Botanical Insecticides in Plant Protection

Martina GRDIŠA 1
Kristina GRŠIĆ 2 (✉)

1 University of Zagreb, Faculty of Agriculture, Department of Seed Science and Technology
Svetošimunska cesta 25, 10000 Zagreb, Croatia
2 Tobacco Institute Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
✉ e-mail: kgrsic@agr.hr

Received: April 1, 2013 | Accepted: May 31, 2013

ACKNOWLEDGEMENTS
Special thanks to Ms. Valerie-Ann Cherneski for editorial help.

Summary

Botanical insecticides are natural compounds with insecticidal properties and their use in crop protection is as old as agricultural practice. Although they have been in use for over one hundred years, the advent of synthetic insecticides has unfortunately displaced their use today. Due to fast action, low cost, easy application and efficiency against a wide range of harmful species, synthetic insecticides have become an important part of pest management in modern agricultural systems. However, after decades of use, their negative side effects, such as toxicity to humans and animals, environmental contamination, and toxicity to non-target insects have become apparent and interest in less hazardous alternatives of pest control is therefore being renewed. Plant species with known insecticidal actions are being promoted and research is being conducted to find new sources of botanical insecticides. The most important botanical insecticide is pyrethrin, a secondary metabolite of Dalmatian pyrethrum, neem, followed by insecticides based on the essential oils, rotenone, quassia, ryania and sabadilla. They have various chemical properties and modes of action. However, some general characteristics include fast degradation in sunlight, air and moisture, and selectivity to non-target insects. Unfortunately, neither of these insecticides is widely used as a pest control agent but is recognized by organic crop producers in industrialized countries.

Key words

azadirachtin; botanical insecticides; essential oils; neem; pyrethrin; rotenone
Introduction

Plant pest protection is an important issue for the agricultural community. Before the development of synthetic insecticides, materials derived from plants provided means for crop protection. Plant species have the ability to synthesize a variety of secondary metabolites that are not essential for their growth and development (Rosenthal and Berenbaum, 1991), but are important in the protection against predators and microbial pathogens and interaction of plants with other organisms (Schafer and Wink, 2009). Many secondary metabolites have insecticidal, repellent as well as antifeedant activity. Furthermore, they cause reproduction retardation and act as insect growth regulators (IGR) (Rice and Coats, 1994; Isman, 2000).

The use of plant secondary metabolites for the protection of crops from insect species likely originated at the same time as crop protection itself, thousands of years ago (Thacker, 2002). Crude plant extracts, plant materials or whole plants have been used for several centuries and were known in tribal or traditional cultures around the world (Weinzierl, 2000). The first known written references concerning plant insecticides and their application against pests date back to approximately 400 B.C. from Ancient Rome (Dayan et al., 2009). Botanical insecticides with long history of traditional use include pyrethrum, neem, rotenone and sabadilla (Weinzierl, 2000). They have been used to protect stored commodities or to repel various pests from human habitations (Isman & Machial, 2006). Powdered flowers of the Dalmatian pyrethrum (*Tanacetum cinerariifolium* /Trevr./ Sch. Bip) have been traditionally used in Croatian agriculture and households. Neem has been traditionally used in India, rotenone in East Asia and South America and sabadilla in Central and South America. In the nineteenth and early twentieth centuries, through advances in chemistry, better defined plant extracts, such as derris, nicotine or quassia came into use. Rotenone isolated from *Derris eliptica* (Wall.) Benth was introduced in 1850 as a plant insecticide (Weinzierl, 2000). It was also used as a commercial pesticide, reflecting its original use over 300 years ago. From 1690, water extracts of tobacco were used in England to kill garden insects and by the 1890s, the principal active compound, nicotine, was identified (Weinzierl, 2000). Nicotine and other nicotine compounds were used as contact insecticides and fumigants to control aphids, thrips and mites. The earliest insecticidal applications of quassia date from 1880 when it was successfully used against aphids (Pluke et al., 1999).

