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Review paper 
 This study presents the application of multipole expansion to calculate the roll 
damping of the rectangular box. The N-parameter Lewis form was used to follow the 
rectangular cross section. The Ursell-Tasai method was employed to deal with non-circular 
cross section. The added mass and damping coefficient of the sway, heave, and roll motion 
were calculated. BEM code was developed to compare with the results. Experiment was done 
to verify the flow field calculated from the multipole expansions.  
 Keywords: added mass coefficient, damping coefficient, Lewis form, multipole 
expansions, roll damping  

 

Primjena metode multipola na proračun prigušenja ljuljanja  
 

Pregledni znanstveni rad 
 Ovim radom prikazana je primjena metode multipola na proračun prigušenja zbog 
ljuljanja prizmatičnoga pontona. Pravokutni poprečni presjek pontona opisan je N-
parametarskom Lewisovom formom. Metoda Ursella i Tasaia primijenjena je na poprečne 
presjeke koji nisu kružnog oblika. Izračunati su hidrodinamički koeficijenti dodane mase i 
radijacijskoga prigušenja za zanošenje, poniranje i ljuljanje. Rezultati su uspoređeni s 
posebno razvijenim računalnim kodom utemeljenim na metodi rubnih elemenata. Radi 
potvrde polja strujanja izračunatog na temelju metode multipola provedeno je i 
eksperimentalno istraživanje. 
 Ključne riječi: koeficijent pridružene mase, koeficijent prigušenja, Lewisova forma, 
metoda multipola, prigušenje ljuljanja 
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 1 Introduction 
Multipole expansions express the velocity potential as a sum of singularities. The 

singularities are located within a body. The coefficients of the singularities can be obtained 
imposing boundary conditions on the body when the boundary of the body coincides with the 
coordinate surfaces [1]. When the boundary of the body deviates from the coordinate surfaces 
the body boundary should be transformed to match the coordinate surfaces [2]. An attempt to 
apply multipole expansion to general body has been done by Eatock Taylor and Hu [3]. They 
applied boundary integral expression to inner fluid domain closed to body and matched 
multipole expansion at the outside of inner domain. They confirmed only two-dimensional 
hydrodynamic problem. Mavrakos and Chatjigeorgiou provided the analytic solution for 
hydrodynamic diffraction problem on submerged prolate spheroids in infinite water depth [4]. 
The solution method is based on the multipole expansions and employs the multipole 
potentials derived by Thorn [5].  

This study presents the application of multipole expansion to the prediction of roll 
damping of a box barge. The cross section of the box barge is a rectangular shape. The lower 
corner of the rectangle has the strong mathematical singularity. To deal with these corners in 
detail a multiple parameters Lewis form has been adopted. By increasing the parameters of 
the Lewis form the deviation of the rectangular shape with the conformal mapped body shape 
decreased. The multipole expression is mapped into unit circle to satisfy the body boundary 
condition. The coefficients of the multipoles can be determined. Since the velocity potential 
is known, we can calculate added moment, and damping moment of roll motion can be 
obtained. To confirm the results, an experiment was carried out. The flow field was recorded 
with high speed camera. The velocity field was obtained through PIV analysis. The computed 
and the experimental results are mutually compared.  

 2 Multipole expansions 
Let the fluid be inviscid and incompressible and let it satisfy the requirements for 

irrotational flow. The depth of the fluid is assumed to be infinite. If the fluid has the harmonic 
behaviour, the time dependence velocity potential can be introduced in the 
form ( , ) Re[ ( ) ]i tx t x ωφΦ = e , with the angular frequency ω of fluid domain and oscillating 
body.  

