore, the
butterfly lines’ curve K is a curve of class three since it is the result of
the projectively linked pencil of points of the first order on the line f
and pencil of points of the second order on the conic k. If k is a hyper-
bola or an ellipse, then it intersects f in two points: real or imaginary,
respectively. They both play the role of butterfly point on f . Hence, the
absolute line is a double tangent of K, ordinary or isolated, respectively.
According to Plücker’s equations1 (see [7], pp. 64-65. or [8], p. 24.) K
has to be a curve of order four with three cusps and no stationary tan-
gent. Furthermore, by using Klein’s equation2 ([8], p. 24.) we get that

1 k = n(n− 1)− 2d− 3r, n = k(k − 1)− 2t− 3w,
w = 3n(n− 2)− 6d− 8r, r = 3k(k − 2)− 6t− 8w,

where: n - the order of the curve, k - the class of the curve, d - the number of its
double points (nodes and isolated), r - the number of its cusps, t - the number of its
double tangents, w - the number of its points of inflexion.

2w1 = k + r1 + 2d1 − 2t1 − n,
where: r1 - the number of the real cusps of the curve, d1 - the number of its real
double points, t1 - the number of its isolated double tangents, w1 - the number of its
real points of inflexion.
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if K has an isolated double tangent, all three cusps are real, otherwise,
only one of them is real.

For further investigation of K we will study its polar curve K with
respect to the circle c (the curve consisting of the poles of the butterfly
lines with respect to c). It is obvious from the construction that K is
also an inverse image of k with respect to the same circle c, [4]. An
inversion maps a conic to a curve of order four. In our case the conic
k passes through the fundamental point S and its inverse splits onto a
cubic K and the corresponding fundamental line f . K passes through
the absolute points F1, F2 and has a node or an isolated double point at
S depending on whether k is a hyperbola or an ellipse. The tangents at
the cusps to K correspond to the stationary points of K.

If k is a special parabola touching the absolute line at e.g. F1, then
its inverse K splits onto a conic passing through S and F2, and two
fundamental lines of inversion: the absolute line f and the isotropic line
SF1, Figure 2. It follows immediately that the polar curve K of the
conic K is a conic touching f and SF2. This finishes the proof. �

Figure 2.
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Family of triangles and related curves

Ana Sliepčević, Helena Halas

Abstract. The article observes a one-parameter triangle family T . We prove that
the sets of the orthocenters, centroids, circumcenters and the midpoints of the variable
triangle side of the triangle family T lie on four different hyperbolae. Furthermore,
there is constructed an envelope k4

3 of the perpendicular bisectors of the variable tri-
angle sides. Also it is constructed a bicircular rational quartic as an envelope of the
circumcircles of the triangle family T .

Key words: Triangle centers, family of triangles, envelope of lines, envelope of
circles
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1. Introduction

Many mathematicians have been occupied by theorems that imply the
connection between a triangle and a line, or a circle or an another curve
of triangle points [1]. Although it seems that this subject is explored,
it is possible to extend some of the questions to the families of triangles
and curves that are associated with them. These geometrical problems
connected to the families of figures or curves can show the benefits of
using dynamic software in geometry. In this paper we will express and
prove a few theorems about one triangle family and curves associated
with it.

2. A family of triangles and related curves

Let a and b be two lines and M their intersection point. Let (O) be
a pencil of lines where its vertex O is an arbitrary point that does not
lie on the line a or b. The lines of the pencil (O) are denoted by xi for
i ∈ I, (card I = ℵ1). Hereafter the intersections between the line xi and
the given lines a and b are denoted by Pi = xi ∩ a and Ni = xi ∩ b (see
Fig. 1).

A one-parameter family T of the triangles MNiPi, i ∈ I, will be
studied in this paper. To each triangle of the family T we can assign