The development of synthetic insecticides began in the 1940’s resulting in the abandonment of botanical insecticides in commercial agriculture. The commercial success of synthetic insecticides was due to high efficiency, fast action, ease of use and low cost. Twenty years later, numerous negative side effects of synthetic insecticides in modern agricultural systems have been noticed, including the development of insect resistance, pesticide food contamination, environmental pollution problems, the disruption of natural balance, toxicity to non-target organisms, and the most important, negative impact on human health. Negative side effects of synthetic insecticides have led to the investigation of various alternative measures to conventional pest management practices and the development and use of natural plant protection agents.

Botanical insecticides have certain advantages; they do not persist in the environment, they present a relatively low risk to non-target organisms (beneficial predators and parasites) and they are relatively nontoxic to mammals (Weinzierl, 2000; Scott et al., 2003). They usually break down rapidly in the environment and are easily metabolized by animals receiving sub-lethal doses (Ling, 2003). Today, nearly 200 plants with insecticidal properties are known, but unfortunately only a few of them have been properly evaluated (Pavela, 2009). Moreover, botanical insecticides are not widely used in conventional crop production but they are recognized by organic crop producers in industrialized countries. Reasons for limited commercial development of botanical insecticides are their relatively slow action, variable efficiency, lack of persistence and inconsistent availability (Isman, 2008) when compared to synthetic insecticides. Other barriers to commercialization of botanical insecticides are scarcity of the natural resource, standardization, quality control and registration (Isman, 1997). Among botanical insecticides, pyrethrin and neem are the most exploited commercially and the use of rotenone is decreasing, while ryania and sabadila are in limited use. Furthermore, insecticides based on plant essential oils are entering the pesticide market (Isman, 2006). This paper provides a brief history of botanical insecticides and reviews their chemical properties, toxicology, effectiveness and use.

Pyrethrum

Pyrethrin is the secondary metabolite of Dalmatian pyrethrum (*Tanacetum cinerariifolium* /Trevr./ Schultz Bip.), a perennial plant species (Asteraceae) endemic to the East coast of the Adriatic Sea (Grdiša et al., 2009). It is a mixture of six active compounds (pyrethrin I and II, cinerin I and II and jasmolin I and II), whereas pyrethrin I, cinerin I and jasmolin I are the esters of chrysanthemic acid, and pyrethrin II, cinerin II and jasmolin II are the esters of pyrethric acid (Head, 1973). Typical pyrethrin extract contains pyrethrins, cinerins and jasminols in the proportions 10:3:1 (Crombie, 1995), with the ratio of pyrethrin I to pyrethrin II being approximately 1.0, although it can vary between 0.5 and 3.5 in some breeding lines (Bhat, 1995). In the study of Grdiša et al. (2013), the total pyrethrin content of natural Dalmatian pyrethrum populations ranged from 0.36 to 1.30% (dry flower weight; DW), while the pyrethrin I/pyrethrin II ratio ranged from 0.64 to 3.33%. Flower heads contain the majority of pyrethrins, while in the other plant parts they are found in minor quantities (Kolak et al., 1999). In different flower parts the concentration of pyrethrin varies and approximately 94% of pyrethrin is accumulated in the secretory tissue of the achenes (Kiriamiti et al., 2003; Morris et al., 2005), hence they are protected from photo degradation (Casida, 1980). Minor quantities are found in disc florets (2.0%), ray florets (2.6%) and receptacles (2.6%) (Head, 1966). Piretirin I and piretirin II are predominant and the most active components (Head, 1966; Casida and Quistad, 1995; Crombie, 1995), while cinerin I, cinerin II and jasmolin I and II are present in lower concentrations and characterized with noticeable lower bioactivity (Zong-Mao and Yun-Hao, 1996). Piretirin I acts in minutes, and alone is toxic, while pyrethrin II has a high knock-down effect appearing a few hours after its application. Insects easily metabolize pyrethrin II and recover in a few hours (Sawicki and Thain, 1962), how-
ever their combination has an outstanding, wide range effect on insect species (Winney, 1979). They are contact poisons that rapidly penetrate into the nervous system. According to Tomlin (2000), they bind to sodium channels of nerve cells, prolonging their opening and thereby causing the death of the insect. Sonderlund (1995) also proved that pyrethrins affect the nervous system of insects; they block nerve junctions and the action of voltage-sensitive sodium channels, causing a knock-down effect, paralysis and death (Davies et al., 2007). Pyrethrins are quickly degraded when exposed to light, air, water and high temperatures (Allan and Miller, 1990) and therefore do not accumulate in food chains and ground water (Cochran, 1995; Jovetić and de Gooyer, 1995) and do not persist in the environment beyond a few weeks (Todd et al., 2003). Antonious (2004) determined the half-life of pyrethrins I and II in field conditions to be less than two hours. Crosby (1995) determined that under dark conditions, there is little degradation of pyrethin over time, whereas in the light, rapid degradation from 100% to less than 1% of pyrethrin within five hours has been observed. The pyrethrins are slowly broken down in water and are therefore toxic for some fish and aquatic invertebrates. However, in the presence of microbial communities, the degradation is expected to be faster through oxidative metabolism (Gunasekara, 2004). Due to their high biodegradability they are safe and environmentally friendly and present an ideal substitute for a synthetic insecticide alternative, but due to their instability, their usage is limited. As an insecticide, pyrethrin was registered in 1950 for use in agriculture, households, public health and on domestic and farm animals. It was then labeled as nontoxic to humans and animals. Such classification is no longer allowed, but it remains as one of the safest insecticides. After more than a century of their use, only a few cases of human illness, mostly allergic reactions and dermatitis, are associated with exposure to pyrethrins, caused by impurities that are no longer present in the extracts (Casida, 1980). Oral application of pyrethrins in treating human illnesses has also been reported. Their effective use in controlling intestinal worms, in doses 10-20 mg per adult and 5-10 mg per child was documented in insect, thereby increasing the effectiveness of the insecticide. or spray. They are often used with synergists (e.g., pyreonyl butoxide), substances which suppress detoxification within the insect, thereby increasing the effectiveness of the insecticide. They are effective on a wide range of insect species including mosquitoes, sawfly larvae, caterpillars, leafhoppers, aphids and beetles (Todd et al., 2003) as well as Calicooides variipennis (Coqillette) (Woodward et al., 1985), house flies (Diptera) (Sheppard and Swedlund, 1999), Rosy apple aphid (Dysaphis plantaginea Passerini) (Wyss and Daniel, 2004), Flour beetle (Tribolium confusum Jacquelin du Val) (Arthur and Campbell, 2008) and many other insect species.