For the two-dimensional problem, we can introduce the Cartesian coordinates Oxz. The 
z-axis is opposite to the direction of gravitational force acting with the origin O on the mean 
free-surface and the x-axis is lying on the mean free surface. A submerged or floating body in 
the fluid oscillates with the angular frequency ω. The governing equation and boundary 
condition of the problem can be written as follows:       

2 0φ∇ =   in  fluid domain      (1) 

0
z
φ∂
=

∂
   as         (2) z → −∞

0K
z
φ φ∂
− =

∂
  on         (3) 0z =

n
φ∂
= ⋅

∂
V n   on body surface       (4) 
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lim 0
Kx

iK
x
φ φ

→±∞

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
m          (5) 

The normal vector n is pointing out of the fluid. And the wave number K is given by K= 
ω2/g where g is the gravitational acceleration. 

 2.1 Ursell’s multipole expansions 

The analytic solution of a heaving and swaying circle in the water is announced by Ursell 
[1]. He introduced some singularities on the centre of the circle satisfying the Laplace 
equation, infinite bottom condition, free surface boundary condition and radiation condition 
except the body boundary condition. He suggested that the total velocity potential can be 
expressed with the sum of singularities.  

[0 0
1

m m m m
m

A c A c B sφ
∞

=

= + +∑ ]         (6) 

where 
( )

0 0

'ln 2 . . cos
k z fr ec PV

r k K

+∞
= +

−∫ kxdk        (7) 

( )

1 0

sin sin ' 2 . . sin
'

k z fes a kPV kxdk
r r k K
θ θ +∞⎧ ⎫

= + +⎨ −⎩ ⎭
∫ ⎬       (8) 

1 1

cos cos ' cos( 1) cos( 1) '
' 1 '

m
m m m m m

m m K m mc a
r r m r r

θ θ θ θ
− −

⎡ −⎛= + + −⎜⎢ ⎥− ⎝ ⎠⎣ ⎦

− ⎤⎞
⎟     (9) 

1 1

sin sin ' sin( 1) sin( 1) '
' 1 '

m
m m m m m

m m K m ms a
r r m r r

θ θ θ θ
− −

⎡ −⎛= + + −⎜⎢ ⎥− ⎝ ⎠⎣ ⎦

− ⎤⎞
⎟         (10) 

 
In case of a submerged cylinder, let the centre of the cylinder be located at y=f. Then the 

singularities can be expressed as equations (7) to (10). Figure 1 depicts the coordinate system 
and the location of singularities. Above potentials in equations (9) to (10) do not make the 
waves at the infinity. They decay to zero as x →±∞ . In other words, they are involved in 
local disturbance near the body. So the potentials representing outgoing waves at infinity are 
also needed to satisfy the radiation condition written in equations (7) to (8). The wave 
potential in equation (7) is the pulsating source potential. Wave potentials in equations (7) to 
(8) can be expressed in terms of exponential integral  [6]. 1 ( ')E Z

 
Figure1 Description of coordinate system 
Slika 1  Definicija koordinatnog sustava 
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{ }( )'
0 1

'ln 2 Re ( ') K f z iK xZrc e E Z ie
r

π + −⎡ ⎤= + −⎣ ⎦           (11) 

( )'
1 1

sin sin ' 2 Im ( ') sgn( )
'

K f z iK xZs a k e E Z x e
r r
θ θ π + −⎧ ⎫⎡ ⎤⎡ ⎤= + + +⎨ ⎬⎣ ⎦⎣ ⎦⎩ ⎭

        (12) 

where  
 

'' ( ) ' iZ K z f ix Kr e θ= + + =  
 
At the infinity, and  go to zero. If the circle is floating on the free surface 
with f=0, then the multipoles are simply represented. 

ln '/r r '
1 ( ')Ze E Z

 
( )'

0 12 Re ( ') 2 K f z iK xZc e E Z ieπ + −⎡ ⎤= −⎣ ⎦            (13) 

( )'
1 1

sin 2 Im ( ') sgn( ) K f z iK xZs a K e E Z x e
r
θ π + −⎧ ⎫⎡ ⎡ ⎤= + +⎨ ⎬⎣ ⎦⎣⎩ ⎭

⎤
⎦          (14) 

2
2 2 2

cos cos(2 1)2
2 1

m
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r m r 1

θ θ
−

−⎡ ⎤= +⎢ ⎥−⎣ ⎦
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2 1
2 1 2 1 2

sin(2 1) sin 2
2

m
m m m

m K ms a
r m r

θ θ+
+ +

+⎡ ⎤= +⎢ ⎥⎣ ⎦
          (16) 

 
The other terms are zero. To determine the coefficients of the potential, we can define the 

radiation potential jφ  by  which has the velocity of unit amplitude in 
the j th mode. From the body boundary condition we can determine the coefficient.  