Neem
Neem insecticides are derived from the tropical and subtropical tree Azadirachta indica A. Juss. (syn. Melia azadirachta L.), systematically classified in the family Meliaceae. It is commonly known as neem or Indian lilac (Siddiqui et al., 2004). The neem plant is native to Southern and Southeastern Asia and today it is grown in tropical and subtropical areas of Africa, North and South America and Australia (Schmutterer, 1990). The principal active ingredient in neem is azadirachtin, a tetranortriterpenoid limonoid (Mordue and Blackwell, 1993). Azadirachtin is present in minor quantities in all parts of the tree but the highest concentration (0.2-0.6%) is found in the seeds (Govindchhari, 1992). The other limonoids, such as meliantriol, salannin, nimbin and nimbidin have been found in traces (Akhtar, 2000) and contribute to overall bioactivity (Isman, 2006; Morgan, 2009; Salehzadeh et al., 2002). Azadirachtin has a wide spectrum of actions on insects such as repellent, antifeedant, insect growth regulatory (IGR), anti-ovipositional, fecundity, and fitness reducing properties (Schmutterer, 1990). The IGR effects, manifested in growth and moult abnormalities, result from: (1) the disruption of the endocrine system by blocking the release of neurosecretory peptides that regulate synthesis and the release of ecdysteroides and juvenile hormone, and (2) the direct effects of azadirachtin on dividing cells (Mordue et al., 1993). It is effective against more than 500 insect species (Schmutterer and Singh, 1995) and primarily the Lepidoptera, Diptera, Coleoptera, Homoptera and Hemiptera orders (Sadre et al., 1983). This active compound causes mortality and has an antifeedant effect on the Colorado potato beetle (Leptinotarsa decemlineata Say) (Zehnder and Warthen, 1988). In addition, it was found that azadirachtin has antifungal, antibacterial and antiprotozoan activities (Mordue and Blackwell, 1993). They are safe for adults and for the eggs of many predators such as Coccinellids (Schmutterer, 1997) and they have a minimal effect on some other beneficial insect pollinators (Lowery and Isman, 1995; Naumann et al., 1994). Furthermore, azadirachtin has a low acute toxicity to mammals (Salehzadeh et al., 2002; Morgan, 2009), with a LD50 that is more than 5000 mg/kg in rats (Raizada et al., 2001). The Environmental Protection Agency (EPA) classifies azadirachtin in toxicity class IV. The residual effects usually last approximately 4-8 days, depending on the environmental conditions and the plant species treated (Schmutterer, 1998). Azadirachtin is not persistent in the environment due to fast biodegradation in the sunlight (Boursier et al., 2011), therefore they are highly suitable for use in integrated pest management programs (Schmutterer, 1990) and also in organic farming. Today more than 100 commercial neem formulations are used worldwide (Khater, 2012).

Rottenone
Rottenone is a natural plant toxin, isoflavonoid, which occurs naturally in more than 65 plant species. However, most of the commercial supplies are isolated from the roots and rhizomes of the tropical species of the Fabaceae family: cubé or barbasco (Lonchocarpus utilis A. C. Sm.) and derris (Derris elliptica l Wall./ Benth) (Weinzierl, 2000). Dried Derris roots contain approximately 5% of rottenone (Ling, 2003). It has been used for centuries by native tribes of Southeast Asia and South America
as fish poison to catch fish and to obtain food. Rotenone has been used as a selective fish poison for managing freshwater fisheries since the 1930s (Whitehead and Bowers, 1983; Ray, 1991; Ling, 2003) to achieve the desired balance of the species. It is considered to be one of the most environmentally benign toxins available for fisheries management. As a commercial insecticide it has been used for more than 150 years and it acts as a metabolic inhibitor, as well as a neurotoxic poison. It inhibits the electron transport chain in the mitochondria that results in failure of the respiratory functions (Ware and Whitacre, 2004). Shortly following exposure to rotenone, the insects quickly stop feeding and death occurs between a few hours and several days later. It is a contact and stomach poison effective on a wide range of insect species including caterpillars, aphids, suckers, triops and other pests found in fruits and vegetables (Tomlin, 2000), including the Colorado potato beetle (Leptinotarsa decemlineata Say.), Plum curculio (Conotrachelus nenuphar Herbst), Diabrotica and Acalymma species (Weinzierl, 1998). In the investigation by Wheeler at al. (2001), rotenone reduced the amount of food absorbed by three polyphagous Noctuidae moth species and also their ability to transform the absorbed food to biomass. Its effectiveness in controlling the ectoparasitic mite (Varroa jacobsoni Oudemans) of honey bees has been determined by Martel and Zeggane (2002). Rotenone is toxic to cold-blooded animals, less toxic to warm-blooded animals and moderately toxic to humans. Pure rotenone is acutely toxic to mammals (rat oral LD50 is 13 mg/kg) (Isman, 1996). Rotenone is classified by the EPA in either class I or III (highly toxic or slightly toxic) depending on the product formulation. Rotenone is non-persistent in the environment, quickly broken down in light, air, heat (temperatures must not exceed 25°C) and alkaline conditions. Therefore, it is environmentally friendly (Ray, 1991; Holm et al., 2003). In Europe, the formulations containing rotenone are used as protection agents in organic agriculture. However, in some European countries, such as Austria, Italy, Spain, and Switzerland, its use is partially restricted (Cavoski et al., 2011). Most commercial products come from Central and South America. Rotenone’s safety is somewhat controversial, because investigations have shown a connection between the use of rotenone and Parkinson’s disease. Acute exposure in rats caused brain lesions, consistent with those observed in humans and animals with Parkinson’s disease (Betarbet et al., 2000).

Quassia

Bitterwood tree or quassia (Quassia amara L.) is a tropical forest shrub, rarely a small tree, and a member of the Simaroubaceae family. Quassia is indigenous to Northern Brazil and the Guyana and it also grows in Venezuela, Columbia, Argentina, Panama and Mexico. In Guyana, Surin and Brazil insecticidal sprays are traditionally prepared by boiling pieces of quassia wood in water. It was one of the insecticides widely and effectively used before the development of synthetic insecticides (Mancebo et al., 2000). The wood of this plant species, depending on the age, contains 0.14–0.28% of quassinoids (mainly quassin and neoquassin) that exhibit insecticidal activity (Polonsky, 1973; Villalobos et al., 1999). It is a stomach and contact poison and it is one of the few botanicals that have demonstrated systemic properties (Pluke et al., 1999).