Re[ ]i t
j ji e ωωξ φΦ =

1
sin

N
m

m
m

sB
n

θ
=

∂
=

∂∑   on  r a= , Sway         (17) 

1
0

0
1

cos
N

m
m

m

c cA A
n n

θ
−

=

∂ ∂
+ =

∂ ∂∑  on  r a= , Heave          (18) 

 
This problem was first solved by Ursell and complete results were given by Ogilvie 

[1,7,8]. 
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(a) Unit Circle ( planeζ − ) (b) Transformed 3-parameter Lewis form ( ) planez −

 
Figure 2 Description of geometric plane ( -plane) and transform plane (z ζ -plane)  
Slika 2 Geometrijska ravnina (z-ravnina) i ravnina transformacije ( ζ -ravnina) 
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 2.2 Conformal mapping 

Ursell’s multipole expansion is restricted to the circular circle only. However, a ship has 
more complex geometry which is hard to be expressed analytically. Ship’s middle section 
shape is similar to a rectangle. Tasai computed the complex geometry by introducing the 
conformal mapping function [2]. 

2 1
2 1

0

N
n

n
n

z M a ζ −
−

=

= ∑  where   z x iy= + , ire θζ =          (19) 

 
The position vector of the body surface is defined in the z-plane. Using the conformal 

mapping function the position vector describing the surface of the body can be expressed in 
the ζ-plane (see Figure 2 (a) and (b)). A very simple transformation of cross sectional hull 
form is obtained N=2 in the conformal mapping function which is the Lewis transformation 
[9]. 
 

31
3

aaz M ζ
ζ ζ

⎛
= + +⎜

⎝ ⎠

⎞
⎟

)

             (20) 

where 

(
0

1
1

2 /
Ha
M d
−

=  and ( )
0

3
1

1
2 /

H
a

M d
+

= −
           

(21) 

 
with the hull form factor 

( )

2 2
1 3

0 2 2
1 3 3 1

1 3/ 2 / 2, and
1 4 1

a aB B AM H
a a D BD a a

πσ − −
= = = =

+ + + −
        (22) 

where  

( ) ( ) ( )2
0 0 03 1 1 8 1 4 /

4
H H HM

d
σ π+ − + + −

=           (23) 

 

 
Figure 3 N- parameter Lewis form 
Slika 3 N- parametarska Lewisova forma 
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The coefficients in the mapping function are determined with the hull form factor. H0 and 
σ represent the ratio of half breadth and draft and area coefficient. So far we have looked over 
the simple Lewis form which is determined with the ratio of half breadth and draft and area 
coefficient. But in case when the body shape is arbitrary, the 3-parameter Lewis form is not 
suitable to express the arbitrary body shape. So we applied the N-parameter conformal 
mapping function to express an arbitrary body shape. To determine the coefficients in the 
formula, we used the information of the offset point on the body surface. The contour of the 
approximate cross section is given by increasing the number of parameters. 

( ) ( )0 2 1
0

1 sin 2 1
N

n
n

n

x M a n θ−
=

= − − −∑            (24) 

( ) ( )0 2 1
0

1 cos 2 1
N

n
n

n

y M a n θ−
=

= + − −∑            (25) 

 
If θ is determined with the offset, we can define the error with the numerical value of the 

square of the deviation of (xi, yi) from (x0i, y0i) which is shown in Figure 3.  