A study conducted in India reported the efficacy of quassia extracts on different insects, including mosquitoes, and the results have shown a high oral toxicity (Evans and Raj, 1988). It was found to be effective in controlling aphids, caterpillars, Colorado potato beetles and sawflies. Nematocidal activity has also been reported, as well as selectivity towards beneficial insects such as ladybirds and honeybees (Pluke et al., 1999). Mancebo et al. (2000) conducted a study to determine the antifeedant activity of the quassia extract on Mahogany shootborers (Hypsipyla grandella Zeller, H. robusta Shankland, Bissen and Weisblat), an important forest pest which attacks wood plants of the Meliaceae family. The extracts showed clear antifeedant activity against H. grandella if they are complemented with other integrated pest management preventative tactics. The effects of quassin and neoquassin on the Apple sawfly (Hoplocampa testudinea Klug) using spray treatment with the quassia extract were studied by Psota et al. (2010). The extract from the wood reduced the Apple sawfly infestation of fruitlets.

Sabadilla

Sabadilla is extracted from the seeds of the sabadilla lily (Schoenocaulon officinale Schltdl. & Cham.), a tropical plant which grows in Central and South America. Native American Indians have used sabadilla against different pests for centuries. In a form of insecticidal dusts obtained by grounding the seeds it was also used by Spanish explorers and colonists (Weinzierl, 2000). The alkaloids produced in sabadilla are collectively known as veratrine. Cevadine and veratridine are the most active veratrones and exist in a 2:1 ratio (Dayan et al., 2009). Ripe and aged sabadilla seeds contain approximately 0.3% of alkaloids (Ujvary et al., 1991). Veratrin is also produced by several other species including European white hellebore (Veratrum album L.). Sabadilla affects the membrane of nerve cells, causing a loss of nerve function, paralysis and death. It is effective by either contact or ingestion against caterpillars, leaf hoppers, thrips, stink bugs and squash bugs. It is highly toxic to honeybees (Weinzierl, 2000), degrades rapidly when exposed to air and sunlight and has little residual toxicity. Sabadilla is considered among the least toxic of botanical insecticides with an oral LD50 of 4000-5000 mg/kg (Dayan et al., 2009). Purified veratrine alkaloids are extremely toxic to mammals (rat oral LD50 13 mg/kg) (Isman, 1996).

Ryania

Ryania speciosa Vahl. (Placouriaceae) is a plant species indigenous to South America. Woody stems of this plant contain alkaloids with insecticidal activity, collectively known as ryanoinds. The most active ryanian is ryanodine and 9,21-dehydroryanodine (Jeffries et al., 1992). The ground stem wood contains less than 1% of ryanoxide (Kther, 2012). It interferes with calcium release in muscle tissue, thereby blocking neuromuscular junctions. It is effective by either contact or ingestion against Corn earworm (Helicoverpa zea Boddie), European corn borer (Ostrinia nubilalis Hübner), and citrus thrips (Regnault-Roger, 2012), Codling moth (Cydia pomonella L.), caterpillars, and leaf eating beetles. It is a slow-acting stomach poison and insects stop feeding soon after ingestion. Ryania has a relatively low
toxicity to mammals (Dayan et al., 2009). Purified ryanodine is approximately 700 times more toxic than the crude ground or powdered wood. It has a longer residual activity than most other botanical insecticide.