I

i
i o

E
=

= ∑e               (26) 

where  

2 2
2 1 2 1

0 0

( {( 1) [ ]sin((2 1) )}) ( {( 1) [ ]cos((2 1) )})
N N

n n
i i n i i n i

n n

e x M a n y M a nθ θ− −
= =

= + − ⋅ − + − − ⋅ −∑ ∑  

Then the new values of M·a2n-1 have to be obtained in such a manner that E is minimized. 

( )2 1

0
j

E
M a −

∂
=

∂ ⋅
 for 0,1, ,j N= L           (27) 

 
This yields N+1 equations, but derived the equations do not satisfy the exact breadth and 

draft. To obtain the exact breadth and draft, the last two equations are replaced by the 
equations for the breadth at the water line and the draft. 

( ) ( ) ( ) ( )2 1
0 0 0

1 cos 2 2 sin 2 1 cos 2 1
N I I

n
n i i i i

n i i

M a j n x j y j iθ θ θ−
= = =

⎡ ⎤− ⋅ − = − − + −⎣ ⎦∑ ∑ ∑  

for 0, , 2j N= −L       (28) 

[ ]2 1
0

/ 2
N

n
n

M a B−
=

⋅ =∑      for  1j N= −       (29) 

( ) 2 1
0

1
N

n
n

n

M a −
=

⎡ − ⋅ =⎣∑ d⎤
⎦      for j N=        (30) 

 

These N+1 equations can be solved by a numerically iterative method. The advantage of 
using the N-parameter Lewis form is that we can get the approximated mathematical formula 
describing the hull form using the information of the hull’s offset. However, the disadvantage 
is that we need to compute the coefficients by a numerically iterative method. Figure 4 shows 
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that as the parameter increases, the improvement gets better. The error decreases as the 
number of iteration increases, as shown in Figure 5. 

 2.3 Ursell-Tasai method 

In the previous chapter, we introduced the N-parameter Lewis form. Tasai expressed the 
multipole expansion by introducing the 3-parameter Lewis form [2]. But the 3-parameter 
Lewis form has the disadvantages to describe the arbitrary body shape as shown earlier. To 
overcome this disadvantage, we expanded the Tasai’s multipole expansion expressed with the 
3-parameter to the N- parameter multipole expansion.  
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Figure 4 - parameter Lewis form with N increments  N
Slika 4  N - parametarska Lewisova forma u ovisnosti o broju parametara 

  
Figure 5 Convergence of the offset error 
Slika 5  Konvergencija greške u opisu pravokutnog presjeka 
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 2.4 Symmetric motion (heave) 

For the symmetric motion like heave, the multipole expansion is written as equations (31) 
to (32).  

2( , , ) Re ( , ) i t
Sx y t i X x y e ωω φ⎡ ⎤Φ = ⎣ ⎦            (31) 

0 0 0 2 2
1

S S S
S c s m

m

A i A mφ φ φ φ
∞

=

⎡ ⎤= + +⎣ ⎦ ∑             (32) 

 
Since the motion is symmetric, the flow also has symmetric behaviour. The components 

of multipole expansion for symmetric motion have the forms below. The two dimensional 
infinite Green function is also shown in equation (33). 

0 0 00

0

2 20

cos2lim

cos2 . . cos

cos sin2

ky
S S
c s

Ky
Ky

k x Ky iK x

e kxi dk
k K i

e KxPV dk ie Kx
k K

k ky K kye dk ie
k K

μ
φ φ

μ

π

π

−∞

→

−∞ −

∞ − − −

+ =
− +

⎡ ⎤
= −⎢ −⎣ ⎦

−⎡ ⎤= −⎢ ⎥+⎣ ⎦

∫

∫

∫

⎥          (33) 

1 2 1
2 2

0

(2 1) cos(2 2 1)cos 2 ( 1)
(2 2 1)

S n n
m m

n

n a m nm KM
r m n 2 2 1m nr

θθφ
∞

+ −
+ −

=

− +
= + −

+ −∑ −         (34) 

 
In here, we can see that the components of the multipole expansion have symmetric 

behaviour with respect to θ=0. 