Essential oils and other sources of insecticidal activity

Essential oils are secondary plant metabolites as mixtures of volatile organic compounds. Many of the essential oils (mainly from the Lamiaceae, Myrtaceae, Asteraceae, Rutaceae, Apiaceae, and Lauroceae families) have great insecticidal potential (Khater, 2012). They also possess antiviral, antibacterial, and antifungal properties. They are easy to extract and generally considered broad-spectrum and environmentally friendly because the array of compounds they contain quickly biodegrade in the soil (Misra et al., 1996). Moreover, they are relatively non-toxic to mammals and fish (Koul et al., 2008). Essential oils from different plant species exhibit ovicidal, larvicidal, antifeedant, insecticidal and repellent action against various insect species (Isman, 2000; Cetin and Yanikoglu, 2006). They interfere with insect growth and development by altering feeding behavior and behavior during oviposition and mating. Recent studies have shown that some chemical compounds have neurotoxic modes of action, interfering with the neuromodulator octopamine (Koul et al., 2008). The use of essential oils (basil, citrus peel, eucalyptus, various mint species, lavender and rosemary) in the protection of stored products is well known and many of the essential oils have been recognized as important natural agents in plant protection.

Citrus oils are extracts from citrus peels of different plant species of the Melliaceae and Rutaceae family. Limonene and linalool are two major constituents of some citrus oils and they act as nerve toxins and contact poisons (Weinzierl, 2000). They evaporate quickly after application, leaving no harmful residuals. Limonene is toxic to all the life stages of the fly; eggs, larvae, pupae and adults. It is often applied with pyrethon but to toxodor to enhance its effectiveness. Limonene extracted from sour oranges (Citrus x aurantium L.) is toxic to adult Bean weevils (Callosobruchus phaseoli Gyll.) (Jacobson, 1982). In a study of Raina et al. (2007), orange oil extract (cca 92% limonene) was efficient against the Formosan subterranean termite (Coptotermes formosanus Shiraki), a major urban pest in USA. Linalool is toxic to the eggs and larvae of Caribbean fruit flies (Anastrepha suspensa Loew) which is supported by the fact that females do not lay eggs in immature grapefruits due to high concentrations of linalool (Khatber, 2012). Re et al. (2000) noted that linalool affects ion transport and the release of acetylcholine esterase in insects. In the USA, various plant oils (clove, peppermint, etc.) are used by professional pest control operators for cockroach control and against ants and termites (Isman et al., 2011).

Volatile oils from the Mentha species have been shown to be effective against common stored grain pest; Cowpea weevil (Callosobruchus maculatus Fabricius) and Red flower beetle (Tribolium castaneum Herbst) (Tripathi et al., 2000). Citronella (Cymbopogon nardus L. / Rendle) essential oils have been used for over fifty years as an insect repellent. Today they are mostly sold in a form of candles as mosquito repellent (Weinzierl, 2000). Larvicidal activity has also been observed and attributed to the major constituent citronellal (Zaridah et al., 2003). Eucalyptus essential oil can act as an insect repellent and insecticide. Kumar et al. (2012) determined considerable activity of Tasmanian blue gum (Eucalyptus globulus /Labill./) oil against the larvae and pupae of the houlsely (Musca domestica L.), thereby demonstrating its potential for the development of an eco-friendly product for housefly control. Mossi et al. (2011) demonstrated the effective insecticidal and repellent activity of essential oils of seven Eucalyptus species (Eucalyptus dunnii, E. saligna, E. benthamii, E. globulus and E. viminalis) in the control of the Maize weevil (Sitophilus zeamais Motschulsky).

The chemical constituents of essential oils from savory (Satureja thymbra L.), oregano (Origanum onites L.) and myrtle (Myrtus communis L.) were tested for their insecticidal activity against the adult stages of the stored product pests Mediterranean flour moth (Ephestia kuehniella Zeller), Indian meal moth (Plodia interpunctella Hübner) and the Bean weevil (Acanthoscelides obtectus Say). The myrtle oil was more effective than the other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella (Ayvaz et al., 2010). Ouden et al. (1993) reported a decrease in adult and larval survival of the Cabbage root flies (Phorbia brassicae Bch.) when treated with essential oils extracted from the aerial parts of dill (Anethum graveolens L.). Palacios et al. (2009) evaluated the insecticidal activity of 12 essential oils on the house fly (Musca domestica L.), and among them, the essential oils from sweet orange (Citrus sinensis L.) and sour orange fruit peel (Citrus x aurantium L.) as well as eucalyptus leaves (Eucalyptus cinerea F. v. Muell.) were the most effective and could be good candidates for development as fumigants.

A total of 53 plant essential oils were tested for their insecticidal activities against eggs, nymphs, and adults of the Greenhouse whitefly (Trialeurodes vaporariorum Westwood), a major pest of greenhouse vegetables, especially tomatoes, cherry tomatoes, cucumbers, and ornamentals. This insect has developed a resistance to many synthetic insecticides. Essential oils from the bay (Laurus nobilis L.), caraway seed (Carum carvi L.), clove leaf (Syzygium aromaticum /L/ Merrill & Perry), lemon eucalyptus (Corymbia citriodora /Hook./ K.D. Hill & L. A. S. Johnson), lime (Citrus x aurantifolia /Christm./ Swingle), pennyroyal (Mentha pulegium L.), peppermint (Mentha x piperita L.), rosewood (Aniba rosaedora Ducke), spearmint (Mentha spicata L.) and tea tree (Melaleuca alternifolia /Maiden & Betchel/ Cheel) were highly effective against adults, nymphs, and eggs of T. vaporariorum (Choi et al., 2003). Regelau-Roger et al. (1993) reported that the essential oils from dill (Anethum graveolens L.), basil (Ocimum basilicum L.), nutmeg (Myristica fragrans Houtt.) and cumin (Cuminum cymunum L.) have insecticidal activity against the Bean weevil (Acanthoscelides obtectus Say).

Essential oils from rosemary (Rosmarinus officinalis L.), vetiver (Vetiveria zizanoides /L/ Roberty), thyme (Thymus vulgaris L.), ceylon cinnamon (Cinnamomum zeylanicum Breyne), lavender (Lavandula angustifolia Mill.), tansy (Tanacetum vulgare L.), sweet flag (Acorus calamus L.), fennel (Foeniculum vulgare Mill.), atlas cedar (Cedrus atlantica /Endl./ Manetti ex Carrière) (Koul et al., 2008), marjoram (Origanum majorana L.), and sage (Salvia officinalis L.) (Pavela, 2004) are also known for their pest control properties.
The results of the investigation on leaf extracts of the eggplant (Solanum melongena L.), potato (Lycopersicum esculentum Mill.), pepper (Capsicum annuum L.) and the fruit extract of eggplants (S. melongena) suggest the possibility of future exploitation of these materials in controlling the Cluster caterpillar (Spodoptera litura Fab.) and the Castor semi-looper (Achaea janata L.) (Devanand and Rani, 2011).

Some of the plant species produce insect growth regulatory compounds which negatively affect the maturation of insect species. Basil (Ocimum basilicum L.) produces analogues of insect juvenile hormones, juvocimenes (Balandrin et al., 1985), while chamomile (Matricaria chamomila L.) produces precocenes that disrupt the growth of insect’s juvenile hormones, thereby interrupting their growth while moulting. Juvabione, from the wood of the balsam fir (Abies balsamea /L./ Mill.), has a similar mode of action (Khater, 2012).

The insect growth regulatory activity of the yellow oleander (Thevetia nerifolia Juss.), a small tree of the Apocynaceae family, against the Cluster caterpillar (Spodoptera litura Fab), was found. The chloroform extract of the leaves was found to be the most active in terms of larval mortality (27.5–61.5 %), pupation (28.4–60.2 %) and adult emergence (19.8–52.8 %) (Ray et al., 2012).

Conclusion

Botanical insecticides are one option in insect pest management and crop protection. The advantages of botanical insecticides lie in their lack of persistence and bioaccumulation in the environment, selectivity towards beneficial insects and low toxicity to humans. Conventional plant protection has negative consequences, such as toxicological and ecotoxicological problems, disruption of the natural balance and the promotion of the development of resistance in insects. Due to well documented environmental and human health risks associated with the use of synthetic insecticides, their use in the future will be even more regulated. Concern over the negative impact of synthetic pesticides on the environment and human health ensures a continued and growing interest in searching for novel classes of insecticides with alternative modes of action and promoting the usage of those that are already well established.

References

Psota V., Oufedničková J., Falta V. (2010). Control of Hoplocampa testudinea using the extract from Quassia amara in organic apple growing. Horticultural Science 37 (4): 139-144

Todd G. D., Wohlers D., Citra M. (2003). Toxicology Profile for Pyrethroids and Pyrethroids’, Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Department of Health and Human Services, Atlanta, GA, USA