 2.5 Asymmetric motion (sway and roll) 

For the asymmetric motions like sway and roll, the multipole expansion can be written as 
equations (35) to (38). On the contrary to symmetric motion, we can see that the components 
have asymmetric behaviour with respect to θ=0. 

2,3( , , ) Re ( , ) i t
Ax y t i X x y e ωω φ⎡ ⎤Φ = ⎣ ⎦            (35) 

0 0 0 2 2
1

A A
A c s m

m

B i B A
mφ φ φ φ

∞

=

⎡ ⎤= + +⎣ ⎦ ∑             (36) 

2

0 0 2 20

sin cos 2 sin 2k x Ky iK xA A
c s

k ky K kyi e dk
k K K r

eθφ φ π− − −+
+ = + ±

+∫m         (37) 

1 2 1
2 2 1 2 2

0

(2 1) sin(2 2 )sin(2 1) ( 1)
(2 2 )

A n n
m m

n

n a m nm KM
r m m nn r

θθφ
∞

+ −
+

=

− ++
= + −

+∑ +         (38) 

 
The coefficients A2m and BB2m in the velocity potential are determined by satisfying the body 
boundary condition, while the M·a2n-1 is previously determined using the information on the 
body geometry offset by solving equations (28) to (30). 
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 3 Experiments 
In order to measure the velocity field around the box barge forced roll motion was 

applied. The centre of roll motion was located at the centre of breadth and on the mean free 
surface. The PIV measurement apparatus was installed to measure the velocity field around 
the body.  

Table 1Specifications of the model 
Tablica 1 Značajke modela 

 Box Barge Model 

L B D× ×  610 X 300 X 250 (mm)  

 

 

 

 

Draft ( ) d 150 mm 

Material Acrylic Plastic 

Centre of rotation is located 150 mm above the bottom of the model. 

 

 

 

 
 
 
Figure 6 Description of forced roll motion experiment 
Slika 6  Prikaz instrumentacije za eksperimente prisilnog ljuljanja 
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Figure 7 Box barge model 
Slika 7  Model prizmatičnog pontona 
 

 
Figure 8 Selection of test cases based on BEM 
Slika 8 Odabir testnih primjera na temelju proračuna metodom rubnih elemenata 

 

Table 2 Test cases with various  Kb
Tablica 2 Testni primjeri za različiti  Kb

 Kb   0.15b m=

0.10 

0.25 Added Mass  
Coefficient Comparison 

0.38 

0.32 

0.53 Damping  
Coefficient Comparison 

1.00 

 1.75 
 

 Figure 6 depicts the schematic view of roll motion. The vertical movement of the 
servo motor generates roll motion through jig. The laser sheet was generated around the cross 
section of the body. The high speed camera captured the velocity field around the body. The 
principal dimensions of the box barge are shown in Table 1. The shape of the box model is 
presented in Figure 7. To define the test conditions the boundary element analysis was done 
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on a two dimensional box barge to get hydrodynamic coefficients. The results are shown in 
Figure 8. The normalized wave numbers at which the added mass and damping coefficients 
are maxima were selected. Two extra points in between the maxima were selected so that we 
can observe what happens around the maximum normalized wave number. The selected Kb 
values are presented in Table 2. 

 4 Analysis and results 
 Once we got velocity potential expressed in multipole expansion we can obtain 
hydrodynamic coefficients by integrating the pressure over the surface of the rectangular box.  

 
/ ( ,

H
ij ij j iS

a ib x y n dSω ρ φ− = − ∫ )             (39) 

 
The normalized hydrodynamic coefficients can be written as

 
' '

2
ij ij

ij ij
i j i j

a b
a ib i

b bρ ε ε ρω ε ε2− = −             (40) 

 
when j=1,2 εj=1,when j=3 then εj=b. The hydrodynamic coefficients obtained from equation 
(40) are presented in Figures 9 to 14. When it comes to the sway motion of the box barge, the 
hydrodynamic coefficients using the 3-prameter Lewis form expansion were very close to the 
results calculated by the boundary element method shown in Figures 9 to 10. The same 
tendency can be verified with the heave motion of the box barge, which can be seen in Figure 
11. Better accuracy can be noticed with the added mass than in the case of damping. The 
added mass and damping coefficients for sway and heave converge very fast and these 
characteristics are featured in Figures 9 and 12. For the swaying and heaving motion, the 
convergence of the hydrodynamic coefficients is very fast and shows good results when N is 
small. Hydrodynamic coefficients come from the integration of the pressure of the hull. From 
Figures 9 to 12, for the sway and heave motion, the pressure at the side wall and bottom is 
much more dominant than the pressure acting on the corner. 
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Figure 9 Convergence of sway added mass 
Slika 9  Konvergencija dodane mase za zanošenje 
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Figure 10 Convergence of sway damping coefficients 
Slika 10  Konvergencija radijacijskog prigušenja za zanošenje 
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Figure 11 Convergence of heave added mass 
Slika 11  Konvergencija dodane mase za poniranje 
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Figure 12 Convergence of heave damping coefficients 
Slika 12  Konvergencija radijacijskog prigušenja za poniranje 
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Figure 13 Convergence of roll added mass 
Slika 13 Konvergencija dodane mase za ljuljanje 
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Figure 14 Convergence of roll damping 
Slika 14  Konvergencija radijacijskog prigušenja za ljuljanje 
 
 The added mass and damping coefficients of roll motion are very sensitive to the 
variation of N. An increase of only few terms of N made big difference in the added mass and 
damping coefficients, which can be seen in Figures 13 and 14. This means that the pressure 
acting on the corner of the rectangular barge has significant portion. The deviation from the 
results of BEM got decreased significantly. The consistence of the numerical code was 
verified by comparing the amplitude of the wave at infinite region with the damping [10]. 
The damping coefficient of roll damping at infinite region can be written as equation (41). 

2
33 0 0(b Bρω π= )B              (41) 

 
The result is shown in Figure 15. The two curves are almost identical. As the value of  
increases, the deviation from the result of equation (41) decreased.  

N
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Figure 15 Error check (roll radiation damping) 
Slika 15  Provjera greške kod radijacijskog prigušenja ljuljanja 
 
 

 
Figure 16 Velocity vector field and velocity contour at the corner (roll motion), = 0.50, (a,d): =3, (b,e): =5, (c,f): 

=7 
Kb N N

N
Slika 16 Vektorsko polje brzine i izolinije brzine u kutu presjeka kod ljuljanja, = 0.50, (a,d): =3, (b,e): =5, (c,f): 

=7 
Kb N N

N
 

 To figure out the reason of the convergence, the flow field with increased N around 
the body was investigated. For fixed Kb = 0.5 the velocity field around the corner of the body 
is illustrated in Figure 16. As the number of terms increased, the magnitude of the velocity 
around the corner increased. This phenomenon is caused by the geometrical singularity of the 
corner. It seems that the velocity computed from the velocity potential does not bear the 
geometric characteristic of the corner because of the ideal fluid assumption. The change in 
the velocity field for fixed N as the value of Kb varies was investigated. The results are 
shown in Figure 17. The Kb value at which the velocity reaches maximum was checked in 
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order to see whether the maximum of the added mass yields at the same Kb value. To 
investigate this, we plotted the velocity contour at the corner for various Kb. Figure 18 (b) 
clearly shows the results.  

 The velocity field computed from the multipole expansion and that experimentally 
measured are shown in Figure 19. It can be seen that the agreement gets better when the 
magnitude of the roll angle is small. It is chiefly due to the fact that the assumption of the 
boundary value problem was based on the small amplitude motion. In reality the sharp corner 
will shed vortex due to the viscosity. However, the multipole expansion is based on the 
inviscid assumption. The experimental results clearly show the existence of vortex. 

 

 

 
Figure 17 Velocity vector field and velocity contour, N= 9, (a,d): Kb = 0.10 , (b,e): Kb = 0.25, (c,f): Kb = 1.75 
Slika 17 Vektorsko polje brzine i izolinije brzine, N= 9, (a,d): Kb = 0.10 , (b,e): Kb = 0.25, (c,f): Kb = 1.75 
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Figure 18 Velocity contour at the corner, N=9, (a): Kb = 0.1, (b): Kb = 0.25, (c): Kb = 1.75 
Slika 18  Izolinije brzine u kutu presjeka, N=9, (a): Kb = 0.1, (b): Kb = 0.25, (c): Kb = 1.75 
 
 

 
Figure 19 Flow field at the corner, Kb = 0.25 (a): Numerically computed, (b): Experimentally measured ( ), (c): 

Experimentally measured ( )  

2.5Aθ = °

5.0Aθ = °
Slika 19  Vektorsko polje brzine u kutu presjeka, Kb = 0.25 (a): numerički izračun, (b): eksperimentalno izmjereno 
( ), (c): eksperimentalno izmjereno (2.5Aθ = ° 5.0Aθ = ° )  

  

 5 Conclusions 
 The present study employed multipole expansion to analyze radiation problem of two-
dimensional floating bodies. Ursell was able to calculate the flow field around a two-
dimensional circular cylinder with multipole expansions. Tasai introduced conformal 
mapping to deal with a body with non-circular cross section. Tasai carried out his 
computation with the 3-parameter Lewis form. Therefore, when the cross section of a floating 
body deviates from the circular shape, the results get less accurate. In the present study the 
number of terms in conformal mapping was taken to be greater than 3. The coefficients of the 
conformal mapping function were taken from the offset of the floating body. This makes it 
possible to calculate the potential around a rectangular shape cross section. The 
hydrodynamic coefficients of the rectangular cross section were calculated. The results were 
compared with those of BEM for various N and Kb. Calculating velocity field is straight 
forward with multipole expansion. The corresponding velocity field and velocity contour 
were presented. When it comes to the sway and heave motion, the convergence of added 
mass and damping coefficients was very fast with a few terms in mulitpole expansion. 
However, the calculation of the roll motion needs more terms due to the role of sharp corners 
of the rectangular cross section. An experiment was carried out to verify the calculated 
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velocity field. The multipole expansion which is based on inviscid assumption was not able 
to compute the vortex. However, the advantage of the multipole expansion was demonstrated 
through this study. First of all, the computation time is extraordinary short when it is 
compared with other numerical schemes. Secondly, since the velocity potential itself is 
obtained, the degree of freedom to represent the results is large when it is compared with 
other CFD codes. 
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 List of symbols 

φ :   velocity potential [m2/s] 
V :  velocity of the body surface [m/s] 
n :  unit normal vector on the body surface [-] 
K :  wave number [rad/m] 
ω :  wave frequency [rad/s] 
g :  gravitational acceleration [m/s2] 

0 1, , ,mc c s sm : components of multipole expansion  
 f : location of the centre of submerged cylinder [m] 
 , , ', 'r rθ θ : distance and angle from located multipole and mirrored one [m,rad] 
 : radius of cylinder [m] a
 ,z ζ  coordinates of real and mapped plane [-] 
 ,B d  breadth, draft [m] 
 2 1, nM a − : hull form factor [-] 
 : ratio of breath to draft [-] 0H
 σ : area ratio [-] 
 0 0,x y : approximated cross section [m] 
 ,i ix y :  exact offset of cross section [m] 
 : offset error [m] E
 1 2, , 3X X X :  amplitude of motion (sway, heave, roll) [m] 
 Sφ : symmetric potential  
 0 0 2, ,S S S

c s mφ φ φ : components of symmetric potential  
 Aφ : asymmetric potential  
 0 0 2, ,A A A

c s mφ φ φ : components of asymmetric potential  
 : model length, breadth, depth [m] , ,L B D
 : added mass, radiation damping  ,ij ija b

 : normalized added mass, radiation damping [-] ' ',ij ija b
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